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Abstract
As a respiratory tract virus, SARS-CoV-2 infected people through contacting with the upper respiratory tract first. Previous

studies indicated that microbiota could modulate immune response against pathogen infection. In the present study, we

performed metagenomic sequencing of pharyngeal swabs from eleven patients with COVID-19 and eleven Non-COVID-19

patients who had similar symptoms such as fever and cough. Through metagenomic analysis of the above two groups and a

healthy group from the public data, there are 6502 species identified in the samples. Specifically, the Pielou index indicated a

lower evenness of the microbiota in the COVID-19 group than that in the Non-COVID-19 group. Combined with the linear

discriminant analysis (LDA) and the generalized linearmodel, eighty-onebacterial specieswere foundwith increased abundance

in the COVID-19 group, where 51 species were enriched more than 8 folds. The top three enriched genera were Streptococcus,

Prevotella andCampylobacter containing someopportunistic pathogens.More interestingly, through experiments,we found that

two Streptococcus strains, S. suis and S. agalactiae, could stimulate the expression of ACE2 of Vero cells in vitro, which may

promote SARS-CoV-2 infection. Therefore, these enriched pathogens in the pharynxes ofCOVID-19 patientsmay involve in the

virus-host interactions to affect SARS-CoV-2 infection and cause potential secondary bacterial infections through changing the

expression of the viral receptor ACE2 and/or modulate the host’s immune system.
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Introduction

Globally, as of 30 November 2020, there have been

62,195,274 confirmed cases of COVID-19 caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

including 1,453,355 deaths, according to the WHO (WHO

2020a). SARS-CoV-2 nucleic acid could be detected in

pharynx, bronchoalveolar lavage fluid and feces of patients

(Zhang et al. 2020), which is associated with angiotensin-

converting enzyme 2 (ACE2), the receptor of SARS-CoV-2,

existing in multiple organs of the host (Wang and Xu 2020;

Xu et al. 2020).

One significant characteristic of COVID-19 different

from other coronavirus infections is that the symptoms

vary from patients to patients (Arashiro et al. 2020). As

reported in a clinical analysis (Park 2020), fever and res-

piratory symptoms started from 3 to 7 days after exposure

to SARS-CoV-2. Among the patients, 80% had no or mild

to moderate pneumonia, and approximately 20% had
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severe pneumonia. Different studies have tried to find the

factors contributing to various COVID-19 symptoms. For

example, Li et al. (Li et al. 2020) found that the dead

COVID-19 patients had lower percentages in counts of

CD3?, CD4?, and CD8? lymphocytes than that of the

survivors, which has strong predictive values for

in-hospital mortality, organ injury, and severe pneumonia.

In order to identify the factors determining the transition of

symptoms from mild to severe, used proteomics and

metabolomics to determine the markers in patients with

COVID-19. There were 22 proteins and 7 metabolites

screened from serum through a machine learning predic-

tion. With them, COVID-19 patients may have a high

probability to develop into severe cases (Shen et al. 2020a).

Many studies have proven that microbiota is an impor-

tant component of human body (Kamada et al. 2013;

Lopez and Skaar 2018). Some evidences indicate that

microbiome plays an important role in modulating immune

response against pathogen infections (Vesterbacka et al.

2017; Hanada et al. 2018). Vice versa, during viral

pathogen infections, such as influenza and AIDS, the sec-

ondary bacterial infections might happen and disrupt the

balance of the original microbiota (Vesterbacka et al. 2017;

Hanada et al. 2018; Tsang et al. 2020). Recent studies have

shown that the microbiome of the upper respiratory tract

also affects human health (De Boeck et al. 2020). Some

scientists have also noticed the relationship between

microbiota and COVID-19 infections (Khan and Khan

2020; Shen et al. 2020b; Zuo et al. 2020). For example,

Tao et al. performed gut shotgun metagenome analysis of

fecal samples from patients with COVID-19 in Hong Kong

(Zuo et al. 2020). They found that the patients with

COVID-19 had significant alterations in fecal microbiomes

compared with the controls, characterized by enrichment of

opportunistic pathogens and depletion of beneficial com-

mensals at all time points during hospitalization. According

to their results, the severity of the disease may be reduced

by altering gut microbes. But it is not clear whether the

similar conclusion could be extended in other organs

within the patients. Furthermore, the enriched opportunistic

pathogens identified may contribute to controlling the

secondary bacterial infection, which is also a risk for

COVID-19 critical patients. It has been reported that the

secondary bacterial infection rate of the COVID-19

patients was between 1% and 10% (Huang et al. 2020).

In the current study, microbiome difference between

SARS-CoV-2 RT-qPCR (quantitative reverse-transcription

polymerase chain reaction) positive and negative pharyn-

geal swabs from suspected patients were analyzed. Pha-

ryngeal swabs are chosen because SARS-CoV-2 is

transmitted through contacting with the upper respiratory

tract and the swabs are easily available since they are

normally collected for the detection of SARS-CoV-2 by

RT-qPCR due to that they contain relatively high viral

loads after onset of symptoms (Lippi et al. 2020; WHO

2020b).

