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Abstract Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2,
a newly discovered coronavirus that exhibits many similarities with the severe acute respira-
tory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (SARS-CoV
and MERS-CoV, respectively). The definite pathogenesis and immunological influences of
SARS-CoV-2 have not been fully elucidated. Therefore, we constructed a brief summary com-
parison of SARS-CoV-2, SARS-CoV, and MERS-CoV infections regarding their immunological
changes. In addition, we further investigated the immunological differences between severe
and nonsevere COVID-19 cases, and we searched for possible immunological predictors of
the patient outcome by reviewing case series studies to date. Possible immunological predic-
tors of a poor outcome are leukocytosis, neutrophilia, lymphopenia (both CD4 and CD8 T cells),
an increased neutrophil-to-lymphocyte ratio (NLR), and increased levels of pro-inflammatory
cytokines (IL-6 and TNF-a), Th1 cytokines (IL-2 and IFN-g), regulatory T cell cytokines (IL-
10) and Th17 cytokines (IL-17). A more precise immunological map needs to be established,
which may assist in diagnosing this disease and facilitate immunological precision medicine
treatment.
Copyright ª 2021, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Coronavirus disease 2019 (COVID-19) is an infectious dis-
ease caused by SARS-CoV-2, a virus closely related to severe
acute respiratory syndrome (SARS) coronavirus (SARS-CoV).
The world experienced outbreaks of coronavirus infections
that threatened to become global pandemics in 2002e2003
for SARS and in 2011 for Middle East respiratory syndrome
(MERS). As the world is witnessing the COVID-19 epidemic,
the disease caused by the novel coronavirus SARS-CoV-2,
emerging genetic evidence suggests it has many similar-
ities to SARS and MERS. To date, there is no available
medication for the treatment of SARS-CoV-2 infection. A
precise immunological map of SARS-CoV-2 infection is
critical to recognize the host defense in patients with
different prognoses or outcomes and becomes basis for
immunological precision medicine in the treatment of
SARS-CoV-2 infection.
Comparison of possible involved systems in
SARS-CoV-2, SARS-CoV, and MERS-CoV
infections

Coronaviruses can infect humans and many species of ani-
mals. Common cold human coronaviruses consist of four
viruses that cause worldwide mild upper airway symptoms
and are responsible for up to 15% of common cold in-
fections.1 Other coronaviruses such as SARS-CoV, MERS-CoV,
and SARS-CoV-2, caused epidemic outbreaks in the 21st
century with high infection to fatality ratios. Each of these
coronaviruses can cause respiratory, enteric, hepatic, and
neurological diseases.2
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Due to limited clinical evidence from cell line studies,
we reviewed current autopsies and laboratory cell line
cultures to identify possible affected systems and cells in
SARS-CoV-2 infection (Table 1).2e10 SARS-CoV and SARS-
CoV-2 share the same cell surface receptor, angiotensin-
converting enzyme 2 (ACE2), which is predominantly
expressed on lung type II alveolar cells and minimally
expressed in alveolar epithelial cells, type 2 pneumocytes,
lung macrophages, and monocytes.2,3 The results showed
that the respiratory tract with alveolar epithelium cell
involvement is the most common and that the immune and
digestive systems are also involved. In addition, a positive
SARS-CoV-2 antigen with a real-time PCR nucleic acid signal
was noted in both the alveolar epithelium and macrophages
in one autopsy study.4 Central venous symptoms, including
headache, dizziness, change in mental status, and menin-
geal signs, are also common.6 In addition, gastrointestinal
symptoms, including anorexia and abdominal pain, are
more common in severe cases.9 In the genital-urinary sys-
tem, acute kidney injury with renal tubule involvement is
the most common symptom.6 Cardiovascular complications
most often present with acute myocardial injury.4,6

In contrast to SARS-CoV and SARS-CoV-2, MERS-CoV uses
dipeptidyl peptidase 4 (DPP4) as a specific entry receptor,
which is widely expressed on epithelial cells in the kidney,
alveoli, small intestine, liver, prostate, and leukocytes3;
therefore, MERS-CoV has a broader infection range and
greater disease severity than other coronaviruses. The
mortality rate of SARS-CoV-2 infection (2.15%, data ob-
tained at the World Health Organization website on April
14, 2021) is far lower than that of SARS (9.19%) and MERS
(34.4%).2,11
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Table 1 Possible systems involved in SARS-CoV-2, SARS-CoV and MERS-CoV infections.

