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Novel human immunomodulatory T cell receptors and their
double-edged potential in autoimmunity, cardiovascular
disease and cancer
Pilar Martín 1,2, Rafael Blanco-Domínguez1 and Raquel Sánchez-Díaz1,2

In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in
treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and
cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used
immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions
in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other
receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and
cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal
antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and
immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will
be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of
these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also
autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular
diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
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INTRODUCTION
Targeting immunomodulatory T cell receptors has emerged as a
successful approach to manipulate the immune system, generat-
ing spectacular outcomes in certain diseases, such as cancer.
Advances in the knowledge on the mechanisms by which tumors
affect the balance between effector and regulatory T cells have
revealed new therapeutic strategies for the treatment of
autoimmune diseases1 and are also very promising for cardio-
vascular diseases.2 In this review article, we focus on receptors
with the main function of triggering immunosuppressive signal-
ing pathways in T cells, mainly programmed cell death protein
(PD1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4),
B- and T-lymphocyte attenuator (BTLA), Lymphocyte-activation
gene 3 (LAG-3), T cell immunoglobulin and mucin domain-
containing protein 3 (TIM-3), T cell immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif [ITIM] domain
(TIGIT), 2B4 (CD244), and V-domain Ig suppressor of T cell
activation (VISTA), all of which belong to the immunoglobulin (Ig)
superfamily;3 CD5, a scavenger-receptor cysteine-rich (SRCR)
superfamily receptor; and CD69, a C-type lectin with a role as
an immunomodulatory T cell receptor that has been demon-
strated in recent years.4 We summarize the main characteristics of
each of the above immunomodulatory T cell receptors, their
expression in different T cell subsets, the mechanism of

suppression, or negative regulation of T cell activation and
associated positive and negative repercussions in the contexts of
human autoimmunity, cardiovascular disease, and cancer
(Table 1). Moreover, we also discuss the role of the new
generation of targeted immunotherapies (immune checkpoint
inhibitors, ICIs) in cancer and how checkpoint inhibition is also
being adapted to treat autoimmune diseases.1

OVERVIEW OF THE IMMUNOMODULATORY RECEPTORS
EXPRESSED BY T CELLS
PD1, CTLA-4, and BTLA belong to the CD28 Ig superfamily and
share similar protein structures.5 PD-1 (CD279) is expressed by all
T cells during activation, B cells, natural killer, and myeloid cells.6

PD-L1 and PD-L2 are known ligands of PD-1 expressed by T, B, and
antigen-presenting cells. The binding of PD-1 to PD-L1
induces resistance to activation by positive signals from the T
cell receptor (TCR) and CD28 in conventional T cells.6 CTLA-4
(CD165) is expressed on activated CD4+ T cells and competitively
binds B7.1 and B7.2, acting as a coinhibitory signal to down-
regulate early T cell activation and proliferation.7 Constitutive
CTLA-4 expression on regulatory T (Treg) cells enhances their
regulatory function through suppression of antigen-presenting
cells.8 BTLA (CD272) is expressed in single-positive thymocytes,
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mature T cells, B cells, macrophages, and dendritic cells. BTLA
maintains T cell immune tolerance9, and the binding of BTLA to
its ligand, herpes virus entry mediator, prevents excessive
activation of T cells.10