Materials and Methods

Sample Collection and SARS-CoV-2 Detection

Pharyngeal swabs in viral transportation medium (VTM)

were collected from 22 suspected COVID-19 patients with

the symptoms of fever and cough at the First People’s

Hospital of Jiangxia District in Wuhan during the period

from 25 January 2020 to 10 February 2020. All the patients

had the typical symptoms of COVID-19 such as fever and

cough. The pharyngeal swab samples were inactivated at

56 �C for 1 h. The samples were shaken and mixed with a

vortex before nucleic acid extraction. RNA extraction was

performed according to the instructions of QIAamp Viral

RNA Mini Kit (Qiagen, Hilden, Germany). The quality and

quantity of the RNA were determined by Nanodrop (ND-

2000, Thermo Fisher, Waltham, MA, USA). All samples

were tested by RT-qPCR targeting RBD sequence of

SARS-CoV-2 spike protein. The primers and probes used

were as follows: forward primer: 50-CAATGGTTTAACA
GGCACAGG-30, reverse primer: 50-CTCAAGTGTCT
GTGGATCACG-30, probe: 50- FAM-ACAGCATCAG

TAGTGTCAGCAATGTCTC-BHQ1-30. The primers and

the probe were synthesized by Sangon Biotech Co., Ltd.

(Shanghai, China). Quantitative reverse transcription PCR

(RT-qPCR) was performed using LightCycler� Multiplex

RNA Virus Master (Roche Diagnostics GmbH, Mannheim,

Germany). Briefly, the 59 RT-qPCR reaction mixture (4

lL each) was mixed with 2 lL of 109 primer and probe

mixture, 0.1 lL of RT enzyme solution, 8.9 lL of water,

and 5 lL of RNA template and performed in a CFX96

TouchTM Real-time PCR detection System (CFX96, Bio-

Rad Laboratories, Hercules, CA, USA) with an initial

reverse transcription step at 50 �C for 10 min, next

denaturation step at 95 �C for 2 min, then 40 cycles of

denaturation at 95 �C for 10 s, annealing at 60 �C for 45 s

with fluorescent signals acquisition and the last step at

40 �C for 30 s.

DNA and RNA Library Construction

The transcriptome sequencing was performed to confirm

the molecular diagnosis results. The cDNA was synthe-

sized firstly using TaKaRa PrimeScript IV 1st strand cDNA

Synthesis kit (Takara Bio Inc., Kusatsu, Shiga, Japan) and

ds-cDNA Synthesis Module 2 (Vazyme Biotech Co., Ltd,

Nanjing, China). The sequencing libraries were prepared

using VAHTS Universal Plus DNA Library Prep Kit.
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Paired-end sequencing was performed on the MGI-seq2000

platform (MGI Tech Co. Ltd, Shenzhen, China). The

cDNA synthesis, library preparation and sequencing were

performed by the Frasergen Bioinformatics Co., Ltd,

Wuhan, China. For metagenomic sequencing, total DNA

was extracted with QIAamp DNA Mini Kit (Qiagen, Hil-

den, Germany) according to the instruction of the manu-

facture. Library preparation and sequencing were

performed as described above producing 150 bp pair-end

reads.

SARS-CoV-2 Genome Assembling

Transcriptome data and metagenomic data were processed

by filtering the host genome sequences first using the fastq

screen software (version 0.14.0, with the options chose—

aligner bowtie2—nohits, http://www.bioinformatics.babra

ham.ac.uk/projects/fastq_screen/), respectively. The fil-

tered data were then trimmed by Trimmomatic software

(Bolger et al. 2014) (In the version 0.36, the options of

LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20

MINLEN:40 were chosen) to remove low quality

sequences.

For the transcriptome data, we mainly focused on the

SARS-CoV-2 genome assembly. Ninety-seven SARS-

CoV-2 genomes were downloaded from NCBI GenBank as

the references. The clean reads were mapped to these ref-

erences through samtools software (version 1.9) (Li et al.

2009). The reads which were aligned to the references were

extracted and transformed to fastq format by bcftools

software (version 1.9, with the default options)

(Narasimhan et al. 2016). The de novo assembly was

performed by SPAdes (version 3.13.0, with the default

options) (Bankevich et al. 2012). SARS-CoV-2 genomes or

draft genomes assembled from the SARS-CoV-2 positive

samples together with the references were used to do multi-

sequences alignment with MAFFT (version 7.4.07, with

the default options) (Katoh and Standley 2013). Since the

genome fragments assembled from the samples were of

uneven quality, only the genomes with high quality were

used for phylogenetic tree construction. The phylogenetic

analysis for SARS-CoV-2 was performed by FastTree

(Price et al. 2009) with the options of -gtr -nt -fastest and

1000 bootstrap value. The phylogenetic tree was visualized

by an online tool iTOL (Letunic and Bork 2019).

Metagenomic Data Processing

To compare with pharyngeal samples from healthy people,

seven next-generation shotgun sequencing microbiome

data of pharyngeal samples from healthy people were

downloaded from the public database: www.hmpdacc.org/

hmp/resources/. The open access number of the healthy

control group is listed in Supplementary Table S1. All the

clean data were assembled using the megahit software

(version 1.1.3, with the default options) (Li et al. 2015).