Involved system SARS-CoV-2 SARS-CoV MERS-CoV

Cell surface
receptor2,3

Human ACE2 Human ACE2 Human DPP4

Mortality rate2 Lowest Middle Highest
Immune system D4z D2y,5y D2y,5y

Alveolar macrophage
cells4z

Tissue-resident macrophages2y,5y Tissue-resident macrophages (lung, skeletal
muscle)2y

Monocytes5y

T lymphocytes5y

Histiocytic cell lines5y

Respiratory system D4z,6z,7z D2y,5y D2y,3y,5y

Alveolar epithelial
cells5z

Respiratory alveolar epithelial
cells2y,5y

Pneumocytes3y Multinucleated epithelial cells
Bronchial submucosal gland cells2y,3y,5y

Neurological system D6z D3y D5y

Neurons in the brain3y Neurons in the brain5y

Digestive system e4z; D6z,7z,8y D3y,5y D3y,5y

Liver7z Intestinal mucosa3y Intestinal mucosa3y

Liver epithelium6y Liver epithelium5y

Genitourinary
system

e4z; D6z D2y,5y D2y,5y

Renal distal tubule epithelium2y Renal proximal tubular epithelial cells2y

Kidney5y Kidney and prostate5y

Cardiovascular
system

e4z,6z,7z D10a D10a

a No current cell line susceptibility or autopsy data available (only anecdotal evidence).
Note: Evidence of COVID-19 is presented with autopsy data due to the lack of a recent cell line study.
D: affected according to cell line susceptibility data (in vitro) y or pathological findings on autopsy z

e: not affected according to pathological findings on autopsy.
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Host-pathogen interactions and initial
immunological responses in COVID-19

The clinical presentations of SARS-CoV-2, SARS-CoV, and
MERS-CoV show similarities and they vary from asymptom-
atic infection to severe disease. The transmission and
penetration of asymptomatic COVID-19 patients may be
highest among the three diseases; thus, SARS-CoV-2 can
disseminate markedly and cause a pandemic infection if
public health isolation policies are not sufficient. Due to the
normally benign nature of human coronavirus infection,
Lavine et al. proposed that if the endemic phase of COVID-
19 with primary childhood exposure is reached, the viru-
lence of SARS-CoV-2 infection would be no more than the
common cold.12

In SARS-CoV-2 infection, the virus binds to the host
cell via the ACE2 receptor with the help of transmembrane
protease serine 2 (TMPRSS2), a serine protease for viral S
protein priming. Then, the virus will replicate in the host
cell and cause massive destruction of the affected tissues
by cell pyroptosis, especially in organs with high ACE2
expression, such as respiratory tract cells.13,14 In infected
host cells, the virus may be recognized by pattern recog-
nition receptors (PRRs) including Toll-like receptor 3 and 7
(TLRs). The TLR3 response also induces NLR family pyrin
domain containing 3 (NLRP3) inflammasome activation,
which leads to the production of proinflammatory cyto-
kines including IL-1band IL-18, and promotes host cell
pyroptosis.13
549
Comparison of the effects of SARS-CoV-2,
SARS-CoV, and MERS-CoV infection on the
immune cell response and cytokine expression
in humans

We summarized several review articles and clinical studies
that investigated the differences in the immune responses
among SARS-CoV-2, SARS-CoV, and MERS-CoV infections
(Table 2).1,2,15e19 All three coronavirus infection patients
had decreasing trends in neutrophils and lymphocytes
(including CD4þ T cells and CD8þ T cells). In SARS-CoV-2
infection, 35e63% of patients had lymphopenia (Table 2).
The levels of proinflammatory cytokines, especially IL-6
and TNF-a, were significantly increased in all three viral
infections. The levels of T helper 1 cytokines, including IL-2
and interferon-g (IFN-g), and the Th17 cytokine IL-17, were
significantly elevated in all three viral infections. Notably,
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory proteins alpha (MIP-1a), IL-8, and IL-12
expression were higher in MERS-CoV patients than in
SARS-CoV patients.16 The immune system may be important
for the elimination of SARS-CoV-2; however, inappropriate
immune responses (e.g., a cytokine storm) may result in
fatal disease.

