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Abstract
Background: Bleeding is associated with a significantly increased morbidity and 
mortality. Bleeding events are often described in the unstructured text of electronic 
health records, which makes them difficult to identify by manual inspection.
Objectives: To develop a deep learning model that detects and visualizes bleeding 
events in electronic health records.
Patients/Methods: Three hundred electronic health records with International 
Classification of Diseases, Tenth Revision diagnosis codes for bleeding or leukemia were 
extracted. Each sentence in the electronic health record was annotated as positive or 
negative for bleeding. The annotated sentences were used to develop a deep learning 
model that detects bleeding at sentence and note level.
Results: On a balanced test set of 1178   sentences, the best-performing deep learning 
model achieved a sensitivity of 0.90, specificity of 0.90, and negative predictive value 
of 0.90. On a test set consisting of 700 notes, of which 49 were positive for bleeding, 
the model achieved a note-level sensitivity of 1.00, specificity of 0.52, and negative 
predictive value of 1.00. By using a sentence-level model on a note level, the model 
can explain its predictions by visualizing the exact sentence in a note that contains 
information regarding bleeding. Moreover, we found that the model performed con-
sistently well across different types of bleedings.
Conclusions: A deep learning model can be used to detect and visualize bleeding 
events in the free text of electronic health records. The deep learning model can thus 
facilitate systematic assessment of bleeding risk, and thereby optimize patient care 
and safety.
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Essentials

•	 Bleeding events are difficult to locate in electronic health records.
•	 A deep learning model detects bleeding events and visualizes them to the clinicians.
•	 The model identified 90.0% of bleeding-positive sentences and 89.6% of negative sentences
•	 The model identified 100% of bleeding-positive notes and 52.4% of negative notes.

1  |  INTRODUC TION

Bleeding occurs in 3.2% of medical patients within 14 days of ad-
mission, and approximately one-third of the bleeding events are 
considered major events.1 Bleeding is associated with a significantly 
increased morbidity and mortality.2,3 Furthermore, previous clini-
cally relevant bleeding events are a strong independent risk factor 
for future bleeding.1 Hence, knowledge about bleeding history is es-
sential for providing optimal care to patients.

In clinical practice, bleeding risk can be assessed using bleed-
ing risk scores that include information about the patient's bleeding 
history, for example the HAS-BLED (hypertension, abnormal renal 
and liver function, stroke, bleeding, labile international normalized 
ratio, elderly, drugs or alcohol) score, which is recommended for de-
termining bleeding risk during anticoagulation treatment,4,5 or the 
IMPROVE (International Medical Prevention Registry on Venous 
Thromboembolism) score, which is recommended to guide prophylac-
tic anticoagulant treatment for adult medical patients at admission.1

Although crucial for patient care, bleeding risk is not always sys-
tematically evaluated. Studies have shown that a large proportion 
of hospitalized medical patients do not get appropriate prophylactic 
anticoagulant treatment during admission.6-8 One reason is that the 
recommended scoring systems for assessment of thrombosis and 
bleeding risk are not always used in clinical practice.6-8 This could be 
caused by the fact that risk scores are laborious to obtain because 
it requires manual work to go through the electronic health record 
(EHR) for relevant information7 and that it must be done at the time 
of admission when health care professionals are busy handling the 
acute situation.

In recent years, deep learning techniques have achieved state-
of-the-art performance on text classification benchmarks.9 In med-
icine, various deep learning techniques have been used for text 
classification including, but not limited to, recurrent neural networks 
(RNNs),10-12 convolutional neural networks (CNNs),13,14 and hybrid 
models combining more than one technique.15 These techniques 
have the potential for automatic detection of relevant clinical infor-
mation in EHR text. This could facilitate the systematic assessment 
of bleeding risk and thereby optimize patient care and safety as 
well as freeing up time for health care professionals. To date, only 
a few studies have used deep learning for finding bleeding events 
in EHRs.15-17

A general concern about deep learning is how the models reach 
their conclusions. It often remains a black box, making the users 
struggle to assess the basis for results or whether the model answers 
the questions for which clinicians want assistance.18,19 Therefore, 
there is a growing awareness that deep learning models need to be 
self-explanatory.20 For text classification models, it means that it is 
relevant to show the prediction-supporting part of the text upon re-
quest. However, such approaches are lacking in bleeding detection 
models.

Therefore, the purpose of this study was to establish a deep 
learning model that automatically detects bleeding events on a sen-
tence level and to visualize the bleeding events to the clinician in the 
unstructured EHR text.

