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Highlights

• Type 2 diabetes is a multifactorial disorder that leads to a disturbed glucose homeostasis.
• Lifestyle management along with pharmacological approaches is crucial to achieve a successful man-

agement of diabetes.
• Complex interplays between genetics and environmental factors play important roles in the develop-

ment of diabetes.
• Combinational therapies employed after failure of monotherapy result in comorbidities.
• Phytoconstituents are better alternatives owing to their multitargeting capability.
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Abstract
Type 2 diabetes mellitus (T2DM) accounts for >90% of the 
cases of diabetes in adults. Resistance to insulin action is the 
major cause that leads to chronic hyperglycemia in diabetic 
patients. T2DM is the consequence of activation of multiple 
pathways and factors involved in insulin resistance and 
β-cell dysfunction. Also, the etiology of T2DM involves the 
complex interplay between genetics and environmental fac-
tors. This interplay can be governed efficiently by lifestyle 
modifications to achieve better management of diabetes. 

The present review aims at discussing the major factors in-
volved in the development of T2DM that remain unfocussed 
during the anti-diabetic therapy. The review also focuses on 
lifestyle modifications that are warranted for the successful 
management of T2DM. In addition, it attempts to explain 
flaws in current strategies to combat diabetes. The employ-
ability of phytoconstituents as multitargeting molecules and 
their potential use as effective therapeutic adjuvants to first 
line hypoglycemic agents to prevent side effects caused by 
the synthetic drugs are also discussed.
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Introduction

Insulin resistance and β-cell dysfunction are the 2 major 
hallmarks of type 2 diabetes mellitus (T2DM) that appear 
as the result of disturbed homeostasis [1]. Failure of β-cells 
(∼80% of their β-cell function) and insulin resistance in 
muscles and the liver is a vicious triumvirate responsible 
for the core physiological defects. However, T2DM is clas-
sically viewed as a disorder of insulin deficiency and resis-
tance, and further insights into the pathophysiology of 
T2DM suggest the role of other key players in insulin defi-
ciency and its functional inability. Pancreatic islets are 
composed of insulin-releasing β-cells (48–59%), glucagon-
releasing α-cells (33–46%), somatostatin (SsT)-releasing 
δ-cells, and F cells that release polypeptides (PPs) in similar 
proportion [2]. Moreover, paracrine interactions occur in 
the sequence from β-cell to α-cells followed by δ-cells and 
PP-cells/F-cells [3]. While the β-cell interactions are em-
phasized at present, the interaction of other cells in pan-
creas is of crucial importance that needs to be explored 
further to understand their roles in glucose homeostasis 
[2]. Also, the development of glucose resistance in T2DM 
is largely influenced by fat cells (accelerated lipolysis), gas-
trointestinal tract (incretin deficiency/resistance), α-cells 
(hyperglucagonemia), kidneys (increased glucose reab-
sorption) and brain (insulin resistance), and complex in-
teractions that occur between these factors and T2DM as-
sociated genes [4]. Changes in the lifestyle of T2DM pa-
tients are crucial along with pharmacological interventions 
to improve the overall health status of the patient. The 
present review discusses our current understanding of the 
pathogenesis of T2DM and attempts to emphasize on gen-
erally unfocused aspects of T2DM pathogenesis and treat-
ment that may contribute significantly to treatment ap-
proaches and patient-related outcomes.

Understanding the Diabetes Machinery: The 
Unfocused Aspects

Amylin Proteins and Pancreatic β-Cell Function
β-Cells are the most extensively studied pancreatic 

cells for their roles in glucose homeostasis in T2DM. Islet 
amyloid PP (amylin) is a β-cell peptide hormone that is 
secreted along with insulin in the ratio of approximately 
100:1. Its secretion is also altered in diabetic patients. Am-
ylin functions as an inhibitor of glucagon secretion and 
delays gastric emptying thus acting as a satiety agent [5]. 
Amylin action is executed through an area postrema (glu-
cose-sensitive part of the brain stem) that collectively 

aims to reduce the demand of total insulin [6]. Besides 
these functions, amylin also plays roles in the destruction 
of β-cell via the formation of amyloid aggregates and fi-
bers [7]. Findings from histopathology have shown the 
accumulation of extracellular amyloid proteins, hyper-
phosphorylated tau, ubiquitin, apolipoprotein E, apoli-
poprotein (a), c-Jun N-terminal kinases (JNK1), and is-
let-brain 1/JNK1 interacting protein-1 (IB1/JIP-1) as the 
characteristic feature of pancreatic islets in T2DM indi-
viduals, suggesting that amylin in association with endo-
crine system plays important roles in physiology, pathol-
ogy, and progression of T2DM [8].