The possible mechanism of lymphopenia may come
from defective T cell activation/proliferation and T cell
apoptosis. Diao B et al. reported that serum concentrations
of TNF-a, IL-6, and IL-10 were negatively correlated with



Table 2 Effects of SARS-CoV-2, SARS-CoV and MERS-CoV
infections on immune cell responses and cytokine expres-
sion in humans.

SARS-CoV-2 SARS-CoV MERS-CoV

Affected immune cell parameter
Neutrophil count [ or Ya Y2 Y2

Lymphocyte count e or Ya Y2 Y2

CD4þ T cell count e or Ya Y2 Y2

CD8þ T cell count e or Ya Y2 Y1

Natural killer cell count e or Ya Y16 NA
B cell count e or Ya NA NA
T cell apoptosis e1 D1 D1

Cytokines

Pro-inflammatory cytokines
IL-1 [ or e [1e3 [18

IL-6 [ or ea [1e3 [1,3

IL-8 [ or e [2,3 [1,3

TNF-a [ or ea [1,3 [1,3

Th1 cytokines
IL-2 [ or ea [3 e19

IL-12 e [1,3 [3

IFN-g [ or e [1,3 [3

Th2 cytokines
IL-4 [ or ea [1 e19

IL-5 e [1 e19

Th17 cytokines
IL-17 [ [1 [1,19

Treg cytokines
IL-10 [ or ea [1,2 [1

Cytokine storm Yes2,3 Yes2,3 Yes2,3

a Effect may differ according to disease severity (Table 3).
Note: The data on COVID-19 were collected from original case
series reports.
[: increase due to infection.
Y: decrease due to infection.
e: no significant effect due to infection.
NA: data not currently available.
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the numbers of T cells, CD4þ, and CD8þ cells in COVID-19
patients, suggesting that high TNF-a, IL-6, and IL-10
expression may negatively regulate T cell survival and
proliferation.20 Whether SARS-CoV-2 infections induce T
cell apoptosis and contribute to lymphopenia is still
unknown.

On the other hand, T cells undergo functional exhaustion
in COVID-19 patients, which diminishes host antiviral ac-
tivity. The inhibitory factor PD-1 was highly expressed in
T cells of COVID-19 patients compared to T cells of healthy
controls. PD1þCD8þ T cell levels were significantly
increased in intensive care unit (ICU) patients compared
with those in non-ICU patients and healthy controls.20

Several T cell functional molecules, such as IFNg and
TNFa in CD4þ T cells were lower in the severe group than in
the mild group.21 The levels of granzyme B and perforin in
CD8þ T cells were higher in the severe group than in the
mild group.21 This finding indicates that SARS-CoV-2 dam-
ages the function of CD4þ T cells and promotes excessive
activation and possibly subsequent exhaustion of CD8þ T
cells. Moreover, the levels of multifunctional CD4þ T cells
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significantly decreased in the severe group, whereas
the proportion of nonfunctional subsets increased. The
elevated exhaustion level and reduced functional diversity
of T cells may serve as a predictive marker for severe
progression in COVID-19 patients.21 In both SARS-CoV and
SARS-CoV-2 infection, the levels of multifunctional CD4þ T
cells were increased in severe cases compared with mod-
erate cases.21,22 The reduced functional diversity of T cells
may be a unique immune response to SARS-CoV-2 infection
compared to that of other coronaviruses.
Cytokine profiles and cytokine storms in SARS-
CoV-2 infection

In SARS-CoV and MERS-CoV infection, delayed or suppressed
type I IFN induction in host cells has been found to be
an early important immunopathological feature, and this
phenomenon is also observed in SARS-CoV 2 infection.
These coronaviruses employ multiple strategies to interfere
with the signaling leading to type I IFN production and/or
the signaling downstream of the interferon-a/b receptor
(IFNAR).1,13 This dampening strategy is closely associated
with disease severity.13 As a consequence, strategies to
boost immune responses (antisera or pegylated IFNa) at an
early stage may be important.