After that, clean reads were mapped to the contigs by

bowtie2 (Langmead and Salzberg 2012). In order to min-

imize the errors due to the sequencing differences between

samples, the RPKMs (Reads Per Kilobase per Million

mapped reads) value, which was used to describe the rel-

ative abundance of each microorganism or virus, was cal-

culated and normalized based on the lengths and the

numbers of the contigs of the mapped reads in each sample

(Li et al. 2009; Han et al. 2018). Besides, the species

annotation of each contig was processed by kraken2 (Wood

and Salzberg 2014).

The downstream analysis was mainly processed in the R

language program (version 3.5.3; https://cran.r-project.org/

bin/windows/base/old/3.5.3/). The principal coordinates

analysis (PCoA) based on the Bray–Curtis distances was

calculated with the vegan package (Oksanen 2014). For the

analysis of the differential species (including SARS-CoV-2)

abundance, owing to the lack of an optimal single method in

current studies (Zhang et al. 2019), the analysis of the

abundance difference between groups was performed by two

diverse methods. One method was the combination of Lin-

ear Discriminant Analysis (LDA) together with the Kruskal–

Wallis (KW) sum-rank test, which was completed by the

software LEfSe (with the default options) (Segata et al.

2011) commonly used for differential species identified.

Another approach was edgeR (Robinson et al. 2010) in

conjunction with the LIMMA package (Ritchie et al. 2015),

a generalized linear model, which has been found to have

the best overall performance in a metagenomic profile

(Jonsson et al. 2016; Zhang et al. 2019). Here, when

determining the differential abundance species via edgeR,

the abundance level of species with an absolute value log2

fold change C 2 and P value B 0.05 would be filtered as

differentially abundant species.

Growth of Bacteria

Streptococcus suis and S. agalactiae were grown on Todd

Hewitt agar (THA). E. coli, Acinetobacter baumannii, and

Bacillus cereus were grown on Lysogeny broth agar

(LBA). A single colony of each bacterial strain was inoc-

ulated into respective media and incubated overnight at

37 �C. Colony forming unit (CFU) was then determined by

plating series of dilutions on respective agar.

Cell Culture

Vero cells (African green monkey kidney cell line) were

cultured in DMEM containing 10% FBS, 100 units/mL

penicillin and 100 lg/mL streptomycin at 37 �C in a 5%
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CO2 atmosphere. Vero cells were seeded in 24 well plates

with a density of 1 9 105 cells/well and grown to 80%

confluence in DMEM with 2% FBS and without antibi-

otics. Each well was then challenged with 106 CFU of each

bacterium, taking bacterial free cells as controls. Total

cellular RNA was isolated from cells at 0 h, 4 h and 8 h

post incubation using TRIzol (Invitrogen-Gibco, Grand

Island, NY) assay as described previously (Rio et al. 2010).

RNA concentration and purity were then determined using

Nanodrop 1000 Spectrophotometer at 260 nm. Each of

these tests was done in triplicate throughout the study.

RT-qPCR Detection of the Expression Level
of ACE2

The expression level of ACE2 in Vero cells cocultured

with bacteria was determined by RT-qPCR using a

HiScript� II One Step RT-qPCR SYBR� Green kit

(Vazyme, Nanjing, China) following the manufacturer’s

instructions, with the primers ACE2-F (50-CGAAGCC-
GAAGACCTGTTCTA-30) and ACE2-R (50-GGGCAAG
TGTGGACTGTTCC-30). Briefly, the amplification was

performed as follows: 50 �C for 15 min, 98 �C for 2 min,

followed by 40 cycles of 98 �C for 10 s, 60 �C for 15 s, and

68 �C for 30 s), and a default melt curve step in ABI

Stepone machine. The housekeeping gene GAPDH was

used as the reference gene with the primers GAPDH-F (50-
AACTCTGGTAAAGTGGAT-30) and GAPDH-R (50-
TACTCAGCGCCAGCATCG-30). The relative expression

level of ACE2 was determined using the 2-DDCt method as

described previously (Livak and Schmittgen 2001) and

compared to that of the control group using the Student’s

t test by R program (version 3.5.3; https://cran.r-project.

org/bin/windows/base/old/3.5.3/).

Statistical Analysis

All the statistical analyses were performed in the R pro-

gram (version 3.5.3; https://cran.r-project.org/bin/win

dows/base/old/3.5.3/). The two independent groups were

analyzed via Student’s t-test. Data are showed as

means ± SD. Statistical differences were considered sig-

nificant at *P\ 0.05, **P\ 0.01 and ***P\ 0.01.

Results

Transcriptome Data Confirmed SARS-CoV-2
Infection

The nucleic acid of SARS-CoV-2 in pharyngeal swabs was

determined by RT-qPCR test targeting RBD sequence of

SARS-CoV-2 spike protein. The Ct values of the 11

positive samples are shown in Table 1. The extracted RNA

of the 22 samples was sent for transcriptome sequencing to

verify the results of the molecular diagnosis. Sequencing

results confirmed the presence of SARS-CoV-2 in the 11

RT-qPCR positive samples and no SARS-CoV-2 RNA in

the 11 RT-qPCR negative samples. After analyzing the

transcriptome data of the 11 SARS-CoV-2 positive sam-

ples, four complete genome sequences with high quality,

four draft genomes and three genomes with some frag-

ments were obtained (Table 1). Furthermore, the phylo-

genetic tree constructed with the four high-quality SARS-

CoV-2 genomes and 232 reference genomes showed that

the four SARS-CoV-2 genomes are different (Supple-

mentary Fig. S1).

