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Abstract
Objective: To develop an artificial intelligence (AI)-based algorithm which can
automatically detect food items from images acquired by an egocentric wearable
camera for dietary assessment.
Design: To study human diet and lifestyle, large sets of egocentric images were
acquired using a wearable device, called eButton, from free-living individuals.
Three thousand nine hundred images containing real-world activities, which
formed eButton data set 1, were manually selected from thirty subjects. eButton
data set 2 contained 29 515 images acquired from a research participant in a week-
long unrestricted recording. They included both food- and non-food-related real-
life activities, such as dining at both home and restaurants, cooking, shopping,
gardening, housekeeping chores, taking classes, gym exercise, etc. All images in
these data sets were classified as food/non-food images based on their tags
generated by a convolutional neural network.
Results: A cross data-set test was conducted on eButton data set 1. The overall
accuracy of food detection was 91·5 and 86·4%, respectively, when one-half of
data set 1 was used for training and the other half for testing. For eButton data
set 2, 74·0% sensitivity and 87·0% specificity were obtained if both ‘food’ and
‘drink’ were considered as food images. Alternatively, if only ‘food’ items were
considered, the sensitivity and specificity reached 85·0 and 85·8%, respectively.
Conclusions: The AI technology can automatically detect foods from low-quality,
wearable camera-acquired real-world egocentric images with reasonable accu-
racy, reducing both the burden of data processing and privacy concerns.
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In recent years, meal pictures taken by smartphones have
been investigated as a novel tool for dietary assess-
ment(1–7). This method reduces the burden of collecting
dietary data and the food pictures are helpful in refreshing
people’s memory about their food intake. However,
picture taking must be volitionally initiated for each plate
of food before and after consumption, which is incon-
venient and impractical. This approach may also disrupt
normal eating habits because of the picture-taking
process. Thereby it is difficult to use this method to
conduct long-term dietary assessment.

Since a wearable camera can record the scenes in front
of the wearer continuously and automatically, its potential

application in objective dietary studies has been
explored(8–25). For example, the SenseCam (originally
developed by Microsoft(26)), the eButton (developed by
our team)(13–15), an ear-worn micro-camera(8,21) and a
camera-enabled cell phone worn around the neck(19) have
been used to conduct dietary assessment and/or
compared with 24 h recalls(8–12,16,17,23). These studies
demonstrated that, with the help of a wearable camera,
not only can food intake be evaluated, but also the eating
environment/behaviour can be studied. However,
researchers, research subjects or ‘Mechanical Turk Work-
ers’ (i.e. people who perform tasks that computers are
currently unable to do)(27) must manually observe and
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identify eating episodes from large image data sets, which
is both tedious and time-consuming(16–18). Furthermore,
privacy becomes a concern when the images of the
wearer are observed by another person(28–32). The current
strategy is to ask the wearer to review all the images
before sending to researchers and delete some images if
necessary, or to control the on/off switch of the camera.
This approach reduces privacy concerns but is very time-
consuming or inconvenient.

To minimize the burden of image review and reduce
privacy concerns caused by manual processing, additional
sensor(s) can be attached to the body of the research
subject which initiate picture taking when an eating
activity is detected by the sensor(s). Piezoelectric sensors
and microphones have been used to measure chewing
and swallowing during eating(33–39). Motion sensors,
magnetic proximity sensors and infrared sensors have also
been tested to detect hand movements during eat-
ing(40–45). A number of other sensors, such as an audio
sensor within an ear and a motion sensor on the head/
wrist, have also been used to detect eating(21,24,46,47).
However, these sensors are often intrusive, uncomfortable
and/or cosmetically unpleasant for long-term wear. A
better solution would be if foods could be detected
directly from the acquired images without human invol-
vement and without adding extra sensors. With food
detected and portion size estimated for each food, infor-
mation about the nutrient and energy content of the food
can be retrieved from a dietary database(23,24,48).