For the development of an endogenous protective im-
mune response in the incubation and nonsevere stages, the
host should be in good general health and have an appro-
priate genetic background (e.g., HLA) that elicits specific
antiviral immunity. However, when the protective immune
response is impaired, the virus will propagate, and massive
destruction of the affected tissues will occur, especially in
organs that have high ACE2 expression, such as the intes-
tine and kidney.

A cytokine storm is a potentially fatal hyperrelease
of inflammatory mediators and cytokines in response to
stimulation of T cells and macrophages by pathogens. An
early rapid increase in the serum levels of proinflammatory
cytokines was also observed in SARS-CoV and MERS-CoV
infection, suggesting a potential similar cytokine storm-
mediated disease severity.23 The T cell response in SARS-
CoV infection was extensively investigated, and the data
show that strong T cell responses were correlated signifi-
cantly with increased neutralizing antibody levels, while
higher serum Th2 cytokine levels (IL-4, IL-5, and IL-10) were
detected in the fatal group.22 In MERS-CoV infection, an
early rise in CD8þ T cells correlated with disease severity,
and in the convalescent phase, Th1 cells were dominant.24

Cytokine storms also play an important role in fatal
COVID-19. Forty-one hospitalized patients with high levels
of proinflammatory cytokines, including IL-2, IL-7, IL-10,
interferon gamma-induced protein 10 (IP-10), MCP-1, MIP-
1a, and TNF-a, were observed in severe COVID-19 cases;
these findings are in line with SARS and MERS in the presence
of lymphopenia.23 Cytokine storms can initiate viral sepsis
and inflammatory-induced lung injury, which leads to other
complications, including pneumonitis, acute respiratory
distress syndrome, respiratory failure, shock, organ failure,
and potentially death.15,23 Further autopsy or biopsy studies
are necessary to understand additional details.
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Relationship between the immune reaction
and disease severity in COVID-19 patients

We performed a literature review in PubMed of confirmed
COVID-19 case series to investigate the relationship be-
tween immune reactions and disease severity in COVID-19
Table 3 Relation between in immune reaction and disease sev