Basic Information of the Metagenomic Data

The chi-square test and the Student’s t test confirmed that

the SARS-CoV-2 detection results were not correlated with

gender and age (All P[ 0.05, Supplementary Table S2).

For the microbiome analysis, each sample had an average

of 9,852,978 reads after filtering the host genome and low-

quality sequences. An average of 39,000 contigs was

obtained per sample, and the detailed information is

available in Supplementary Table S3. For each sample,

about 75% contigs were longer than 350 bp and the aver-

age length of the contigs was about 425 bp, as shown in

Fig. 1A. Contigs with the length longer than 350 bp were

used for the species annotation. Altogether, a total of 6502

species were identified including 5896 bacterial taxa and

606 viral taxa belonging to 70 orders and 123 families. In

particular, most of the 606 viral taxa identified were pha-

ges. In addition, the species accumulation curve in Fig. 1B

shows that the total number of species gradually becomes

saturated as the number of the samples increases.

Metagenomic Characteristics of the Three Cohorts

Based on the annotation information, a bacterial and viral

composition profile with the abundance information was

achieved (Supplementary Table S4). To investigate the

difference in richness and evenness of the 6502 species

among the three groups, we calculated and compared the

alpha diversity index, including Observed species, Shannon

index as well as Pielou evenness index between the groups

(Han et al. 2018). Significant differences were observed in

the alpha diversity of the two patients’ samples (the

COVID-19 group and the Non-COVID-19 group) from the

healthy people group as shown in Fig. 2A–2C (P\ 0.05 in

Kruskal–Wallis test). However, the Observed species and

the Shannon index indicated there was no significant dif-

ference between the COVID-19 and the Non-COVID-19

groups, as shown in Fig. 2A and 2B. Interestingly,
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compared with the Non-COVID-19 group, the COVID-19

group had a significantly lower Pielou evenness index

(Fig. 2C, P = 0.019). Due to the large number of species

taxa, the top twelve abundant orders in the samples,

including Bacteroidales, Lactobacillales, Caudovirales

etc., were used for analyzing the taxonomic compositions.

At the order level, the UPGMA cluster analysis revealed

that the samples from healthy control were clustered

obviously together and different from the two patient

cohorts. While the taxonomic composition of the COVID-19

group showed similar to that of the Non-COVID-19 group

(as shown in Fig. 2D).

Then the Principal Coordinates Analysis (PCoA) was

performed to investigate the similarity of the microbiome

in the three cohorts based on the Bray–Curtis distance. In

order to reduce individual difference, 3069 species which

present in at least twenty percentage of all samples (C 6

samples) except SARS-CoV-2, were chosen for analysis.

Similar to the results of alpha diversity, there was a clear

separation in the beta diversity results between the healthy

control group and the patient groups. (Fig. 2E, ANOSIM,

R = 0.53, P = 0.001).

Comparative Analysis of the Opportunistic
Pathogens in the COVID-19 Pharyngeal Swabs

We further studied the distribution of the 1090 species

presented in over 60% of all samples (C 18 samples) to

find if there are some opportunistic pathogens enriched in

the COVID-19 group, which may contribute to the sec-

ondary infections in COVID-19. From the linear discrim-

inant analysis (LDA), it was found that there were 37

species with highly discriminated abundance among the

groups. As shown in Fig. 3A, all these species had much

higher abundance in the patient groups than that of the

healthy group. It was also worth noting that most of these

species had higher abundance in the COVID-19 group than

that of the Non-COVID-19 group, including some oppor-

tunistic pathogens such as Streptococcus and Prevotella

(Fig. 3A). Comparative analysis of the differential abun-

dance species by the generalized linear model showed that

there were 81 species except SARS-CoV-2 having higher

abundance in the COVID-19 group than that of the Non-

COVID-19 group, and no species having lower abundance

(Fig. 3B). The species ranked by log2 fold increase in the

abundance were shown in the Supplementary Table S5.

Table 1 Sequencing and RT-

qPCR results of the 11 SARS-

CoV-2 positive samples.

Sample Seq length (bp) Number of contigs Number of reads Ct value Avg depth

S1 30,062 1 200,476 17.5 886

S2 29,977 1 295,310 17.1 316

S3 30,026 1 225,212 23.1 1,009

S4 29,531 7 3632 26.2 11

S5 29,660 1 292,054 23.6 35

S6 393 1 82 28.4 30

S7 27,958 10 3268 26.3 10

S8 29,889 23 2836 28.6 11

S9 1061 2 12 31.2 2

S10 2553 5 148,226 26.4 103

S11 29,296 3 8050 25.7 36

Fig. 1 Basic information of the metagenomic data. A Length

distribution of the contigs assembled from each sample. B Cumulative

curve of the species identified in the samples.

928 Virologica Sinica

123



Among them, 51 species were found enriched at least 8

folds in the COVID-19 group compared with that in the

Non-COVID-19 group (Supplementary Table S5), and the

top three enriched genera were Streptococcus, Prevotella,

and Campylobacter. Mapping the reads of each sample

back to the genome of each enriched species identified by

the generalized linear model confirmed the enrichment

(Supplementary Figure S2, all with P\ 0.05). Further-

more, the heatmap clearly showed that the abundance of

the enriched species identified via LDA method and gen-

eralized linear model in the 3 groups (Fig. 3C).