LAG-3 is a transmembrane protein homolog to the CD4
coreceptor that binds to major histocompatibility complex (MHC)
class II with high affinity.11 LAG-3 (CD223) is expressed in
activated CD4+ T cells, Treg cells, Tr1 cells, activated CD8+ T cells,
natural killer cells, dendritic cells, B cells, and exhausted effector
T cells.12 The interaction of LAG-3 with MHC II leads to decreased
proliferation and cytokine secretion by antigen-specific CD4+ T
cell clones.11 T cell immunoglobulin and mucin domain 3 is a
transmembrane protein belonging to the Ig superfamily that is
expressed in CD4 helper 1 (Th1) cells, CD8 T cytotoxic 1 (Tc1)
cells, Treg cells, dendritic cells, natural killer cells, monocytes,
macrophages, and mast cells. Galectin-9, the first reported Tim-3
ligand, was shown to induce apoptosis in Th1 cells,13 and
carcinoembryonic antigen cell adhesion molecule 1 forms a
heterodimer with Tim-3 to mediate T cell inhibition and
exhaustion.14 TIGIT is a coinhibitory transmembrane protein
expressed by regulatory and memory CD4+ T cells, CD8+ T cells,
and natural killer cells. The poliovirus receptor (CD155) shared
with CD226, poliovirus receptor-related 2 (CD112, also known as
Nectin-2), and Nectin4 are the ligands for TIGIT and deliver
stimulatory signals.15,16 TIGIT also blocks T cell activation,
proliferation, and maturation by targeting downstream TCR
signaling pathways.17 The signaling lymphocyte activation
molecule 2B4/CD244 is a CD2-related receptor expressed in
antigen-experienced CD8+ αβ T cells, natural killer cells, dendritic
cells, and myeloid-derived suppressor cells (MDSCs).18 The
engagement of 2B4 by its receptor, CD48, contributes to CD8+

T cell exhaustion and cell function inhibition.19 VISTA is
expressed in T cells, natural killer cells, and myeloid cells.20

VISTA is a member of the B7 family, and although the receptor
shares homology with members of the CD28 family, the gene is
located on a different chromosome. VISTA can act as both a
ligand and a receptor in regulating CD4+ and CD8+ T cell
proliferation and cytokine production.21

The T cell receptor-inhibiting molecule CD5, also known as Leu-
1 in humans, is a transmembrane glycoprotein that belongs to the
highly conserved SRCR.22 CD5 is constitutively expressed on
lymphocyte precursors, mature T cells, and B1a cells and is
associated with both TCR/CD3 and B cell receptor.23 The known
ligands for CD5 are CD5L, CD72, and CD5 itself, but little is known
about their physiological functions. CD5 clusters with the TCRζ/
CD3-pMHC complex and inhibits signaling through immunological
synapses in thymocytes and peripheral T cells.24,25

Last but not least, the early leukocyte activation antigen CD69
is a type II C-lectin membrane receptor26 that belongs to a family
of immunomodulatory receptors involved in the immune
response, the NK complex.4 CD69 is expressed early after cell
activation in all hematopoietic cells except erythrocytes27 and
has emerged as a new immunoregulatory receptor expressed by
T cells in the last decade.28 Additionally, a number of ligands for
CD69 with the ability to modulate T cell responses through
different pathways and triggers have been identified recently.
Galectin-1 (Gal-1) binds to CD69, inhibiting naive and helper T
cell activation and differentiation,29,30 and interaction with the
S100A8/S100A9 complex is required for the differentiation of
regulatory T cells.31 Oxidized low-density lipoprotein (OxLDL) has
been shown to bind specifically to CD69+ human T lymphocytes,
enhancing Treg cell differentiation and inhibiting Th17 cells.32

Interestingly, the CD69 cluster with the aromatic amino acid-
transporter complex LAT-1-CD98 in γδ T cells regulates
L-tryptophan transport and cytokine secretion in these cells.33

The immunomodulatory T cell receptors, their ligands, and the
cellular functions triggered by signaling through each receptor
are summarized in Fig. 1.

OPPORTUNITIES RELATED TO IMMUNOMODULATORY T CELL
RECEPTORS IN HUMAN AUTOIMMUNE DISEASES
Autoimmune diseases are the consequence of deterioration or
loss of self-tolerance resulting from defects in the thymic
elimination of potentially self-reactive T cells (central tolerance)
or in the control mechanisms of potentially self-reactive T cells in
the periphery (peripheral tolerance). The nature of autoimmune
diseases is multifactorial since the mechanisms that trigger these
conditions can be genetic, epigenetic, molecular, and/or cellular in
origin. However, the generation of pathogenic inflammatory
responses in peripheral tissues upon activation of autoantigen-
specific T cells is a common denominator in all autoimmune
diseases.34 T cells with a potentially autoreactive TCR escape
thymic selection, and powerful mechanisms are required to
control these autoreactive T cells and maintain peripheral
tolerance.34 Therefore, approaches targeting immunomodulatory
T cell receptors have emerged in recent years as therapeutic
opportunities to restore tolerance in autoimmune diseases
(Table 1).