Artificial intelligence (AI) is a field aiming to develop
tools/algorithms that allow machines to function intelli-
gently (e.g. learn, reason, solve problems). A recent
technological breakthrough in AI has enabled image/scene
understanding to become increasingly accurate(49–54). In
the field of computer vision, automatic human or object
detection and recognition from images has become an
active research topic, for example differentiating food/non-
food images or recognizing different types of food from
high-quality images(55–66). However, automatic detection of
foods from the data acquired by a wearable camera is
challenging because the quality of wearable camera-
acquired images is usually low due to practical factors
such as improper illumination, low image resolution,
motion-caused blur, etc. In addition, the scenes in these
images are not intentionally selected. As a result, the images
may obtain numerous irrelevant objects but incomplete or
even missing objects of interest. In the present study, we
conducted an initial investigation on automatic food
detection from real-world images acquired by a wearable
device, called eButton, during daily life. eButton, which
looks like a round chest badge, contains a miniature cam-
era and a motion sensor(14,15). It automatically takes images
of the view in front of the wearer at a pre-set rate after
being turned on. Due to the limit on the size and weight of
the eButton, the performance of the camera is not as good
as that of a smartphone (see Figs 1 and 5 for examples of

eButton images). In the current paper we introduce our
food detection algorithm and validate its performance using
eButton data sets.

Methods

The deep-learning technology for AI has attracted great
attention as it constantly breaks records in a variety of
common benchmark tests(49,51,67–69). Deep learning is a
subfield of machine learning allowing multi-layered
computational models (e.g. neural network with multiple
hidden layers) to learn representations from tremendous
amounts of raw data. Deep leaning has been successfully
applied to a wide range of fields, such as automatic
machine translation, computer vision and speech recogni-
tion. As one type of state-of-the-art deep-learning structure,
the convolutional neural network (CNN) has shown
exceptional performance in object detection/classification
from images(49–53). CNN is a feed-forward artificial neural
network, typically consisting of a series of stacked con-
volutional layers and one or more fully connected layers.
The output of this network (i.e. a layer of neurons) deter-
mines the class of the object in the input image. Training
with annotated images is required for this network to learn
how to differentiate objects. For example, a deep CNN
trained using 1·2 million images is able to recognize 1000
different objects or ‘concepts’ with high accuracy(51).
However, large amounts of annotated images are required
for training the deep network, and the training process is
both system-demanding (e.g. special hardware required)
and time-consuming. Thus, it is usually not very practical
for nutrition scientists to implement this technology without
substantial computational support.

Because large image data sets for object detection/
recognition (i.e. ImageNet, Pascal VOC)(48,70,71) are already
available, several CNN structures have been successfully
trained and applied to these tasks. We thus utilized the
object recognition results from an existing CNN for food
detection, instead of building our own CNN. Figure 1
shows two examples in which objects in eButton-acquired
real-world images are recognized and output is obtained in
keywords (or tags)(72). Although not all descriptions are
correct, the potential of machine intelligence for detecting
food images is clear. Combining the CNN-produced tags of
a class of images, we can build histograms of these tags
demonstrating the occurrence frequency of each tag. Two
histograms computed separately for fifty images containing
at least one food (we call them ‘food images’) and fifty
images containing no food (we call them ‘non-food
images’) are each visualized in Fig. 2 as a ‘word cloud’
using a web-provided software tool(73). The frequently
presented tags in these two classes are quite different. This
observation inspired us to use tags to construct a classifier
to detect whether an image contains edible objects or an
eating activity, based on the contents of the image. Indivi-
dual food-related tags (e.g. tag ‘food’ or ‘dish’) can be used
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as an indicator to detect food images, but it is not very
reliable especially when the food covers only a small part
of the image. For our study, we selected Clarifai CNN(72)

which provides an easy-to-use Application Program
Interface to produce the tag output from the input image.
In addition, this particular CNN has been one of the top
performers in the computer vision community. For exam-
ple, it won first place in the image classification task at the
ImageNet Large Scale Visual Recognition competition in
2013. According to the company’s report(72), Clarifai can
identify more than 11000 general concepts including
objects, ideas and emotions.