Effects of Two Streptococcus on the Expression
of ACE2

Cell protein ACE2 is considered as the receptor for SARS-

CoV-2 binding to the host. Previous studies found the

dynamic variation of ace2 gene expression can be in

response to Pseudomonas aeruginosa infection (Sodhi

et al. 2019), and periodontopathic bacteria may enhance

the SARS-CoV-2 infection by increasing the expression of

ACE2 (Takahashi et al. 2020). In order to understand if the

enriched opportunistic pathogens may play certain roles in

SARS-CoV-2 infection, some enriched bacteria in the

COVID-19 group were chosen to study their effects on the

expression of ACE2 of Vero cells in vitro. Because most

species among the 51 species enriched at least 8 folds

belong to Streptococcus genus, two Streptococcus species,

S. suis and S. agalactiae, together with other three species

(Acinetobacter baumannii, Bacillus cereus and Escherichia

coli) with no significant difference in abundance from the

metagenomic profiles were selected for the experiment.

Surprisingly, compared with the pathogen-free blank con-

trol, the two Streptococcus strains were found to be able to

significantly promote the expression level of ace2 gene at

8 h after interacting the bacteria with the cells (Fig. 4),

while the other three bacteria exhibited no significant

effects on the expression of ACE2 (Fig. 4).

4

6

8

S
ha

nn
on

 in
de

x

0.4

0.6

0.8

1.0

P
ie

lo
u 

in
de

x

Group

A B C

D E

6.3e-05
0.3

6.3e-05

0.00025
0.019

6.3e-05
O

bs
er

ve
d 

sp
ec

ie
s

3000

2000

1000

Kruskal-Wallis, P = 0.019
0.035

0.44
0.0059

COVID-19  Non-COVID-19 Healthy

Kruskal-Wallis, P = 0.00032

COVID-19  Non-COVID-19 Healthy

Kruskal-Wallis, P = 0.00015

COVID-19  Non-COVID-19 Healthy

COVID-19 Non-COVID-19 Healthy
H4
H2
H1
H7
H3
H6
H5
S5
S2
S6

N10
S9
N8
N11
N4
S1
N5
S4
N6
S8
N9
N7
S7
S10
N2
N3
N1
S3
S11

0.0            0.2            0.4            0.6            0.8           1.0
Relative Abundance

Top 12 orders

Others
Campylobacterales
Rhizobiales
Corynebacteriales
Enterobacterales
Burkholderiales
Bacillales
Fusobacteriales
Micrococcales
Clostridiales
Lactobacillales
Bacteroidales

PCoA on Bray-Curtis
ANOSIM

R = 0.53, P = 0.001

Healthy
Non-COVID-19
COVID-19

0.5

0.0

-0.5P
C

oA
 a

xi
s2

: 1
2.

28
%

PCoA axis1: 19.89%
-0.50  -0.25  0.00   0.25   0.50

0

Fig. 2 The microbiome difference in the pharyngeal swabs of the

COVID-19 group (n = 11), the Non-COVID-19 group (n = 11) and

the Healthy group (n = 7). Comparison of the alpha diversity indexes

using Observed species (A), Shannon index (B), and Pielou index

(C) based on the metagenomic profiles at the species level. The

Kruskal–Wallis test is used for significance calculation. D Samples

clustered by UPGMA using Bray–Curtis distance (left), and top

twelve abundant orders with the relative abundance in the corre-

sponding samples (right) at the order level. E Principal Coordinate

Analysis (PCoA) of the species present in more than 20% of all

samples based on the Bray–Curtis distance. ANOSIM, R = 0.53,

P = 0.001.

D. Xiong et al.: The Potential Linkages between Pharyngeal Microbiota and COVID-19 929

123



−2 0 2 4

−3−2−10123

A

B

C

Veillonella rodentium

Group Healthy Non-COVID19 COVID19
Average relative abundance (log2) in three cohorts