Disease severity Non-severe

Immune cell
WBC count [NA e10,25e29 Y23,3

Neutrophil count [NA e25e28,30 Y23,2

Lymphocyte count [NA e29 Y23,2

CD 4þ T cell count [NA e28 Y25,2

CD 8þ T cell count [NA e28 Y25,2

NK cell count [NA e25 Y26,3

NLR [26,30 eNA YNA

Regulatory T cells [30 eNA Y25,2

B cell count [NA e25,26 Y30,a

Monocyte count [NA e26,28 YNA

Basophil [NA e26 YNA

Eosinophil [NA e27 Y26,2

Cytokine

Pro-inflammatory Cytokine
IL-1b [23 e25,26,29 YNA

IL-6 [23,25,26,28,a e30 YNA

IL-8 [23 e26,29 YNA

TNF-a [23,26 e25,28e30 YNA

Th 1 Cytokine
IL-2R [23,26 e25,28e30 YNA

IL-12 [NA e23 YNA

IFN-g [23 e30 YNA

Th 2 Cytokine
IL-4 [26,30 e23,28 YNA

IL-5 [NA eNA YNA

IL-9 [23 eNA YNA

Th 17 Cytokine
IL-17 [23a eNA YNA

T reg Cytokine
IL-10 [23,28,29a e25,26,29 YNA

Immunoglobulins
IgG [NA e26 YNA

IgA [NA e26 YNA

IgM [NA e26 YNA

Complement
C3 [NA e26 YNA

C4 [NA e26 YNA

a Increased compared with healthy people, but no significant diffe
Note: Data about COVID-19 infection are collected from original cas
WBC: White blood cell.
NLR: Neutrophil to lymphocyte ratio.
Regulatory T cells (CD3þCD4þCD25 þ CD127lowþ) T cell.
NA: no study available.
Definition of COVID-19 severe case.
1. Respiration rate �30 times/min; at rest, oxygen saturation �93%
oxygen (FiO2) � 300 mmHg).
2. Patient admitted to ICU.
[: significant increased compared with healthy people and non-sever
Y: significant decreased compared with both healthy people and non
e: no significant difference compared with healthy people and non-s
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patients (Table 3).10,23,25e30 Compared to nonsevere cases,
severe COVID-19 cases had a significant increase in leuko-
cyte and neutrophil counts; on the other hand, decreased
total lymphocyte (both CD4þ and CD8þ T cell) and NK cell
and normal or decreased B cell and eosinophil counts were
also found. Elevated levels of proinflammatory cytokines
erity in COVID 19 patients.

Severe

0 [23,25e28 e29,30 YNA

8 [23,25,26,28,30 e29 YNA

5e28,30 [NA e29 Y23,25e28,30

6,30 [NA eNA Y25,26,30 a

6,30 [NA eNA Y25,26 a,30 a

0,a [NA e25 Y26 a,30

[26,30 eNA YNA

6 [30 eNA Y25,26

[NA e25,26 Y30

[NA e26,28 YNA

[NA e26 YNA

8 [NA e27 Y26,28

[23 a e25,26,29 YNA

[23,25,26,28,29,30,a eNA YNA

[23a e26,29 YNA

[23,25,26,30 e,28,29 YNA

[23,25,26,30 e28,29 YNA

[NA e23 YNA

[23 e30 YNA

[23 a e28,30 YNA

[NA e23 YNA

[23 a eNA YNA

[23 a eNA YNA

[23,25,28,30 e26,29 YNA

[NA e26 YNA

[NA e26 YNA

[NA e26 YNA

[NA e26 YNA

[NA e26 YNA

rence compared with non-severe patients.
e series with reference number properly cited.

; arterial partial pressure of oxygen (PaO2)/fraction of inspired

e patients.
-severe patients.
evere patients.
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(IL-6 and TNF-a), Th1 cytokines (IL-2 and IFN-g), regulatory
T cell cytokines (IL-10), and Th17 cytokines (IL-17) were
also observed. Th2 cytokines (IL-4) elevation may be noted
occasionally. In conclusion, these findings suggest that Th1
and Th17 responses have an important role in COVID-19
severity.

In Th17 responses, increased IL-17 secretion can further
induce the production of proinflammatory cytokines IL-1b,
IL-6, and TNF-a, with chemokines. Furthermore, proin-
flammatory cytokines such as IL-1b and TNF-a could pro-
mote the Th17 response in turn. Th17 cells can promote
eosinophil production and recruitment into the lungs to
induce lung allergic disease. Furthermore, studies have
demonstrated that IL-6 is essential in SARS lung pathology;
therefore, this finding could explain the important role of
the Th17 response in COVID-19 lung disease.31

Zhou P reported a clinical analysis of 99 cases in
Wuhan that showed increased total neutrophils, reduced
total lymphocytes, increased serum IL-6, and increased C-
reactive protein (CRP).32 In severe or lethal cases of SARS-
CoV or MERS-CoV infection, increased neutrophil and
monocyte-macrophage influx have been consistently
observed. Another report also revealed significantly
increased total neutrophils and decreased total lympho-
cytes in patients receiving ICU care compared to those in
patients receiving non-ICU care; furthermore, increased
neutrophil and decreased lymphocyte counts also correlate
with disease severity and death.33 Since lymphocytopenia is
often seen in severe COVID-19 patients, the severe and
fatal cases caused by SARS-CoV-2 infection may be medi-
ated by leukocytes other than T cells. Furthermore, the
neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-C-
reactive protein ratio (LCR) are established inflammation
markers that reflect the systemic inflammatory response,
and both tests are available in almost all hospital labora-
tories. NLR values increased significantly in severe COVID-
19 patients, while LCR values decreased significantly.
Increased NLR values and decreased LCR levels may indi-
cate a poor prognosis.23,27