α-Cells
α-cells are known to play crucial roles in the patho-

physiology of T2DM. The secretion of glucagon from 
α-cell is regulated by glucose, hormones, and other sub-
strates that work in unison. Any abnormality in α-cells is 
reflected in altered glucose homeostasis [9]. In T2DM, a 
relative elevated secretion of glucagon takes place in fast-
ing and postprandial states during normal and increased 
glucose levels along with altered hypoglycemic response 
[10]. According to the bi-hormonal hypothesis, T2DM is 
the consequence of insulin resistance/deficiency with a 
relative excess glucagon secretion, leading to a rate of he-
patic glucose production that is much higher than the 
rates of glucose utilization. This consequently results in 
hyperglycemia. The hypothesis is supported by a plethora 
of clinical and experimental investigations [11, 12]. Re-
duced suppression of glucagon release under hyperglyce-
mic conditions is a contributing factor to postprandial hy-
perglycemia [13]. Interestingly, α-cells do not show this 
behavior in the presence of adequate insulin levels, sug-
gesting that impairment in insulin machinery also cause 
the abnormalities in glucagon release in T2DM [14]. In 
addition to this, hypoglycemia is remarkably influenced 
by glucagon secretion in T2DM patients treated with in-
sulin. In such patients, the secretory response of α-cells to 
low-glucose concentrations is compromised, which fur-
ther aggravates the risks of severe hypoglycemia [15]. The 
deficiency of glucagon action in response to hypoglycemia 
is linked with multiple failures in α-cell regulation [16]. 
Even in the situation of islet allotransplantation that helps 
diabetes patients to remain independent to insulin for a 
long time, the retarded response of α-cell response to hy-
poglycemia usually remains unaffected, indicating that 
the procedure does not completely restore the physiologi-
cal functions of α-cells [17]. Collectively, defects in α-cell 
regulation and glucagon secretion lead to defective glu-
cose sensing, loss of β-cell function, and insulin resistance.
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δ-Cells, SsT, and Pancreatic PP Cells (F-Cells)
The δ-cells are located in the stomach, intestine, neu-

roendocrine cells, and pancreas. They secrete SsT in a 
pulsatile manner in response to fluctuations in glucose 
levels [18]. SsT regulates the endocrine functions and also 
plays an important role in the gut-brain axis. The recep-
tors of SsT are present on α- and β-cells where they act as 
inhibitory receptors for the secretion of insulin and glu-
cagon. SsT exerts a tonic inhibitory effect on the secretion 
of insulin and glucagon and facilitates the islet response 
to cholinergic activation. In addition, SsT is also involved 
in the suppression of nutrient-induced glucagon secre-
tion [19]. Further, SsT significantly alters the normal glu-
cose homeostasis and feedback loops [20].

F-cells of the pancreas release pancreatic PP after the 
food intake. It exerts inhibitory postprandial effects on 
gastric emptying, intestinal motility, exocrine pancreatic 
secretion, hepatic glucose production, and gallbladder 
contraction. Functional abilities of PP significantly affect 
food intake and energy metabolism [21]. When adminis-
tered through intracerebroventricular route, PP exerts an 
orexigenic (appetite stimulating) effect in the brain. On 
contrary, intraperitoneal administration of PP reduces 
the food intake and lowers body weight by enhancing en-
ergy expenditure [22, 23]. Increased plasma levels of PP 
are implicated in obesity and diabetes.

Adipose Tissue and Resistin
Adipose tissue consists of adipocytes, connective tissue 

matrix, nerve tissue, stromovascular cells, and immune 
cells. The role of adipose tissue as an endocrine organ is 
well established [24]. It releases leptin, cytokines, adipo-
nectin, complement components, plasminogen activator 
inhibitor-1, proteins of the renin-angiotensin system, and 
resistin. Apart from secreting factors/hormones, adipose 
tissue also functions in coordination with other hormone 
systems and the central nervous system. Typically, adi-
pose tissues serve as a store house for fat under normal 
conditions, while they also release free fatty acids (FFAs) 
in metabolic disorders. Consistent decline in the function 
of β-cell in normal individuals has been shown to be as-
sociated with progressive secretion of FFAs and insulin 
resistance in adipose tissue [25]. Resistin or adipose tis-
sue-specific secretory factor released from adipose tissue 
is largely implicated in the progression and development 
of T2DM [24]. It acts as an inhibitory hormone that causes 
resistance to insulin [26]. Levels of circulating resistin in-
crease in T2DM, resulting in oxidative stress, insulin re-
sistance, and platelet activation [27]. Expression of the re-
sistin gene is also observed in the pancreatic islets, pitu-

itary, and hypothalamus [28]. Although resistin is 
primarily secreted by macrophages in humans [29] where 
it is involved in the recruitment of immune cells and pro-
inflammatory factors, the involvement of resistin is also 
seen in hyperglycemia and insulin resistance [30, 31]. Re-
sistin-induced hyperglycemia and obesity are induced 
through the activation of AMP-protein kinase and de-
creased expression of gluconeogenic enzymes in the liver. 
Induction of insulin resistance is also evident in rodents 
after the administration of recombinant resistin that re-
verses with the immune neutralization [32].