Veillonella parvula HSIVP1
Veillonella parvula
Veillonella dispar

Veillonella atypica
Streptococcus uberis

Streptococcus thermophilus
Streptococcus suis

Streptococcus sanguinis
Streptococcus salivarius

Streptococcus pneumoniae
Streptococcus parasanguinis

Streptococcus mitis
Streptococcus koreensis

Streptococcus gordonii
Streptococcus australis

Rothia mucilaginosa
Prevotella scopos JCM 17725

Prevotella oris
Prevotella melaninogenica

Prevotella jejuni
Prevotella intermedia

Prevotella fusca JCM 17724
Prevotella denticola

Porphyromonas gingivalis
Pectobacterium phage phiTE

Leptotrichia wadei
Lachnoanaerobaculum umeaense

Haemophilus parainfluenzae
Fusobacterium pseudoperiodonticum

Escherichia phage vB_EcoP_G7C
Clostridium botulinum

Campylobacter showae
Campylobacter concisus

Bacillus cereus m1293
Atopobium parvulum DSM 20469

Aerococcus sanguinicola
0.0      2.5      5.0      7.5      10.0    12.5

Change stable up

Lo
g1

0 
P 

va
lu

e

4

3

2

1

0

Log2FC

Healthy Non-COVID19 COVID19

Clostridium botulinum
Pectobacterium phage phiTE
Streptococcus pneumoniae
Bacillus cereus m1293
Escherichia phage vB_EcoP_G7C
Erysipelothrix larvae
Clostridiumhylemonae DSM 15053
Anaerobutyricum hallii
Streptococcus thermophilus JIM 8232
Rummeliibacillus stabekisii
Carnobacterium maltaromaticum
Streptococcus pluranimalium
Virgibacillus halodenitrificans
Brochothrix thermosphacta
Bacillus thermoamylovorans
Carnobacterium divergens
Pediococcus acidilactici
Bergeyella cardium
Chryseobacterium camelliae
Campylobacter ureolyticus RIGS 9880
Campylobacter sputorum
Lachnoclostridium phytofermentans ISDg
Eubacterium cellulosolvens 6
Prevotella ruminicola 23
Alloprevotella sp. E39
Fermentimonas caenicola
Porphyromonas cangingivalis
Porphyromonas asaccharolytica DSM20707 
Treponema sp. OMZ 838
Eubacterium eligens ATCC 27750
Treponema phagedenis
Treponema brennaborense DSM 12168
Veillonella rodentium
Lachnoanaerobaculum umeaense
Campylobacter concisus
Prevotella sp. oral taxon 299 str. F0039
Prevotella denticola F0289
Prevotella oris
Prevotella intermedia
Veillonella dispar
Prevotella jejuni
Prevotella melaninogenica
Prevotella fusca JCM 17724
Prevotella scopos JCM 17725
Prevotella denticola
Leptotrichia sp. oral taxon 212
Leptotrichia wadei
Porphyromonas gingivalis
Bacteroides heparinolyticus
Capnocytophaga sputigena
Capnocytophaga sp. FDAARGOS_737
Fusobacterium pseudoperiodonticum
Campylobacter showae
Flavobacteriaceae bacterium 10Alg115
Actinobacillus porcitonsillarum
Proteiniphilum saccharofermentans
Labilibaculum antarcticum
Capnocytophaga stomatis
Erysipelothrix sp. HDW6B
Streptococcus sp. HSISSI
Lactobacillus ginsenosidimutans
Streptococcus phage PH10
Bacteroides dorei
Atopobium parvulum DSM 20469
Bacillus phage Moonbeam
Herbinix luporum
Streptococcus troglodytae 
Streptococcus sp. CNU G3 
Veillonella parvula HSIVP1
Veillonella atypica
Veillonella parvula
Gemella haemolysans
Streptococcus mitis
Rothia mucilaginosa
Streptococcus cristatus
Haemophilus parainfluenzae
Streptococcus salivarius 
Streptococcus sanguinis 
Streptococcus gordonii 
Streptococcus sp. HSISM1 
Streptococcus koreensis 
Streptococcus sp. A12 
Streptococcus sp. I-P16 
Streptococcus sp. I-G2 
Streptococcus australis 
Streptococcus parasanguinis 
Streptococcus oralis subsp. tigurinus 
Streptococcus salivarius JIM8777 
Streptococcus suis 
Streptococcus thermophilus 
Acholeplasma axanthum
Lactobacillus sakei
Vagococcus penaei
Tetragenococcus halophilus
Bacillus mycoides
Bacillus velezensis
Campylobacter jejuni subsp. jejuni PT14
Streptococcus agalactiae
Streptococcus uberis
Streptococcus sobrinus

Streptococcus marmotae
Aerococcus sanguinicola
Vagococcus teuberi

H
1

H
2

H
3

H
4

H
5

H
6

H
7

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
10

N
11

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

Fig. 3 Analysis of species with differential abundance among the

COVID-19, Non-COVID-19 and healthy cohorts. A Average relative

abundance of the most discriminated species identified by linear

discriminant analysis in three cohorts. B Differential abundance

species identified by comparative analysis of the COVID-19 and the

Non-COVID-19 group via generalized linear model. C Heatmap

showing the abundance changes of all the significantly differential

species among the three cohorts.

930 Virologica Sinica

123



Discussion

It is well known that genetic and environmental factors

play important roles in shaping human microbiota and

immunity (Carmody et al. 2015). Microbiota may play

certain roles in immune response to COVID-19 (Dhar and

Mohanty 2020). Because SARS-CoV-2 is transmitted

through contacting with the upper respiratory tract, pha-

ryngeal swabs were used in the current study to find the

microbiome difference between COVID-19 patients and

Non-COVID-19 patients. Unlike previous studies which

mainly focused on gut microbiome of hospitalized COVID-19

patients (Khan and Khan 2020; Shen et al. 2020b; Zuo et al.

2020), the microbiome in throat may be helpful for identifying

risk factors for SARS-CoV-2 infection and the development

of severe COVID-9 illness. Another advantage is that pha-

ryngeal swabs can be collected easily and are compatible with

the current RT-qPCR detection of SARS-CoV-2.