A recent review of antibody mediated immunity to
coronaviruses revealed that a slower antibody response
may be associated with more severe disease in MERS-CoV
and SARS-CoV-2 infections.34 In addition, the median time
to detect different antibodies was shortest for SARS-CoV-2,
followed by SARS-CoV, and the longest time was seen for
MERS-CoV infection.34 These findings could partially explain
the differences in the disease severity among these three
coronaviruses. Therefore, a delayed antibody response may
be considered a risk factor for a poor prognosis.
Multisystem inflammatory syndrome in
children (MIS-C) with SARS-CoV-2 infection

During the worldwide SARS-CoV-2 pandemic, multisystem
inflammatory syndrome was first diagnosed as hyper-
inflammatory shock. MIS-C shares partially similar symp-
toms but is distinct from typical Kawasaki disease. A
systemic review of 953 MIS-C cases worldwide showed that
MIS-C has a higher median age of onset than typical KD. MIS-
C is distinct from KD, with a higher rate of shock, intensive
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care treatment, coronary dilatation, aneurysm formation,
and mortality rates.35

MIS-C presents with more systemic inflammation (higher
leukocyte counts and CRP), more frequent lymphocytope-
nia with thrombocytopenia, and higher myocardial injury
markers including troponin I, BNP (B-type natriuretic pep-
tide), and coagulopathy (D-dimers), than typical KD.35 The
immunological characteristics of MIS-C are similar to those
of KD, including elevated IL-6 and CXCL-10 levels, which
contribute to most cytokine storms.36 However, signifi-
cantly elevated IL-17 A was only observed in KD but not MIS-
C.36
SARS-CoV-2 infection may be associated with
the development of systemic autoimmune
disease

Recent studies have revealed that autoantibodies may
contribute to the immunopathology of SARS-CoV-2 infec-
tion. In a Greek study, a high percentage (68.7%) of COVID-
19 patients admitted to the intensive care unit without
previous systemic autoimmune disease had systemic auto-
antibodies, including antinuclear antibodies (34.5%), anti-
neutrophil cytoplasmic antibodies (13%), anti-cardiolipin
(aCL, 24%), and antibodies against b2-glycoprotein I (anti-
b2-GPI, 34.5%).37 This observation suggests a link between
SARS-CoV-2 infection and autoimmune activation. Several
possible mechanisms have been proposed, including mo-
lecular mimicry, epitope spreading, and bystander activa-
tion of autoreactive T or B cells, which may contribute to
this autoimmune reactivity.38
Current medications for COVID-19 treatment

Hydroxychloroquine and chloroquine

Hydroxychloroquine (HCQ) and chloroquine (CQ) are anti-
malarial drugs successfully applied to treat parasite and
viral infections; HCQ has also been used as an antirheu-
matic agent for systemic lupus erythematosus and rheu-
matoid arthritis.39 HCQ and CQ inhibit viral infection by
altering the glycosylation of ACE2 receptors, which are
used as SARS-CoV inhibitors. However, there is no consis-
tent clinical evidence to support HCQ and CQ as standard
treatments for COVID-19. The use of HCQ and CQ for SARS-
CoV-2 therapy should be considered carefully due to lethal
adverse effects such as cardiotoxicity and QTc interval
prolongation.39
Dexamethasone

Dexamethasone is a corticosteroid with anti-inflammatory
and immunosuppressant activity; its anti-inflammatory ef-
fect may reduce the collection of exudates in lung alveoli
to prevent alveolar damage and inhibit acute respiratory
distress. Currently, there are no available clinical trials of
dexamethasone for the treatment of SARS-CoV-2 infection.
However, there is evidence that the use of dexamethasone
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may significantly decrease the mortality rate in critical
COVID-19 patients on mechanical ventilation.40

Remdesivir

Remdesivir is a nucleoside analog used as the substrate of
viral RNA-dependent enzyme RNA polymerase to inhibit
viral RNA production. In the past, remdesivir was suc-
cessfully used to treat coronaviral infections, including
endemic human-CoVs, SARS-CoV, and MERS-CoV. Some
clinical trials have shown that remdesivir reduces symp-
toms and mortality rates in severe COVID-19 patients.39,41

However, a recent randomized, placebo-controlled trial
revealed that remdesivir had no clinical benefits in severe
COVID-19 patients.42 Although the efficacy and safety of
remdesivir still need to be validated, remdesivir is a
promising drug for treating severe COVID-19 patients
requiring mechanical ventilation and extracorporeal
membrane oxygenation (ECMO).43 Therefore, remdesivir
is currently the only drug approved by the United States
Food and Drug Administration (US-FDA) to treat hospital-
ized COVID-19 patients.