The actual computational algorithm is mathematical in
nature and is described in the online supplementary
material for interested readers. Here we only highlight the
concepts involved. Since the CNN-generated tags are
English words, we first construct a dictionary (which is
essentially a subset of the ordinary English dictionary)
containing possible words that the Clarifai CNN could
produce. After the tag words of a specific image are
obtained from this CNN, we look up the dictionary and
record the locations of these tag words (analogous to ‘page
numbers’) in the dictionary. Note that each location
(analogous to each dictionary ‘page’) is pre-marked with
‘food-related’ or ‘not food-related’ (imagine that each dic-
tionary page is coloured either red (denoting ‘food-related’)
or yellow (denoting ‘not food-related’)), determined math-
ematically according to a probability calculation in a
‘training’ process. Now, the classification of the input image
into the ‘food’ or ‘non-food’ class becomes simply counting
the numbers of the red and yellow pages. Specifically, if the
number of red pages is larger than a pre-set threshold, the
image is determined to be ‘food-related’; otherwise it is ‘not
food-related’.

We finally comment here that, in the past, determining
whether an image contains at least one edible product was
an extremely difficult task when only traditional image
processing techniques were available. Now, with the
availability of advanced AI technology and the algorithm
described above, this task becomes straightforward.

Experimental results

We validated the performance of our AI-based image
classification method using three data sets, including one
public data set and two eButton data sets. The public data
set is called Food-5K, a recently published benchmark for
image classification tasks(55). We used this data set to
compare the performance of our algorithm with that from
an existing study(55). In this data set, the images were
acquired by smartphones and handheld cameras rather
than wearable devices, and most food images contain only
a food with or without a container without other objects.
Therefore, the classification of this data set was relatively
easy. The other two data sets were constructed using our
eButton images. eButton data set 1 contains 3900
egocentric images acquired from thirty wearers (research
participants) who wore an eButton for different durations
in their real living environment, divided equally as training
and testing sets. Snack, food preparation and shopping
images were also included as food images in this data set.
eButton data set 2 was collected from only one female
participant who wore an eButton for one entire week
during daytime, containing 29 515 images. The perfor-
mance of our AI system was evaluated using measures of
sensitivity (recall), specificity, precision and overall accu-
racy, defined as follows:

Sensitivity=
TP

TP + FN
;

Specificity=
TN

TN + FP
;

Precision=
TP

TP + FP

and

Accuracy=
TP +TN

TP + TN + FN + FP
;

where TP (true positive), TN (true negative), FP (false
positive) and FN (false negative) are clarified in Table 1.
Sensitivity and specificity are also known as the ‘true

(a) (b)

Fig. 2 (colour online) Word clouds of a set of tag histograms
from fifty food images (a) and fifty non-food images (b)

Tags:

food, dish, dinner,
bowl, meal, no
person, plate,
vegetable, restaurant,
cooking, table

Tags:

group, adult,
meeting, indoors,
flatware, wood, grow,
table, dairy product,
spoon

Fig. 1 (colour online) Examples of the tags generated by Clarifai for eButton-acquired images. Some descriptions are correct,
although not all of them. Red tags appear to be questionable ones
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positive rate’ and the ‘true negative rate’, respectively. Pre-
cision is also called ‘positive predictive value’, which is the
ratio of true positives to combined true and false positives.

Food-5K data set
Food-5K contains 2500 food images and 2500 non-food
images (see examples in Fig. 3). These images were
selected from publicly available data sets, such as Food-
101(74), UEC-FOOD-100(75), Caltech256(76), the Images of
Groups of People(77) and Emotion6(78). A human observer
checked all images to guarantee that they were distin-
guishable. To make the classification task more challen-
ging, the food item in the image may take up only a small
part of the image (see Fig. 4 for examples). Three thou-
sand images were selected as the training set, and two
sets, each containing 1000 images, were used as the vali-
dation and evaluation set, respectively. The number of
food and non-food images in each data set was equal to
guarantee balanced classes. In the present study, we used
only the evaluation set as the testing set to evaluate our
algorithm and compare with the published result(55).