Genetics
T2DM is notorious for being “the geneticist’s night-

mare.” Occurring due to the combined contribution of 
genetic and environmental factors, leading to multiple 
gene alterations [33]. Multiple mechanisms act either di-
rectly or in association with other factors to influence the 
development and progression of T2DM. These include 
defects in pancreatic angiogenesis, innervation, and mod-
ification of parental imprinting [34]. The pathogenesis of 
T2DM depends on the intensity of both maternal and pa-
ternal insulin resistivity and/or insulin sensitivity [35]. 
According to one study, the first-degree relatives of T2DM 
patients live at a higher risk of developing T2DM and have 
a strong genetic predisposition to β-cell failure [36]. More-
over, β-cell dysfunction, autosomal dominance, and het-
erozygous mutations in β-cell transcription factors are 
some of the major causes leading to early onset of T2DM. 
The identified genes responsible for the early-onset T2DM 
include insulin promoter factor-1, hepatocyte nuclear fac-
tor (HNF)-4α, NeuroD1/BETA2, HNF-1α, and HNF-1β 
[37]. A hyperglycemic intrauterine environment has also 
been implicated in T2DM or pre-diabetes in the offspring 
of women suffering from gestational diabetes [38]. Also, 
during gestational diabetes, the expression of insulin 
receptor-β, PI3K (phosphatidylinositol 3-kinase) with its 
subunit p85α and GLUT-4 decreases with a compensatory 
elevation in the expression of GLUT-1 mRNA in placental 
tissues [39]. Polymorphism in resistin gene 299 (G>A) 
and increase in serum resistin is also known to be a con-
tributing factor to increased insulin resistance with a sub-
sequent higher risk of T2DM in offspring. Moreover, off-
spring carrying AA and combined GA + AA genotypes 
tend to be at higher risk [40]. On the other hand, diabetes 
also has the capacity to make genetic alterations leading to 
associated comorbidities. For instance, alterations in 
genes involved in vitamin synthesis leads to lowering of 
levels of riboflavin and glycemia, microalbumineria, and 
altered levels of uric acid in T2DM individuals and devel-
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opment of insulin resistance due to vitamin D deficiency 
[41–46]. Importantly, the genes of vitamin D receptor and 
its binding protein along with CYP1α show polymor-
phisms in diabetics [42–44].

Gut
The gut serves as a prominent link between the brain 

and the enteric nervous system [47]. The secretion of gas-
trointestinal hormones (incretin, glucagon-like peptide-1 
[GLP-1], and glucose-dependent insulinotropic polypep-
tide [GIP]) increases after food intake. These hormones 
assist insulin and glucagon in maintaining glucose ho-
meostasis and improve α-cell glucose sensing. GLP-1 
promotes assimilation of ingested nutrients through glu-
cose-stimulated insulin secretion and evidently improves 
β-cell sensitivity to glucose [48]. Moreover, GLP-1 also 
suppresses glucose-dependent glucagon secretion, re-
tards gastric emptying, and promotes satiety [49]. In the 
pancreas, β-cell proliferation and inhibition of apoptosis 
are promoted by GIP and GLP-1 that ultimately expand 
pancreatic β-cell mass. In addition, fat deposition is also 
facilitated by GIP. In the brain, GIP and GLP-1 are in-
volved in appetite control. GIP also decreases gastric acid 
secretion, while GLP-1 decreases the duration of gastric 
emptying. Moreover, the insulinotropic effects of GIP 
and GLP-1 differ in T2DM patients such that GLP-1 se-
cretion is impaired, while the secretion of GIP remains 
unaffected [50]. Alterations in incretin functioning and 
the associated pathways result in increased gastrointesti-
nal permeability in T2DM and form one of the basic un-
derlying mechanisms responsible for diabetic comorbid-
ities in the latter phase [48, 49, 51].

The gut also releases other hormones which are in-
volved in multiple signaling cascades. These include (but 
not limited to) ghrelin, galanin, cholecystokinin (CCK or 
pancreozymin) and leptin [52]. The enteroendocrine 
cells (I cells of the duodenum and jejunum) and neurons 
synthesize and release CCK in response to meals and in-
duce pancreatic acinar cells to secrete pancreatic digestive 
enzymes. CCK also reduces gastric emptying and en-
hances the digestion process [53]. Vagus stimulation 
causes trypsin release from pancreas that hydrolyzes CCK 
to maintain homeostasis through the feedback mecha-
nism. CCK is positively associated with leptin and insulin 
levels resulting in disrupted glucose homeostasis and dia-
betic complications in T2DM [53, 54].