2  |  METHODS

2.1  |  Population and data set

Data were acquired from the EHR system of the Region of Southern 
Denmark. To ensure inclusion of EHR notes with a high likelihood of 
bleeding events in the text, we extracted EHRs from 300 patients 
with International Classification of Diseases, Tenth Revision (ICD-10) 
diagnosis codes for bleeding or leukemia. ICD-10 codes for bleed-
ing from the following sites were included: eyes, ear-nose-throat and 
respiratory tract, gastrointestinal, urogenital, internal organs, hema-
toma, and others. EHRs from patients with leukemia were included, 
as this patient group has a high incidence of bleeding (see Appendix 
S1 for ICD-10 codes).21 Before annotation, we discarded administra-
tive notes, as they would not contain any bleeding events.

Twelve physicians annotated the 300 EHRs. Each EHR was anno-
tated by one physician. To determine the agreement between physi-
cians’ annotation, we calculated the kappa score on a sample of 1328 
sentences from randomly chosen EHRs.

The EHRs were annotated22 on sentence level with two different 
labels:

1.	 Positive: Sentences that indicate any kind of bleeding.
2.	 Misinterpretable negative: Sentences that were deemed by the 
annotator to have a high risk of being misinterpreted by the deep 
learning model, for example, “The patient is not bleeding.”

K E Y W O R D S
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All sentences left after annotation of positive and misinterpre-
table negative sentences were then considered negative sentences. 
We chose to annotate the misinterpretable negative sentences as 
a subcategory to the negative category to be able to feed many 
negative samples that resemble positive samples to the model. This 
should help the model distinguish for example “the patient has a 
bleeding” from “the patient might have a bleeding.”

Data were split into a balanced training (80%), validation (10%), 
and test set (10%) using subsampling of the overrepresented class.23 
The negative sentences consisted of 50% random negatives and 
50% misinterpretable negatives. The training set was used to train 
the models, the validation set was used to tune parameters of the 
models during training, and the test set was used to evaluate final 
performance.

Sentences were tokenized using the Stanza sentence tokenizer.24 
Samples were preprocessed by elimination of superfluous spaces, 
special characters, and duplicate sentences.

2.2  |  Models for detection of bleeding events on 
sentence level

2.2.1  |  Rule-based classifier

A rule-based classifier was developed to compare the deep learning 
models with a traditional approach to text classification.

The rule-based model was constructed by defining a set of 
bleeding-indicating words and modifiers using corpus statistics 
and manual inspection of the data. Corpus statistics were used 
to calculate the most frequent words in bleeding-indicating sen-
tences. A bleeding-indicating word could for example be bleeding, 
and a modifier could, for example, be no (bleeding). Next, by eval-
uating performance on the training data, a window size was de-
fined where a modifier could modify a bleeding-indicating word. 
For example, no would modify bleeding in “no sign of bleeding” for 
a window size of 3. The model uses the indicating and modifying 
words and the window size to create rules for classifying individual 
sentences. The rules were iteratively updated during training to 
improve performance.

2.2.2  |  Deep learning models

Three different deep learning models were developed: a CNN model, 
an RNN model, and a hybrid model combining an RNN and a CNN. 
In deep learning, a model transforms the input to a classification via 
many layers of processing steps that are learned from labeled data 
during training. The input to the models is the individual words from 
each sentence represented as word embeddings. Word embeddings 
are numerical vector representations of words that encode their 
meaning with similar words having similar vectors. For this study, 
100-dimensional GloVe word embeddings pretrained on 323  122 
Danish EHRs were used.25,26

2.3  |  Evaluation of internal validity

We performed an internal sensitivity analysis on the best-performing 
model to evaluate if it performs equally well on the seven patient 
groups included in the study.

2.4  |  Bleeding detection on note level

Because each note may contain multiple positive sentences that 
often describe the same bleeding event, we calculated the perfor-
mance of the best model on a note level by classifying all sentences 
of each note. A positive note is defined as a note that includes at 
least one bleeding-positive sentence. The test was performed on 
seven randomly selected EHRs from patients in the leukemia group 
not included in the original data set. A total of 100 notes per EHR 
were collected.

2.5  |  Visualization of bleeding events in EHR text

Finally, we present how the bleeding-positive output of the model 
can be presented to the physician as a visualization of complete 
notes with the bleeding events highlighted, helping the physician 
understand the prediction and decreasing the time needed to find a 
bleeding event in an EHR.