Our classification results on the evaluation set are
shown in Table 2 using different similarity measures
(Jaccard and Dice, explained in the online supplementary
material). The tag dictionary was constructed from the
training data set with n 761. It can be observed from
Table 2 that when threshold was set to 3 (i.e. k= 3), the
overall accuracy, sensitivity, specificity and precision were
98·7, 98·2, 99·2 and 99·2%, respectively, with the Dice
similarity measure. We noticed that the misclassified
images were mostly difficult cases that were challenging
even for a human to perform the task (examples in Fig. 4).
The overall accuracy reported by another group using the
non-tag-based approach was 99·2%(55), which was only
slightly better than our result.

eButton data set 1: food/non-food data sets
A total of 3900 real-life images were selected from the
images acquired by eButton. The resolution of these

images is 640 pixels× 480 pixels. Half of the images,
including 950 food images and 1000 non-food images,
were acquired by twelve participants in two field studies
conducted at the University of Pittsburgh. The other half
were acquired mainly by eighteen lab members and
collaborators during their daily life or travel. Since eButton
recorded image sequences with the speed of one image
every 2–5 s, adjacent images in the sequences were usually
similar. Therefore, we down-sampled the image sequences
by a factor of 10 so that the resulting images were separated
by 20–50 s. Even after this down-sampling, some images
were still quite similar. We deleted similar ones further
manually to keep the number of images recorded from the
same event to less than fifteen. The images containing
likely private information, or that were too dark or too
blurred, were also removed. All images were annotated to
provide the ground truth (food or non-food) and some
detailed information, such as ‘eating a meal’, ‘having a
drink’, ‘eating a snack’, ‘food preparation’ and ‘food shop-
ping’, which were all considered food images (see Table 3
and Fig. 5). Since, in the egocentric images, no eating
behaviour of the wearer can be seen directly from the
images, an image with a mug on the table or a cup in hand
was considered as ‘having a drink’. Comparing Fig. 5 and
Fig. 3, it can be seen that the eButton image data set was
more difficult to process due to uncontrolled imaging, low-
resolution, unfavourable illumination, small objects within
complex background and motion artifacts.

In this experiment, we first built a tag dictionary from
6000 randomly selected eButton images including differ-
ent daily activities. Only a very small portion of these
images contained food-related contents, so only a few
food-related tags were included in this dictionary. To
make the tag dictionary better fit the study, we also
included 2560 food images (ten images from each food
category) from a food image database(79). In total, we got a
dictionary with 1253 tags. Since the images in these two
sets of data were acquired exclusively by different people,
we conducted a cross data-set evaluation. The results are
shown in Fig. 6. The Dice measure was used and ε was set
to 0·05. It can be observed that threshold k is an important
factor determining the classification result. When k= 2,
both sensitivity and specificity are high. The overall
accuracy measures are 91·5 and 86·4%, respectively, for
these two cases (see Fig. 7). A more detailed analysis
(in Table 4) shows that the classification accuracies in
eating and food shopping category are higher than the
accuracies in other categories.

Table 1 Definitions of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN)

Predicted

True label Food Non-food

Food TP FN
Non-food FP TN

Fig. 3 (colour online) Typical images in the Food-5K data set. Left four images are labelled as food images; the right four are
non-food images
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eButton data set 2: one-week data set
With institutional review board approval, we recorded
whole-day images using eButton. A female participant
wore an eButton continuously during daytime for one
week. As a result, a variety of real-life activities were
recorded in these images, including eating/drinking/
cooking, attending parties, garden work, taking classes,
gym exercise, etc. All seven image sequences (one
per day) were down-sampled first (resulting in a picture-
taking rate of one image every 10 s). Human faces were
detected using the Picasa software and blocked before
sending to an observer, who further filtered out images
with possible privacy concerns and annotated images in
the same way as described in the last case. After these
procedures, 29 515 images were obtained, exemplified in
Table 5. All these images were then processed by the AI
software (Clarifai CNN) to generate twenty tags for each
image. Based on these tags, the number of food-related
tags for each image, defined as the evidence index, was
calculated, as described in the online supplementary

material. If this number was higher than the pre-set
threshold k, we determined it as a food image. The tag
dictionary was obtained using the same approach as
described for eButton data set 1 and food vector y was
trained using eButton data set 1.