Gut Microbiota
Diabetes is considered as a disease of the intestine 

where gut microbiota plays a crucial role [55, 56]. The 

concentration of microflora distally increases along the 
length of the gastrointestinal tract [57]. The flora of the 
upper intestine generally accounts for <105 cfu/mL of the 
total microflora content. The concentration of microflora 
increases in the mid-ileum to 107 cfu/mL and ultimately 
populates the colon heavily [57, 58]. Commonly populat-
ing bacteria in humans are (a) Firmicutes (60–80%): Ru-
miniococcus, Clostridium, and Lactobacillus; (b) Bacte-
roidetes (20–30%): Bacteroides, Prevotella, and Xylani-
bacter; (c) Actinobacteria (<10%): Bifidobacterium; (d) 
Proteobacteria (<1%): Escherichia and Enterobacteriace-
ae; and (e) yeast Saccharomyces boulardi [59]. Obesity/
adiposity is undoubtedly a pivotal contributing factor in 
T2DM. Interestingly, the level of Staphylococcus, Entero-
bacteriaceae, Faecalibacterium prausnitzii, and E. coli in-
creases during obese conditions, while Bacteroides con-
centration decreases [60]. Moreover, in T2DM, Fir-
micutes, Lactobacillus gasseri, Streptococcus mutans, and 
E. coli are increased, while proteobacteria, butyrate-pro-
ducing bacteria, Bacteroidetes, Roseburia, Eubacterium 
halii, and Faecalibacterium prauznitzii are decreased 
considerably [59]. Changes in gut microbiota/gut-brain 
microbiota result in insulin resistance and disease/meta-
bolic syndrome [59, 61]. Also, low-grade inflammation is 
remarkably influenced by obesity in association with al-
teration of gut-brain-microbiota interactions that render 
T2DM as an inflammatory disorder [62]. An increased 
intestinal permeability due to inflammation is evident in 
obesity and diabetes that may reach to leak gut conditions 
to facilitate the entry of gut microbes into circulation. 
This increases circulating LPS and thereby activates in-
flammasome formation [63]. Moreover, vagal control is 
significantly compromised in diabetes in association with 
chronic hyperglycemia, damaged interstitial cells of Cajal 
and gastroparesis (5–12% diabetic patients) [64]. Increase 
in mucosal surface area, intestinal weight, and number of 
goblet cells per villus leads to disrupted esophagus peri-
stalsis and lower sphincter tone [65]. The overall distur-
bances in intestinal motor functions lead to stasis and 
bacterial outgrowth; thus, possibly disturbing the intesti-
nal barrier and affecting permeability to allow the entry 
of microbes [63–65]. Moreover, circulating LPS are in-
volved in the insulin resistance and diabetes progression 
toward comorbidities [63, 65, 66]. Gut microbes influ-
ence the metabolic and immune networks of the host to 
cause obesity and diabetes through enhanced nutrient ab-
sorption from the diet, cellular uptake of circulating tri-
glycerides, prolonged intestinal transit time, altered bile 
acid enterohepatic cycle, enhanced de novo lipogenesis, 
reduced FFA oxidation, altered tissue composition of bi-
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ologically active polyunsaturated fatty acid, chronic low-
grade inflammation triggered by the endotoxin TLR-4 
axis, and altered intestinal barrier function [67].

Lifestyle Modifications, Environmental Factors, and 
Management of T2DM

The pharmacological approach to treat T2DM can be 
only partly effective in the long-term management of dia-
betes. Major modifications in the lifestyle of patients 
along with the interventions through pharmacological 
approaches are crucial to ensure an effective management 
of the disease. These include changes in physical activity, 
dietary modifications, management of stress or associat-
ed factors, and improved sleeping patterns. The next few 
sections of this review will discuss and explore the poten-
tial of these factors in the management of diabetes when 
followed in parallel with the pharmacological manage-
ment of the disease.

Physical Activity
Physical activity is positively associated with con-

trolled glycemic levels among T2DM patients. Moderate 
but daily physical activity has been found to be an effec-
tive way to control the long-term manifestations of dia-
betes. These include walking, gardening, and performing 
common household chores. Walking is the most effective 
physical activity in T2DM, as it allows significant glyce-
mic control with limited physical burden in patients who 
are already physically weak [68]. Moreover, a much war-
ranted lifestyle alteration in T2DM patients are changes 
in sedentary patterns. Sedentary behavior leads to consid-
erably low expenditure of energy. An extended sedentary 
period in T2DM patients is also associated with uncon-
trolled glycemic levels. A reduced sedentary time, there-
fore, is crucial in diabetes patients, which can be achieved 
by increasing the physical work [69]. In addition, regular 
aerobic exercise is acknowledged to improve HbA1c lev-
els in patients with diabetes [70]. Aerobic exercise tends 
to improve health outcomes in patients through multiple 
mechanisms that include the manifold increase in mito-
chondrial densities, improved sensitivity to insulin, im-
proved compliance of blood vessels, and lung functions 
with enhanced cardiac output [71].

Dietary Changes and Medical Nutrition Therapy
Insulin resistance and subsequent appearance of T2DM 

are closely linked with high intake of sugars, fried food, 
and red meat [72]. On the contrary, reduced risk of T2DM 