2.6  |  Statistical analysis

We calculated accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and a harmonic mean of 
sensitivity and positive predictive value (F1) score. For each model, 
we plotted receiver operating characteristic curves and calculated 
area under the receiver operating characteristic curve (AUC).

The models were developed in Python 3.6 (Python Software 
Foundation, Wilmington, DE, USA) using the Tensorflow 2.0 
framework.

3  |  RESULTS

The 300 extracted EHRs contained 88 477 notes. Of those, we fil-
tered out 43 602 as administrative notes. The remaining 44 875 EHR 
notes were annotated on a sentence level. In total, 6111 sentences 
were annotated as positive and 5630 as misinterpretable negative. 
Overall, 3973 notes contained bleeding events and there were 1 to 
19 positive sentences per note. The EHRs contained 0 to 108 notes 
with bleeding per patient.

Among the different patient groups, “gastrointestinal bleeding” 
had the highest average number of positive sentences per EHR 
(n  =  25) while “Hematomas and other bleedings” had the lowest 
(n = 8; see Table 1). Although the EHRs were extracted on the basis 
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of ICD-10 codes for bleeding, 13 EHRs did not contain any informa-
tion about bleeding (“internal bleedings,” n = 2; “eyes,” n = 5; and “he-
matomas and others,” n = 6). Another 5 EHRs from leukemia patients 
did not contain bleeding events.

When assessing agreement among the 12 physicians, they 
achieved a kappa score of 0.75 on a sample of 1328 sentences from 
randomly chosen EHRs. This is considered a substantial agreement.27

3.1  |  Establishing models

For development of models, we removed duplicate sentences 
(n = 218), resulting in 5893 positive samples. To create a balanced 
data set, we randomly subsampled 2947 misinterpretable negative 
sentences. These were added to 2946 randomly extracted nega-
tive samples to give 5893 total negative samples. Together with 
the 5893 positive samples, they constitute the balanced data set of 
11 786 samples.

The balanced data set was divided into training (n = 9430), val-
idation (n = 1178), and test sets (n = 1178). The distribution is seen 
in Table S1.

3.1.1  |  Rule-based results

The bleeding-indicating and modifying words were aggregated into 
a stem to capture different conjugations; for example, the Danish 
word for hemorrhage (hæmoragi) was aggregated to hæm and defined 
as a bleeding-indicating word.

The developed rule-based classification model searched each 
sentence for a positive word. If no positive words were found, the 
sentence was classified as negative. If a positive word was found, the 
model searched its context words in a window of size 4 to look for 
negative modifiers. If a word from the positive list was not accom-
panied by a negative modifier, the sample was classified as positive. 
If all positive words were accompanied by negative modifiers, the 
sample was classified as negative.

3.1.2  |  Deep learning

The developed CNN consisted of convolutional layers that extract 
information from neighboring words. The extracted information was 
used by a linear classification layer that classifies the sentence as 
either bleeding present or bleeding absent.

Our RNN model was based on the Bidirectional Gated Recurrent 
Unit (BiGRU).28 The model consisted of a single BiGRU layer that ex-
tracts information from the input words by processing them sequen-
tially. The extracted information was used by a linear classification 
layer that classifies the sentence.

The hybrid model used the output from both a CNN and an RNN 
to classify the sentences. This model was developed to exploit the 
information extracted from both a CNN and RNN in a final linear 
classification layer.

A more thorough description of the models can be seen in 
Appendix S2.

For each deep learning model, the seven versions of the model 
that performed best on the validation set were selected for an en-
semble classifier. The ensemble classifier averages the predictions of 
each model to a final prediction.

3.2  |  Performance of models for bleeding detection 
in EHRs on sentence level

Table 2 shows the performance of the rule-based and deep learning 
classifiers on the test set.

Figure 1 shows the ROC curves of the hybrid, CNN, RNN, and 
rule-based models with their corresponding AUC.

Overall, the performance of the hybrid model was the best. It 
achieved an F1 score of 0.90, a sensitivity of 0.90, a specificity of 
0.90, a PPV of 0.90, and an NPV of 0.90. The CNN model achieved 
equally high sensitivity of 0.90 but performed slightly worse on the 
additional metrics, while the RNN performed consistently worse on 
all metrics against both the hybrid and CNN model. The rule-based 
model performed worse than all deep learning models.