Table 5 shows that the numbers of real food images,
including ‘food’ and ‘drink’ images, were much lower than
the number of the ‘other’ (i.e. non-food) images.
In this case, the overall precision and accuracy are not
good performance measures because of the imbalance
between the sample sizes. Since images classified as food
images will be further studied to obtain dietary informa-
tion, which is a time-consuming procedure, it is desirable
to minimize the total number of positive images (being
classified as food images, including true positives and
false positives) while limiting the impact on both sensi-
tivity and specificity measures. Since the evidence index
represents how many tags of each image belong to food
images, a higher value of threshold k results in fewer
positive images.

Fig. 4 (colour online) Misclassified images in the Food-5K data set. Left four were misclassified as food images; the right nine were
misclassified as non-food images

Table 2 Classification results on the Food-5K data set

k TP FN TN FP Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

Jaccard*, 1 496 4 454 46 99·2 90·8 91·5 95·0
ε=0·05 2 493 7 490 10 98·6 98·0 98·0 98·3

3 490 10 496 4 98·0 99·2 99·2 98·6
4 484 16 498 2 96·8 99·6 99·6 98·2

Dice*, 1 496 4 453 47 99·2 90·6 91·3 94·9
ε=0·05 2 493 7 490 10 98·6 98·0 98·0 98·3

3 491 9 496 4 98·2 99·2 99·2 98·7
4 487 13 497 3 97·4 99·4 99·4 98·4

TP, true positive; FN, false negative; TN, true negative; FP, false positive.
*The calculations of Jaccard and Dice are explained in the online supplementary material.

Table 3 Categories and number of images in the eButton food/non-food data set

Food images

Eating a meal Having a drink Eating a snack Food shopping Food preparation Non-food images

Session 1 855 10 34 8 43 1000
Session 2 795 84 25 15 31 1000
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Fig. 5 (colour online) Examples in eButton data set 1. Images in the top four rows are labelled as food images, and those in the bottom four rows are non-food images. Compared with
the images in Fig. 3, it can be seen that the egocentric images were more difficult to classify
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In our experiment, we defined a burden index to
represent the ratio between the number of total positive
images and the number of all images (see Fig. 8). When
k= 1, 37·8% of the total images needed a further check,
which may be too much burden for researchers although
the overall sensitivity was as high as 89·5%. Threshold k is

an adjustable parameter in this algorithm. Smaller k results
in higher sensitivity, but also higher burden. When k= 2,
the overall burden decreased to 18% with 74·0% sensi-
tivity and 87·0% specificity (shown in Fig. 8). The sensi-
tivity of day 1 and day 6 was significantly lower than on
the other days. After extracting all of the false negative
images, we found on the first day that 206 out of
354 ‘drink’ images (similar to the first two images in Fig. 9)
were missed due to the dark environment and the small
coffee cup, while on sixth day, seventy-eight out of 154
eating images were not found probably because of the
small food item and the overexposed images (similar to
the last three images in Fig. 10).
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Fig. 6 (colour online) The effect of threshold k ( , k= 1; ,
k= 2; , k= 3; , k= 4) on the sensitivity, specificity and
precision in the cross data-set evaluation of the eButton data
set 1: (a) case 1 (training: session 2, testing: session 1); (b)
case 2 (training: session 1, testing: session 2)

Food

Non-Food

A
ct

ua
l c

la
ss

es

Food

Non-Food

A
ct

ua
l c

la
ss

es880
(92.6 %)

70
(7.4 %)

96
(9.6 %)

904
(90.4 %)
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196
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930
(93.0 %)

Predicted classes
Food Non-Food Food Non-Food

Predicted classes(a) (b)

Fig. 7 (colour online) Tag-based classification results in the cross data-set evaluation of the eButton data set 1 and misclassified
examples (top images were misclassified as non-food images and bottom images were misclassified as food images): (a) case 1
(training: session 2, testing: session 1); (b) case 2 (training: session 1, testing: session 2)

Table 4 Accuracy of food image detection in different categories of the eButton food/non-food data set

Eating a meal Having a drink Eating a snack Food shopping Food preparation

Case 1 (855– 41)/855=95·2% (10 –5)/10=50·0% (8– 4)/8=50·0% (43– 2)/43=95·4% (34– 18)/34=47·1%
Case 2 (795– 145)/795=81·8% (84– 31)/84=63·1% (15 – 6)/15= 60·0% (31– 3)/31=90·3% (25– 11)/25=56·0%