development is observed in case of intake of vegetables 
having high content of antioxidants, fiber, and other nu-
trients [73, 74]. The average energy intake of diabetes pa-
tients differs with their obesity status. Usually, for a non-
obese diabetic patient, an average energy intake of 1,500–
2,500 calories per day is recommended, while for obese 
patients, the average calorie intake is reduced to 800–1,500 
calories per day. Limited intake of refined sugars is highly 
recommended in T2DM patients. Non-nutritive sweeten-
ers (aspartame, saccharine, etc.) can be the good substi-
tutes for sugar in such patients. Moreover, the restricted 
intake of food rich in saturated fats and cholesterol and its 
replacement with food rich in polysaturated fats is also 
recommended. In addition, changes in eating patterns, 
such as dividing meals into small fractions over the day 
rather than taking 1 or 2 large meals can prevent vigorous 
postprandial peaks in blood glucose levels [75]. Strict ad-
herence to controlled diet with sufficient physical activity 
is largely associated with lower incidence of diabetes [76]. 
Incorporation of Paleolithic diet (a diet rich in lean meat, 
fish, fruits, and vegetables) in the daily routine of diabetic 
patients results in marked improvement in glucose han-
dling [77]. The employment of nutritional therapy in the 
management of diabetes is also widely suggested. Nutri-
tional therapy is an approach to treat a disease through the 
modifications in food and nutrition intake. The applica-
tion of evidence-based nutrition care therapy in diseased 
patients by a qualified and registered dietician is termed 
as medical nutrition therapy [78]. Reduced reliance on 
oral hypoglycemic therapy is evident in diabetes patients 
receiving nutritional therapy [79]. Also, considerable im-
provements in clinical outcomes are observed in diabetes 
patients receiving intensive nutritional education by reg-
istered dietician in comparison to patients receiving basic 
nutrition information (BE) [80]. Taken together, simple 
but profound changes in dietary pattern in diabetic pa-
tients is a potential approach to curb the long-term impli-
cations of diabetes. Moreover, successful application of 
nutritional therapy in individuals with diabetic conditions 
can be a lucrative approach to achieve a better manage-
ment of diabetes with improved health outcomes.

Stress
Increased levels of stress are associated with poor treat-

ment adherence and glycemic control in T2DM patients 
[81]. In a longitudinal study, moderate/high levels of 
stress were found to be accountable for multifold increase 
in the incidences of diabetes [82]. Moreover, consistent 
exposure to stressors, compromised mental health, and 
psychological stress are highly implicated in increasing 
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risk of T2DM development [83]. Allostatic load (wear 
and tear in the body occurring as a result of chronic ex-
posure to psychological stress) is assumed to be the major 
factor responsible for this increased risk of T2DM in such 
individuals [84]. In addition, consistent stress is also im-
plicated in worsening of clinical outcomes in T2DM pa-
tients. Chronic stress is associated with dysregulated glu-
cose metabolism and neuroendocrine function accompa-
nied with low-grade inflammation. A majority of factors 
that are implicated in T2DM are largely influenced by 
psychological stress including the release of glucose (and 
lipids) in circulation, expression of inflammatory cyto-
kines, and elevated blood pressure [85]. In one study, in 
type 2 diabetes patients when exposed to acute stress dur-
ing the postprandial period, considerable increases in 
blood glucose levels were observed [86]. Apparently, 
treatment strategies, including stress management inter-
ventions, are a promising approach in effectively prevent-
ing or controlling the incidence of type 2 diabetes.

Sleep Patterns and Chronopharmacology
Although physical activity and maintained dietary pat-

tern result in considerable improvements in the manage-
ment of T2DM, they cannot be envisioned as the sole con-
tributors to the worsening of diabetes incidences. Sleep is 
another modifiable lifestyle behavior that has proven 
roles in influencing metabolic health and energy status. 
Optimization of sleeping patterns is crucial in diabetes 
control [87]. A population-based study suggests that 
short sleep (<5 h) or insomnia is associated with increased 
risk of T2DM [88]. In similar studies, poor sleep was as-
sociated with higher HbA1c levels (>7%) and insulin re-
sistance in T2DM patients [88]. Disturbed circadian 
rhythms and sleep-wake patterns also result in significant 
effect on onset, development, and management of diabe-
tes [89]. Shift workers tend to remain much prone to met-
abolic disorders due to consistent sleep loss and disrupted 
circadian rhythm [90]. In addition, developed propensity 
of napping as a consequence of poor or insufficient noc-
turnal sleep is also associated with high risk of T2DM 
[91]. In one study, experimental manipulation of sleep 
and circadian pattern resulted in significant reduction in 
insulin response to standardized meal which could be re-
covered with restored sleeping patterns [92]. Changes in 
hormones that regulate appetite (leptin and ghrelin) are 
observed to be associated with short sleep causing an in-
creased urge for carbohydrate-rich food and increased 
calorie intake [89, 93]. Moreover, lack of sleep also results 
in oxidative stress and release of orexin or hypocretin, a 
neuropeptide that regulates sleep and appetite and causes 

the stimulation of sympathetic nervous system and in-
creased release of cortisol with simultaneous decrease in 
growth hormone secretion, all leading to considerable hy-
perglycemia [89, 94].

Pharmacokinetics and pharmacodynamics (PK-PD) 
are markedly influenced by daily rhythms in physiology. 
This phenomenon is termed chronopharmacology [95]. 
Indeed, the pathogenesis of diabetes largely depends on 
hormonal and body homeostasis. Chronopharmacology 
should be considered as part of treatment strategies for 
diabetes. The failing β-cells in T2DM do not lose all their 
capability to respond to glucose. Insulin secretion in re-
sponse to stimulation through amino acids or other hor-
mones such as glucagon-like peptide 1 (GLP-1), remains 
preserved [96]. The levels of leptin (satiety hormone) in 
blood generally remain higher between midnight and 
early morning, conceivably to suppress appetite during 
the night [97]. Moreover, the levels of ghrelin increase 
with increase in the duration of sleep [93]. In addition, the 
time dependency in GLUT4-mediated glucose uptake is 
also a function of circadian variation [98]. Furthermore, 
meal timings can modify the diurnal rhythm of blood 
leptin levels [99]. Both ghrelin and leptin work with oth-
er hormones and HPA axis through feedback loops to 
indirectly affect the psychophysiological satisfaction in 
diabetic patients [100]. Chronopharmacology, therefore, 
may considerably affect diabetic pathophysiology and 
PK-PD of administered drugs.