TA B L E  1 Patient group distribution of extracted EHRs

Patient group
Number 
of EHRs

Number of 
EHR notes

Number of positive 
EHR notes

Number of positive 
sentences

Average number of positive 
sentences per EHR

Eye bleeding 65 7781 771 1546 24

Ear-nose-throat and respiratory 
tract bleeding

23 3702 372 532 23

Gastrointestinal bleeding 51 6968 1,055 1,250 25

Urogenital bleeding 45 4409 499 855 19

Internal organ bleeding 45 6078 753 1,082 24

Hematoma and other bleeding 38 5597 229 319 8

Leukemia bleeding 33 10 340 294 527 16

Total 300 44 875 3973 6111 …

Abbreviation: EHR, electronic health record.
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3.3  |  Test of internal validity

We evaluated the hybrid model’s performance within each of the 
different patient groups on sentence level (Figure  2). It was cal-
culated on the full data set including training, validation, and test 
sets. The model shows an almost equal performance for all patient 
groups, highest for “eyes” at 0.98, and lowest for “leukemia” at 0.95.

3.4  |  Performance of the hybrid model 
on note level

We further tested the performance of the hybrid model on a note 
level by classifying all sentences and aggregating the result to the 

full note. The seven EHRs contained 700 notes, of which 49 were 
positive. The hybrid model achieved a sensitivity of 1.00, a specific-
ity of 0.52, a PPV of 0.14, an NPV of 1.00, an F1 score of 0.24, and 
an AUC of 0.76.

3.5  |  Visualization of bleeding events in EHR text

In this study, we chose to use the sentence-level model on a note 
level because it makes the model capable of explaining its predic-
tions. The model outputs all notes with predicted bleeding events, 
highlighting the sentence(s) found to indicate bleeding (representa-
tive example translated to English in Figure 3, original in Figure S1).

4  |  DISCUSSION

We present a deep learning model that automatically detects bleed-
ing events in EHRs with a sensitivity of 0.90 on sentence level and 
1.00 on note level. This enables clinicians to receive automatic visu-
alization of EHR notes with bleeding events. The hybrid model, com-
bining an RNN and a CNN, performed best for bleeding detection on 
sentence level (F1 = 0.90).

In congruence with our study, others have found that machine 
learning can be used for finding bleeding in EHRs. Rumeng et al.15 
used a deep learning model to detect bleeding events in sentences 
of EHRs (F1 = 0.94). The study comprised a data set of 2902 sen-
tences extracted from 878 notes from patients with cardiovascular 
events. Taggart et al.17 detected bleeding events at a note level with 

TA B L E  2 Performance of models for detecting bleeding in 
electronic health records on sentence level

Rule-based CNN RNN Hybrid

Accuracy 0.80 0.89 0.89 0.90

Sensitivity 0.86 0.90 0.89 0.90

Specificity 0.72 0.89 0.88 0.90

Positive predictive value 0.76 0.89 0.88 0.90

Negative predictive value 0.84 0.90 0.90 0.90

F1 score 0.81 0.89 0.89 0.90

AUC 0.79 0.89 0.89 0.90

Abbreviations: AUC, area under the receiver operating characteristic 
curve; CNN, convolutional neural network; F1, harmonic mean of 
sensitivity and positive predictive value; RNN, recurrent neural network.

F I G U R E  1 ROC curves and AUC for 
all models on sentence level. (A) Hybrid 
model. (B) CNN model. (C) RNN model. 
(D) Rule-based model. AUC, area under 
the curve; CNN, convolutional neural 
network; RNN, recurrent neural network; 
ROC, receiver operating characteristic
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a rule-based approach (F1 = 0.74) and a CNN (F1 = 0.40) on a test set 
consisting of 660 notes. The rule-based model was trained on 990 
notes and the CNN was trained on 450 notes.

In contrast to our study, Taggart et al. found that their rule-
based approach performed better than their CNN but it may, how-
ever, be due to the limited amount of training data for the CNN, 
which is a well-known limitation in machine learning.29,30 Rumeng 
et al. also used a small data set, and moreover, the data used were 
exclusively from patients with cardiovascular events. Therefore, in 
the above studies, the data sets might not be representative of 
bleeding in all sites and the model might not be generalizable to 
other patient groups. The model presented in our study used a 
data set of 11  786 sentences extracted from 44  875 notes rep-
resentative for multiple types of bleeding. In the internal validity 
test, we found that our model generalizes well to different types 
of bleeding.