Lopinavir/ritonavir

Lopinavir and ritonavir are antiretroviral protease inhibitors
used in the treatment of HIV and are considered candidates
for the treatment of COVID-19. In one clinical trial, the
combination of lopinavir and ritonavir had no effects on
clinical improvement or mortality rates. Furthermore,
serious adverse effects, including respiratory failure, acute
kidney injury, and secondary infection, were observed in
the group treated with lopinavir and ritonavir.44 So far,
there have been only limited clinical trials to support
the efficacy of lopinavir and ritonavir against COVID-19
infections.

Favipiravir

Favipiravir, a purine nucleic acid analog that inhibits viral
RNA replication by binding to RNA-dependent RNA poly-
merase (RdRp), is used to treat influenza and several other
RNA viruses.41 Currently, there are limited clinical trials of
favipiravir in the treatment of SARS-CoV-2 infection, but
some encouraging results with higher survival rates and
shortened durations of symptoms were observed in limited
clinical trials.45

Tocilizumab

As IL-6 induced cytokine storms play important roles in
both innate and adaptive immune responses and inflam-
matory diseases, tocilizumab (a human recombinant IL-6
receptor antibody) has been used for rheumatoid
arthritis, multiple myeloma, and life-threatening cytokine
storms.41 In two retrospective clinical trials, the use of
tocilizumab in severe COVID-19 patients reduced the risk
of invasive mechanical ventilation and the mortality
rate.46,47
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Barcitinib

JAK pathway plays an important role in IFN-stimulated gene
expression and promotes IFN-I production in acute viral
infection.13 Barcitinib is a selective Janus kinase (JAK) in-
hibitor currently used to treat rheumatoid arthritis.41 Bar-
citinib may reduce the severity of SARS-CoV-2 infections via
inhibiting viral endocytosis and proinflammatory cytokine
release.41 In a retrospective study, barcitinib showed sig-
nificance in reducing intensive care unit admissions and
mortality rates. Therefore, Barcitinib is considered to be
one of the possible candidates in the treatment of SARS-
CoV-2 infection.48
Risk factors related to severe SARS-CoV-2
infection or a poor prognosis

Recent evidence has revealed that old age, sex, and co-
morbid conditions are important risk factors for severe
infection and a poor prognosis in COVID-19.49 Possible hy-
potheses for age-related vulnerability have been proposed:
1) overexpression of ACE2 receptors and TMPRSS2, 2) pre-
existing immunity due to previous common coronavirus
infection, 3) immunosenescence and inflammaging, and 4)
comorbidities including obesity and diabetes.49 In age-
related immunosenescence, immune function declines,
such as a weakened type 1 IFN response and impaired
CD4þ T and CD8þ T cell development, which may lead to
decreased SARS-CoV-2 clearance and result in high mortality
in the elderly group.13,49 In comparison, in children,
a stronger innate immunity with lower T cell activation,
which means better virus clearance and more frequent viral
infections, including commonly circulating human CoV, may
help in fighting SARS-CoV-2 infections; these findings could
explain why children generally have milder symptoms than
elderly adults.49 Male sex is another risk factor for SARS-CoV-
2 infections; due to the stronger type I IFN response in virus
clearance, women have higher survival rates than men.13