Interplay of Genetics, Gut Microbiota, Lifestyle, and 
Environmental Factors

Multiple epidemiological investigations have suggest-
ed that the effects of multiple T2DM-associated loci can 
be attenuated by improving lifestyle, dietary patterns, and 
other associated environmental factors. For instance, the 
Ala12 variant of PPARγ is associated with improved insu-
lin sensitivity. Apparently, the Ala12 carriers are more re-
sponsive to unsaturated fat and less responsive to satu-
rated fat. On contrary, the Pro12 variant carriers of PPARγ 
are more responsive to the deleterious effects of saturated 
fat and altered glucose homeostasis. Seemingly, unsatu-
rated fat interacts with PPARγ Ala12 variant and upregu-
lates the activity of latter [101]. Potential gene-environ-
ment (G × E) interactions also occur between TCF7L2 
risk-variant (rs7903146) and lifestyle modifications (phys-
ical activity, MNT, and dietary changes). Decreased insu-
lin resistance and reduced risk in TCF7L2 risk-variant 
carriers is significantly affected by lifestyle modifications 
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[102, 103]. A common SNP in fat mass and obesity associ-
ated gene (FTO rs9939609) is associated with increased 
risk of T2DM. Increased physical activity reduces the FTO 
rs9939609-induced obesity and associated risk of T2DM 
[104]. SNP in glucokinase regulatory protein gene results 
in an insulin-raising allele, GCKRrs780094. Its interaction 
with the whole grain (increased whole grain intake) results 
in reduced fasting insulin in the carriers [105]. The po-
tassium voltage-gated channel subfamily Q member 1 
(KCNQ1) is a susceptible gene in T2DM. Mutations in 
KCNQ1 are associated with decreased insulin secretion. 
Reduced expression of noncoding RNA Kcnq1ot1 in 
Kcnq1 genetic region leads to increase in cyclin-depen-
dent kinase inhibitor 1C (Cdkn1c) expression, resulting in 
reduced pancreatic β-cell mass and insulin release. The 
CCAAT sequence in the promoter region of Cdkn1c gene 
serves as the binding site for transcription factor C/EBP 
that increases the further expression of Cdkn1c. Evident-
ly, the expression of C/EBPβ results in endoplasmic re-
ticulum stress to cause dysfunctions in β-cells. The accu-
mulation of C/EBPβ in pancreatic β-cells increases in the 
presence of high fat diet, thereby potentiating the β-cells 
dysfunction in the vulnerable population [106]. Collec-
tively, the emerging investigations to explore the interac-
tions between gene and environmental factors suggest a 
high influence of dietary patterns, physical exercise, and 
other lifestyle interventions on the expression of genes 
that are peculiar to the development of T2DM.

Apart from gene expression, environmental factors 
also tend to exert a potential impact on gut microbiota. 
The gut environment is affected by a number of factors 
including the diet, pH, and nutrient absorption. While 
the presence of Firmicutes and Proteobacteria increases 
under the influence of carbohydrates and simple sugar-
rich diet, saturated fats, and animal protein-rich diet en-
courages the proliferation of Bacteroidetes and Actino-
bacteria [107]. Moreover, a high -at diet is also account-
able for significant alterations in intestinal flora, including 
the Bifidobacterium and Bacteroides (increased Gram-
negative/Gram-positive bacteria ratio). This allowed and 
increased secretion of LPS, fat content, body weight, and 
inflammatory reactions associated with T2DM [108]. Re-
duction in butyrate is largely responsible for the loss of 
tight intestinal barrier. An intestinal pH of 5.5 favors the 
proliferation of butyrate-producing Phytophthora which 
starts to diminish with a pH value of 6.5 [109]. In addi-
tion, the hypoglycemic agents utilized for the antidiabet-
ic therapy also pose a remarkable influence on the gut 
microbiota. Metformin and acarbose are known to in-
crease the proliferation of lactobacilli, Akkermansia, and 

several other bacteria that are acknowledged to exert ben-
eficial effects in diabetes [110].