Lee et al.16 used a rule-based (sensitivity = 0.83), machine learn-
ing (sensitivity  =  1.00), and score function (sensitivity  =  0.98) ap-
proach to find clopidogrel-induced bleedings in EHRs. They defined 
bleeding events as the presence of specific ICD, Ninth Revision (ICD-
9) codes, specific keywords, and unique identifiers of the Unified 
Medical Language System related to bleeding. Thus, the bleeding 
definition was simplified to specific words, which is a limitation for 
use in clinical practice, as bleeding can be reported with numerous 
different phrases in EHRs. In agreement, we found thousands of 
different sentences that corresponded to bleeding according to the 
physicians involved. Moreover, the construction of keyword and rule 
lists requires manual effort that is difficult to scale because of the 
unstructured and noisy nature of the clinical notes (eg, grammatical 

ambiguity, synonyms, term abbreviation, misspelling, or negation of 
concepts).31

Additionally, validation of ICD-9 and ICD-10 diagnosis codes has 
shown that they are not always accurate.32,33 However, the major 
concern is that diagnosis coding requires manual collection of the 
patient history to choose the codes of relevance and that bleeding 
events that are not a major contributing cause of admittance are not 
registered with a code for bleeding. The present study provides an 
attractive alternative by leveraging the information-rich yet unstruc-
tured text data in clinical notes in EHRs, which are currently often 
omitted when developing models.34

In the present approach, we established a deep learning model 
that points out relevant information in the EHRs on sentence level. 
The advantage of making a sentence-level classifier is that it en-
ables the model to explain its predictions on a note level by show-
ing the prediction-supporting part of the text. We were, therefore, 
able to visualize where in the notes the model has detected a 
bleeding event, which enables us to point out relevant sentence(s) 
in the long unstructured EHR text for the physician. A fast over-
view of patient bleeding history facilitates clinical decision making. 
Accordingly, studies have shown that clinical practice may improve 
when decision support systems give automatic recommendations 
where the decision is interpretable and understandable for the 
physician.35,36

An automatic summary of bleeding history may be valuable 
in clinical practice to diagnose, monitor disease, or address treat-
ment options. The presented approach can be extended to include 
other symptoms and findings. Information regarding specific past 
events, for example, bleeding events during medical procedures, is 

F I G U R E  2 Internal validity for 
detection of bleeding on note level for the 
hybrid model

F I G U R E  3 Example of the visualization 
of bleeding events in an electronic health 
record note. To keep the original format, 
the text is translated directly from Danish 
to English, which results in incorrect 
sentence structures
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important when planning a new medical procedure. Thus, the infor-
mation may have an impact on patient safety because, for example, 
procedure and operation bleeding risk and medication side effects 
can be monitored effectively. It may also prove useful for health care 
statistics and resource management. Finally, the approach may save 
time because a focused review of an EHR to find all past bleeding 
events is very time consuming. Thus, it provides more time for direct 
patient care.

To summarize the main points of the discussion, comparing the 
related studies, the current study used the largest annotated corpus, 
providing an advantage to the deep learning model. This study also 
included many different types of bleeding, and it evaluated model 
accuracy by type of bleeding. In contrast to Taggart et al., we found 
that a deep learning approach works better than a rule-based ap-
proach. We additionally show a simple approach to visualizing the 
sentences indicating bleeding to physicians, allowing for interpreta-
tion of the deep learning model.

4.1  |  Limitations

The rule-based algorithm may have been further optimized by being 
more specific on search terms with inclusion of more words and their 
common misspellings instead of using more global terms to group 
words; for example, the Danish stem hæm may find words with vari-
ous meanings that do not imply bleeding. Another limitation is that 
the study included only EHRs with an ICD-10 code of bleeding, which 
does not capture all EHRs with bleeding events. Additionally, we did 
not validate the algorithm on an independent cohort. Of note, we 
found a high sensitivity for bleeding in EHRs from patients with leu-
kemia, who comprise a patient group experiencing bleeding from 
different organ systems.21 It thus suggests that the model performs 
well on EHRs without ICD-10 for bleeding. It is crucial that the text 
that we used for training the model is representative for any way 
that bleeding can be reported in the EHR. It is a limitation to the 
study that we cannot guarantee this, and it would be beneficial to 
include a larger and more general data set. Nevertheless, this ap-
proach clearly showed that it is feasible to automatically extract 
and visualize bleeding events in EHRs. Future research shall focus 
on developing a model on data including even more bleeding types 
and optimizing the strategy, which includes differentiation between 
clinically relevant versus trivial bleedings and surgical versus medical 
bleeding.

5  |  CONCLUSION

We have developed a deep learning model that identifies bleeding 
events in EHRs with a sensitivity of 0.90 on sentence level and 1.00 
on note level. Further, we have shown how bleeding-positive notes 
can be visualized to physicians, making the model easily interpret-
able to the clinician.
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