A recent systemic review revealed that a delayed anti-
body response and seroconversion are correlated with dis-
ease severity in SARS-CoV-2 and MERS-CoV; slower antibody
responses and lower seroconversion rates are found in se-
vere cases.34 The antibody-dependent enhancement effect
is a phenomenon in which the binding of nonneutralizing
antibodies to viruses can enhance viral invasion into spe-
cific cells and promote further viral infection. The combi-
nation of virus surface proteins and antibodies can promote
FcgR-related endocytosis in phagocytic cells, leading to
enhanced viral infection. In previous research on SARS-CoV
and MERS-CoV, ADEs promoted infections and affected the
treatment results of vaccination, especially in MERS-CoV
patients.34 Potential ADEs may also exist in SARS-CoV-2
due to the similarities between these coronaviruses.
Thus, ADE has been considered as the potential mechanisms
resulting in severe SARS-CoV-2 infection.13 However, there
is limited clinical evidence to clarify the role of ADEs in
SARS-CoV-2 infection.

Vaccine-associated hypersensitivity reaction (VAH) is
another important vaccine-related issue due to several



Figure 1. Summary of the immunologic map in MERS-CoV, SARS-CoV, and SARS-CoV-2 infections. A: MERS-CoV, SARS-CoV, and
SARS-CoV-2 invade human cells via different cell surface receptors. SARS-CoV and SARS-CoV-2 invade via angiotensin-converting
enzyme 2 (ACE2), and MERS-CoV invades via dipeptidyl peptidase 4 (DPP4). B: The viral influences of MERS-CoV, SARS-CoV, and
SARS-CoV-2 on immune cells and cytokines. The upward arrow means increased level and the downward arrow means decreased
level. The length of each color bar is correlated with the influence degree of each infection. C: The viral influences of MERS-CoV,
SARS-CoV, and SARS-CoV-2 on organ system. The length of each color bar is correlated with the influence degree of each infection.
D: The mortality rate of MERS-CoV, SARS-CoV, and SARS-CoV-2 infection (SARS-CoV-2 mortality rate data were obtained at the world
health organization website on March 15, 2021).
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reports of hypersensitivity reactions after COVID-19 vaccine
injection. Due to the rarity of allergic reactions, including
anaphylaxis, the European Academy of Allergy and Clinical
Immunology (EAACI) statement suggested that vaccinations
are contraindicated only when there is an allergy to one of
the vaccine components or if there was a severe allergic
reaction to the first dose.50

Precision medicine and artificial intelligence
by immunological mapping in SARS-CoV-2
infection

Based on our data regarding severe COVID-19 cases, poor
prognostic factors of immune cell changes may be related
to leukocytosis, neutrophilia, lymphopenia (both CD4 and
CD8 T cells), and an increased NLR. In addition, elevated
proinflammatory cytokines (IL-6 and TNF-a), Th1 cytokines
(IL-2 and IFN-g), regulatory T cell cytokines (IL-10), and
Th17 cytokines (IL-17) may also be considered as predictors
of a poor outcome. Patients needing ICU care had elevated
plasma levels of many innate cytokines, such as IP-10,
554
MCP-1, MIP-1A, and TNF-a. These clinical features sug-
gested the likelihood of the involvement of highly proin-
flammatory conditions in both disease progression and
severity. Due to the hyperinflammatory status in SARS-CoV-
2 infection, immunosuppressing agents such as anakinra
(anti- IL-1) or tocilizumab (anti- IL-6) may be taken into
consideration. A summary of the immunological maps of
MERS-CoV, SARS-CoV and SARS-CoV-2 infections is shown in
Fig. 1.

Novel biologic agents that target specific and critical
pathophysiological pathways have been developed to
better manage these severe patients by targeting the key
cytokines of cytokine storms in severe COVID-19 cases.
With biologics, defining biomarkers would facilitate the
selection of patients with severe COVID-19 cases that
would likely respond therapeutically. Artificial intelli-
gence (AI) is necessary to help select and identify
important cytokines in severe or fatal COVID-19 cases.
Once AI establishes the immunological map of severe
COVID-19, the use of AIs to select effective biologics for
immunological precision medicine could rapidly enter
clinical use.
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Impact statements

This study summarized a brief comparison of SARS-CoV-2,
SARS-CoV, and MERS-CoV infections regarding immunolog-
ical changes. The immunological map offers the basis for
immunological precision medicine in SARS-CoV-2 infection.
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