Gut microbiota composition also affects the regulation 
of expression of different genes in T2DM. Although re-
ports are limited in terms of potential interactions be-
tween gut microbes and T2DM associated gene variants, 
existing reports on the influence of gut microbes in the 
expression genes that are crucial in T2DM are highly sug-
gestive of a complex gene-microbes interplay in the etiol-
ogy of T2DM. Also, microbiome plays a crucial role in the 
epigenetic regulation of genes by the modification of 
DNA methylation [111]. F. prausnitzii, a short-chain fat-
ty acid-producing bacteria was found crucial in epigene-
tic regulation of FFA receptor gene in patients of T2DM. 
A significant reduced presence of F. prausnitzii was evi-
dent in such patients. As a result, a considerably low 
methylation in the promoter region of FFA receptor gene 
is observed in these individuals [112]. Increased release of 
pro-inflammatory cytokines is a key event in T2DM. Mi-
crobes are largely known to be associated with increased 
release of inflammatory cytokines by producing the prod-
ucts such as LPS that promote low-grade inflammation 
and endotoxemia. On contrary, several microbes are 
known to induce the expression of anti-inflammatory cy-
tokines, including the IL-10 and IL-22, that have proven 
roles in improving the insulin sensitivity Roseburia intes-
tinalis, Bacteroides fragilis, Akkermansia muciniphila, 
Lactobacillus plantarum, and Lactobacillus casei [113]. 
Two other beneficial microbes – Bacteroides vulgatus and 
Bacteroides dorei – are observed to increase the expres-
sion of tight junction genes in T2DM to compensate with 
the compromised gut permeability (leaky gut) [114]. A 
major contribution of probiotics is observed in the case 
of glucose metabolism and homeostasis. For instance, L. 
gasseri BNR17 is known to increase the expression of 
GLUT-4 transporter gene [115]. Another gut microbe, L. 
casei is witnessed to increase the expression of multi- 
ple T2DM-related genes, including ClC1-7, GlyRα1, 
 SLC26A3, SLC26A6, GABAAα1, Bestrophin-3, and 
CFTR, thus resulting in a significant reduction in hyper-
glycemia [116]. It appears to be of vital importance to 
consider the potential interplay between various T2DM-
related genes and these microbes. Undoubtedly, the ab-
sence of these microbes among the gut microbiota can be 
largely responsible for the altered regulation of different 
genes in T2DM patients. Also, exploring the interactions 
between different T2DM-associated gene variants and 
gut microbiota is warranted to further understand the 
complex interactions between environmental factors, gut 
microbiota, and genetics in the development of T2DM.
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Current Approaches for Diabetes Management: 
What Are We Missing?

The guidelines for the pharmacological management 
of diabetes provided by American Diabetes Association 
suggest that metformin be prescribed as the initial inter-
vention to T2DM patients. However, the same guideline 
also indicates that vitamin B12 deficiency is a prominent 
side effect observed in metformin consumers and a peri-
odic vitamin B12 measurement is required in such pa-
tients [117, 118]. Furthermore, metformin is also notori-
ous for causing lactic acidosis, especially in patients with 
kidney disease, liver injury, or other CVS complications 
that create a low level of oxygen in circulation [119]. For 
T2DM patients with cardiovascular or CKDs, the guide-
lines recommend adding sodium-glucose cotransporter 2 
(SGTL2) inhibitors and/or glucagon-like peptide 1 recep-
tor agonists along with hypoglycemic agents [118]. The 
employability of SGTL2 inhibitors with almost all classes 
of hypoglycemic agents makes them ideal candidates to 
be combined when dual and triple combination therapies 
are warranted [120]. In an ideal scenario, a drug used in 

combination should be able to reverse the pathology with 
an improved overall health status of the patient and en-
sure that no new complications arise due to the existing 
management strategies. In case of T2DM, drug combina-
tion should not only be able to just merely reduce the gly-
cosylated hemoglobin levels (HbA1C) but also an im-
proved overall metabolic condition of the patient is ex-
pected through such interventions [120]. The combination 
of SGTL2 inhibitors with metformin may have proved 
beneficial in curbing hyperglycemia that cannot be con-
trolled by metformin alone [120], but the adverse effects 
associated with the SGTL2 inhibitors still remain unre-
solved. Genital infections caused by SGTL2 inhibitors 
due to high glycosuria still remain an unfocussed aspect 
while prescribing such combinations. In addition, during 
the event of excessive osmotic diuresis caused by SGTL2 
inhibitors, a low extracellular fluid volume and subse-
quent hypotension is another complication that may arise 
[121]. Multiple reports have also raised concerns regard-
ing the use of SGTL2 inhibitors in diabetes due to their 
substantial involvement in causing diabetic ketoacidosis 
[122]. Two separate reports published in 2015 claimed 

Table 1. Multiple targets of different phytoconstituents in the management of T2DM and their possible outcomes [133–140]

Phytoconstituents Mode of action/targets Outcomes

Curcumin ↓ TNF-α, ↓ NFkB activation, ↓ lipid peroxidation, ↓ lysozyme 
enzyme activity, and ↑ PPAR-γ activation

Increased insulin sensitivity, decreased glucose intolerance, and 
hypoglycemia [133]

Rutin ↓ G6Pase and glycogen phosphorylase activity, ↑ hepatic 
hexokinase activity, and ↑ PPARγ activation

↓ Hepatic glucose production, ↑ glucose tolerance, and 
improved insulin sensitivity [134]

Resveratrol SIRT1 activation, ↓ oxidative stress, and ↑ GLUT4 translocation 
through AMPK/Akt/iNOS signaling pathway

Improved insulin signaling, ↑ glucose-mediated insulin 
secretion, and ↓ loss of β cells [135]

Quercetin ↑ GLUT4 translocation through AMPK signaling, ↓ G6Pase, and 
ERK1/2 activation

↑ Glucose uptake, ↓ hepatic glucose production, glucose-
induced insulin secretion, and improves β-cell function [135, 
136]