Table 5 Durations of recording and numbers of images in the
seven-day study

Total
no. of
images

No. of
‘food’
images

No. of
‘drink’
images

No. of
‘other’
images

Special
food-related
events

Day 1 4869 250 354 4265 A cup on table lasting
about 75min

Day 2 3400 183 50 3167
Day 3 4513 265 185 4063
Day 4 4254 233 92 3929 Attend a baby shower

event, about 30min
Day 5 4213 288 0 3925 Activities at other’s

house, about 5 h
Day 6 4367 154 3 4210 Make muffin, about

70min in total, then
go to party, about 3 h

Day 7 3899 170 146 3583
Total 29 515 1543 830 27142

1174 W Jia et al.



The results of the one-week data set are summarized in
Fig. 11(a) where the red bars represent true ‘food’ images,
the green bars represent true ‘drink’ images and grey bars
represent the detected food images. The calculated evi-
dence index for each image was averaged over a 1min
window first and then binarized by threshold k. It can be

observed that most of the eating/drinking events (i.e. a
cluster of red or green bars) were detected by our AI
approach.

From Fig. 11(a), scattered false positives can be found
which were caused mainly by unattended drinks in the
scene of the eButton. The research participant brewed or
purchased a cup of coffee for breakfast and often left it on
the table or held it by hand while performing other
activities, such as taking a class or reading a newspaper
(Fig. 9). If we consider the ‘drink’ images as non-food
images, the sensitivity can reach 85·0%, while specificity
remained at 85·8% (Fig. 12).

Discussion

Our experimental results indicate that the AI algorithm
performed well on both the Food-5K and eButton data
sets. However, the performance on the Food-5K data set
was better. This difference may be due to three reasons.
First, blurred pictures cannot be avoided if images are
recorded when the wearer of the eButton is moving.
When applying a blur detection algorithm to the one-week
eButton data set, we found that 5233 images (17·7%) were
blurred(80). Several blurred images are shown in Fig. 10. If
these images were removed before processing with the
proposed method, the overall sensitivity increased only by
about 1%, which shows that the proposed algorithm is
robust to blur. Second, in some pictures, the food covered
only a very small part of the image, especially when
drinking. In the one-week data set, the wearer sometimes
eats/drinks while reading or doing computer work, so the
food/plate is located in the corner of the images, see Figs 9
and 10 for examples. Third, compared with the Food-5K
data set, more objects were included in the egocentric
images due to the use of a wide-angle camera in eButton
(120° field of view) and the passive image capture.
It makes the detection task more challenging.
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Fig. 8 (colour online) (a) Burden index, (b) sensitivity
and (c) specificity in the eButton one-week data set with
changing k ( , day 1; , day 2; , day 3; , day 4; , day 5; ,
day 6; , day 7)

Fig. 9 (colour online) Several images in the eButton one-week data set annotated as ‘drink’ because a cup can be seen on the table
or in hand
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In our previous work, all of the images were observed
by researchers and dietary-related images were chosen
manually for nutritional analysis(17). This is the most
time-consuming part in the whole data analysis procedure.
If research burden is a significant concern, we can
adjust the threshold k to compromise between research
burden and sensitivity, as shown in Fig. 8. In addition,

because a sequence of images can be acquired
with eButton, whole eating/drinking events can be
recorded. Even if some food images were not detected
using our algorithm, missing a whole meal seldom
happened. When we zoom in on the last meal of each day
in Fig. 11(a), we can see most of the red bars are
covered by the grey bars, which means these images
are detected (see Fig. 11(b)). The uncovered red bars do
not provide much new information since they were
acquired from the same meal. We also found that
some shopping or food preparation images were mis-
classified as food images. Checking these images will
provide supplementary information in the actual dietary
assessment. If, in a specific study, only food/drink epi-
sodes are of interest, we could use the motion data also
acquired from eButton, which contains a three-axis
accelerometer and a three-axis gyroscope, to exclude
these scenarios.
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Fig. 10 (colour online) Examples of blurred images (top row) and images with a small portion of food (bottom row)
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