Based on the metagenomic sequencing data, we identi-

fied 6502 microbial taxa in the pharyngeal swabs, which

showed that there exist diversified microbes in human

throats. Both alpha diversity and beta diversity analysis

indicated that the species diversities of the COVID-19

group and the Non-COVID-19 group were significantly

lower than that of the healthy people group. The linear

discriminant analysis and the generalized linear model

indicated that there were 81 species having significantly

increased abundance in the COVID-19 group compared

with that in the Non-COVID-19 group (Fig. 3B), which

supports the results of the Pielou index analysis shown in

Fig. 2C. Among the species enriched in the COVID-19

group (Supplementary Table S5), the top three enriched

genera were found to be Streptococcus, Prevotella, and

Campylobacter. These results are consistent with the

findings of a recent study (Zuo et al. 2020), showing that

the opportunistic pathogens such as Clostridium hathewayi,

Streptococcus parasanguinis, Actinomyces odontolyticus

were enriched in the guts of the hospitalized COVID-19

patients. Further investigation on the relationship between

the enriched opportunistic pathogens and the secondary

infections in the COVID-19 patients would provide helpful

guides for better treatment outcomes of COVID-19

patients.

It is also clearly a question to be answered whether these

enriched opportunistic pathogens would affect SARS-CoV-2

infection. If so, how do they affect? In this study, we found

that two Streptococcus, i.e. S. suis and S. agalactiae, can

promote the ACE2 expression level in Vero cells, which

indicates that they may promote SARS-CoV-2 infection.

Other studies have found that the Campylobacter jejuni

which is one of the enriched opportunistic pathogens iden-

tified in COVID-19 patients can cause significant inflam-

mation, enteritis and diarrhea in humans (Konkel et al. 2001;

van Vliet and Ketley 2001; Young et al. 2007). It has been

reported that about 3% of COVID-19 patients had symptoms

of diarrhea (Huang et al. 2020). It may be worth to do

further study to see if diarrhea after SARS-CoV-2 infection

would be caused by Campylobacter. While for Prevotella,

Abdul et al. have found that the over-expressed Prevotella

proteins can promote viral infection (Khan and Khan 2020).

The Prevotella proteins are also found to be involved in

multiple interactions with NF-jB which is related to the

clinical severity of COVID-19 (Khan and Khan 2020).

Therefore, all these studies indicated that the enriched

pathogens in the COVID-19 patient group may play certain

roles in SARS-CoV-2 infections. They could affect the

expression of the ACE2 and/or modulate the immune system

involved in the virus-host interactions.

Overall, our study reveals for the first time that there are

several enriched opportunistic pathogens in the pharyngeal

tracts of the COVID-19 patients compared with the unin-

fected people. These bacteria might be involved in the

virus-host interactions to affect SARS-CoV-2 infection and

cause potential secondary bacterial infections through

changing the expression of the ACE2 and/or modulate the

host’s immune system. It also provides new clues for fur-

ther investigations on elucidating whether and how

microbiota in human throat would play certain roles in

SARS-CoV-2 infections.
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Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut

microbiota in immunity and inflammatory disease. Nat Rev

Immunol 13:321–335

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment

software version 7: improvements in performance and usability.

Mol Biol Evol 30:772–780

Khan AA, Khan Z (2020) COVID-2019 associated overexpressed

Prevotella proteins mediated host-pathogen interactions and their

role in coronavirus outbreak. Bioinformatics 36:4065-4069

Konkel ME, Monteville MR, Rivera-Amill V, Joens LA (2001) The

pathogenesis of Campylobacter jejuni-mediated enteritis. Curr

Issues Intest Microbiol 2:55–71

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with

Bowtie 2. Nat Methods 9:357–359

Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent

updates and new developments. Nucleic Acids Res 47:W256–

W259

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth

G, Abecasis G, Durbin R, Genome Project Data Processing S

(2009) The sequence alignment/map format and SAMtools:

Genome Project Data Processing S. Bioinformatics (Oxford,

England) 25:2078–2079

Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an

ultra-fast single-node solution for large and complex metage-

nomics assembly via succinct de Bruijn graph. Bioinformatics

31:1674–1676

Li D, Chen Y, Liu H, Jia Y, Li F, Wang W, Wu J, Wan Z, Cao Y,

Zeng R (2020) Immune dysfunction leads to mortality and organ

injury in patients with COVID-19 in China: insights from ERS-

COVID-19 study. Signal Transduct Target Ther 5:62

Lippi G, Simundic AM, Plebani M (2020) Potential preanalytical and

analytical vulnerabilities in the laboratory diagnosis of coron-

avirus disease 2019 (COVID-19). Clin Chem Lab Med

58:1070–1076

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression

data using real-time quantitative PCR and the 2(-Delta Delta

C(T)) method. Methods 25:402–408

Lopez CA, Skaar EP (2018) The impact of dietary transition metals

on host-bacterial interactions. Cell Host Microbe 23:737–748

Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin

R (2016) BCFtools/RoH: a hidden Markov model approach for

detecting autozygosity from next-generation sequencing data.

Bioinformatics (Oxford, England) 32:1749–1751

Oksanen J (2014) vegan: Community Ecology Package. R package

version 2.0-10 edn.