Genistein ↑ Hepatic hexokinase activity, and ↓ cytosolic PEPCK Improved lipid and glucose metabolism and reduced fasting 
glucose [137]

Hesperidin ↑ GLUT4 expression, ↓ TNF-α, and IL-6 expression, ↑ antioxidants ↑ Glucose uptake, ↓ HbA1c, and ↓ oxidative stress [138]

Naringin ↑ G6Pase activity, ↑ insulin receptor and GLUT4 expression,  
and ↑ antioxidants

↓ Hepatic glucose production, ↑ glucose uptake, and ↓ oxidative 
stress [138]

Naringenin ↑ Expression of GLUT4 and PPARγ ↑ Glucose uptake, decreased glucose intolerance, and reduced 
blood glucose levels [139]

Vitamins A, D, 
and E

↑ PPARβ/δ expression, ↑ RAR expression, ↑ DNA tail length of 
liver and pancreas, and ↓ G6Pase, ↓ β-cell apoptosis

Decreased glucose intolerance, ↑ β-cell mass, ↓ hepatic glucose, 
and ↓ hyperglycemia [135]

Fisetin ↓ G6Pase and ↓ cytosolic PEPCK ↓ Hepatic glucose and improved lipid and glucose metabolism 
[140]

T2DM, type 2 diabetes mellitus; G6Pase, glucose-6-phosphatase; PEPCK, phosphoenolpyruvate carboxykinase.
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that canagliflozin, an SGTL2 inhibitor is implicated in 
pancreatitis in T2DM patients [123, 124]. GLP-1 agonists 
are also a preferred class of adjuvant hypoglycemic agents 
that are combined with first-line hypoglycemics [125]. 
Apart from gastrointestinal disorders (nausea, vomiting, 
and constipation), infections and acute renal injury, a 
major raising concern regarding the use of GLP-1 ago-
nists is their association with pancreatitis [125, 126]. Cas-
es of acute pancreatitis are reported with the use of lira-
glutide and exenatide [127, 128]. More importantly, re-
cent reports also raise concerns regarding the long-term 
reliance on incretin-based therapies due to frequently re-
ported cases of their association with pancreatitis and 
pancreatic cancer [129]. Studies based on FDA Adverse 
Events Reporting System demonstrated that incretin-
based therapies are associated with the increased inci-
dences of pancreatic and thyroid cancer [130, 131]. Ex-
enatide use is also positively associated with the incidenc-
es of bone fractures [132].

Alternatives: Phytoconstituents

Failure of monotherapy in diabetes is simply managed 
by the dual or triple drug combination therapies that in-
volve the addition of supportive hypoglycemic agents 
with the first-line drugs. However, adding the supportive 
or second-line drugs in combination seldom includes the 
assessment of risk factors associated with these new addi-
tions. The sole aim of these therapies remains to be a con-
trolled glycemic condition. Unfortunately, in the pursuit 
of maintaining normal blood glucose levels, the occur-
rence of new complications is largely taken for granted. 
Monotherapies supplemented with herbal extracts or 
phytoconstituents have showed appreciable improve-
ments in the blood glucose levels in diabetic patients. 
Chemical constituents from plants have also proved to be 
promising alternatives. Table 1 represents the known ef-
fects of different phytoconstituents in diabetes exerted 
through multiple targets. As a result, unlike in the case of 
conventional single target therapy where chances of treat-
ment failures are high, therapy failures with multi-target-
ing approach are rare.

Conclusions

Diabetes is a metabolic disorder that is influenced by a 
variety of factors. Recent insights into the pathogenesis of 
diabetes have unraveled newer pathways and factors that 

contribute substantially in disease development and pro-
gression. Insulin resistance and β-cell dysfunction are the 
2 major events that are largely responsible for the onset of 
diabetes. A major objective of this review is to focus on 
the unfocused aspects of diabetes to develop better strate-
gies for diabetes treatment. In this review, we have dis-
cussed the factors that have played crucial roles in the 
etiology of T2DM but have not received adequate atten-
tion. We have also discussed the efficiency of existing ap-
proaches in the treatment of T2DM. Lifestyle modifica-
tions that favor the improvement of management of dia-
betes and their complex interplays with genetics and gut 
environment is a crucial factor that warrants further re-
search in the development of more efficient and individu-
alized therapy approaches for disease treatment. The use 
of multidrug combination therapy in diabetes may have 
improved health outcomes in T2DM patients and also 
result in additional complications that need serious con-
sideration. Moreover, more attention is required toward 
the developing comorbidities during diabetes. The dia-
betic milieu accelerates the formation of advanced glyca-
tion end products that may encourage the development 
of diabetic complications and even cancer in diabetic pa-
tients. Multiple pathways are involved in diabetes that can 
contribute to the manifestation of comorbidities that are 
largely neglected during disease treatment.

Multitargeting is a promising approach for the treat-
ment of T2DM as it includes multiple pathways. The fail-
ure of single target approaches is the major challenge 
faced in T2DM treatment. Phytoconstituents are promis-
ing as they interact with multiple pathways simultane-
ously. However, the reluctance to rely on phytoconstitu-
ents as the main therapy still remains as a limiting factor 
for such drugs to serve as mainstream interventions.
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