Park SE (2020) Epidemiology, virology, and clinical features of

severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2;

Coronavirus Disease-19). Clin Exp Pediatr 63:119–124

Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large

minimum evolution trees with profiles instead of a distance

matrix. Mol Biol Evol 26:1641–1650

Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Purification of

RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc

2010:pdb.prot5439

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK

(2015) Limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res 43:e47

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Biocon-

ductor package for differential expression analysis of digital

gene expression data. Bioinformatics 26:139–140

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,

Huttenhower C (2011) Metagenomic biomarker discovery and

explanation. Genome Biol 12:R60

Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R,

Qian L, Ge W, Liu W, Liang S, Chen H, Zhang Y, Li J, Xu J, He

Z, Chen B, Wang J, Yan H, Zheng Y, Wang D, Zhu J, Kong Z,

932 Virologica Sinica

123



Kang Z, Liang X, Ding X, Ruan G, Xiang N, Cai X, Gao H, Li L,

Li S, Xiao Q, Lu T, Zhu Y, Liu H, Chen H, Guo T (2020a)

Proteomic and metabolomic characterization of COVID-19

patient sera. Cell 182:59-72.e15

Shen Z, XiaoY,Kang L,MaW, Shi L, Zhang L, Zhou Z,Yang J, Zhong

J, Yang D, Guo L, Zhang G, Li H, Xu Y, Chen M, Gao Z, Wang J,

Ren L, Li M (2020b) Genomic diversity of SARS-CoV-2 in

coronavirus disease 2019 patients. Clin Infect Dis 71:713–720

Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR,

Fulton WB, Kovler ML, Wang S, Prindle T Jr, Zhang Y,

Lazartigues ED, Holtzman MJ, Alcorn JF, Hackam DJ, Jia H

(2019) A Dynamic variation of pulmonary ACE2 is required to

modulate neutrophilic inflammation in response to pseudomonas

aeruginosa lung infection in mice. J Immunol 203:3000–3012

Takahashi Y, Watanabe N, Kamio N, Kobayashi R, Iinuma T, Imai K

(2020) Aspiration of periodontopathic bacteria due to poor oral

hygiene potentially contributes to the aggravation of COVID-19.

J Oral Sci 63:1–3

Tsang TK, Lee KH, Foxman B, Balmaseda A, Gresh L, Sanchez N,

Ojeda S, Lopez R, Yang Y, Kuan G, Gordon A (2020)

Association between the respiratory microbiome and suscepti-

bility to influenza virus infection. Clin Infect Dis 71:1195-1203

van Vliet AH, Ketley JM (2001) Pathogenesis of enteric Campy-

lobacter infection. Symp Ser Soc Appl Microbiol 2001:455–565

Vesterbacka J, Rivera J, Noyan K, Parera M, Neogi U, Calle M,

Paredes R, Sönnerborg A, Noguera-Julian M, Nowak P (2017)

Richer gut microbiota with distinct metabolic profile in HIV

infected Elite Controllers. Sci Rep 7:6269

Wang Z, Xu X (2020) scRNA-seq profiling of human testes reveals

the presence of the ACE2 receptor, a target for SARS-CoV-2

infection in spermatogonia, leydig and sertoli cells. Cells 9:920

Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic

sequence classification using exact alignments. Genome Biol

15:R46

World Health Organization (WHO) (2020a) Coronavirus disease

(COVID-2019) pandemic. https://www.who.int/emergencies/dis

eases/novel-coronavirus-2019

World Health Organization (WHO) (2020b) Modes of transmission of

virus causing COVID-19: implications for IPC precaution

recommendations: scientific brief, 29 March 2020. World Health

Organization, Geneva

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P

(2020) Evolution of the novel coronavirus from the ongoing

Wuhan outbreak and modeling of its spike protein for risk of

human transmission. Sci China Life Sci 63:457–460

Young KT, Davis LM, Dirita VJ (2007) Campylobacter jejuni:

molecular biology and pathogenesis. Nat Rev Microbiol

5:665–679

Zhang X, Nieuwdorp M, Groen AK, Zwinderman AH (2019)

Statistical evaluation of diet-microbe associations. BMC Micro-

biol 19:90

Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao

GF, Yan B, Shi ZL, Zhou P (2020) Molecular and serological

investigation of 2019-nCoV infected patients: implication of

multiple shedding routes. Emerg Microbes Infect 9:386–389

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y,

Chung A, Cheung CP, Chen N, Lai CKC, Chen Z, Tso EYK,

Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, Chan

PKS, Ng SC (2020) Alterations in gut microbiota of patients

with COVID-19 during time of hospitalization. Gastroenterology

159:944–955

D. Xiong et al.: The Potential Linkages between Pharyngeal Microbiota and COVID-19 933

123

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

	Enriched Opportunistic Pathogens Revealed by Metagenomic Sequencing Hint Potential Linkages between Pharyngeal Microbiota and COVID-19
	Abstract
	Introduction
	Materials and Methods
	Sample Collection and SARS-CoV-2 Detection
	DNA and RNA Library Construction
	SARS-CoV-2 Genome Assembling
	Metagenomic Data Processing
	Growth of Bacteria
	Cell Culture
	RT-qPCR Detection of the Expression Level of ACE2
	Statistical Analysis

	Results
	Transcriptome Data Confirmed SARS-CoV-2 Infection
	Basic Information of the Metagenomic Data
	Metagenomic Characteristics of the Three Cohorts
	Comparative Analysis of the Opportunistic Pathogens in the COVID-19 Pharyngeal Swabs
	Effects of Two Streptococcus on the Expression of ACE2

	Discussion
	Acknowledgements
	Author Contributions
	References