Systemic lupus erythematosus (SLE)
The immunomodulatory receptors PD-1, CTLA-4, and BTLA play
nonredundant roles in the modulation of central tolerance during
the thymocyte selection process and in maintaining peripheral
tolerance. We analyzed the performance of these receptors in the
development of SLE since patients with this autoimmune disease
display abnormal levels of these receptors in T cells with a
characteristic hyperactive phenotype. PD-1 has a pivotal role in
the negative regulation of positive TCR-α/β thymocyte selection
by affecting the threshold of pre-TCR/CD3 complex downstream
signaling.35,36 In addition, PD-1 gene ablation in mice with the
additional lpr/lpr mutation also results in the development of
lupus-like glomerulonephritis and destructive arthritis with age,37

which indicates the involvement of this immunomodulatory
receptor in the maintenance of peripheral self-tolerance. Different
animal models demonstrate that PD-1 expression can be tuned
finely with anti-PD-1 monoclonal antibodies (mAbs) to preserve
the number of Foxp3+ T cells or reduce the number of CD4+PD-1+

T cells and alleviate lupus-like nephritis.38,39 However, a comple-
tely opposite effect was observed with anti-PD-1 mAb therapy in
experimental autoimmune encephalomyelitis and NOD diabetes
animal models.40,41 The discovery that the PD-1 pathway
modulates T follicular helper cell-mediated humoral immunity
by negatively regulating T follicular regulatory (Tfr) cells42

indicates that PD-1 blockade may preferentially influence the Tfr
cell function controlling the development of lupus, reconciling
previous contradictory results. In patients with SLE, it has been
reported that PD-1 expression levels in CD4+ T cells are very low43

and the frequency of PD-1+ cells is greatly decreased. It was found
that patients with the PD-1.3 A/G allele have significantly lower
expression of PD-1 in CD4+ T cells than other patients. Although
PD-1 expression is higher in CD25+ Tregs than in effector T cells,
PD-1 expression is significantly lower in SLE patients than in
healthy subjects, which leads to functional and numerical
reductions in Tregs in SLE patients. This was confirmed in another
study in which PD-1 was found to be highly induced in
CD4+CD25+ and CD4+CD69+ T cells from healthy controls but
not in those from patients with SLE.44 A recent study found
elevated levels of coinhibitory IgG autoantibodies against PD-1 in
the serum of new-onset SLE patients that were associated with
SLE Disease Activity Index (SLEDAI) scores, revealing a new
pathway of PD-1 modulation.45 In contrast, a pilot study with a
small number of patients showed that PD-1 expression levels in
peripheral blood mononuclear cells (PBMCs) were significantly
increased in SLE patients and associated with SLEDAI scores,
suggesting that PD-1 inhibitors are useful tools in the treatment of
SLE.46 In summary, these data indicate that both the regulation
and aberrant expression of PD-1 play key roles in the regulation of
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this autoimmune disease. However, the clinical efficacy of
manipulating this pathway requires more basic research and
clinical studies. In this regard, an ongoing clinical trial (Clinical-
Trials.gov Identifier: NCT03816345) is now testing the efficacy of
an anti-PD1 mAb (nivolumab) in SLE and several other auto-
immune diseases (Chron’s disease, inflammatory bowel disease,
multiple sclerosis, rheumatoid arthritis (RA), ulcerative colitis, etc.).
CTLA-4-deficient mice develop lethal lymphoproliferative syn-

drome and autoimmunity,47,48 as well as a rapid and severe lupus-
like autoimmune syndrome.49 These mice exhibit global T cell
dysregulation promoting systemic humoral autoimmunity that
triggers lupus-like autoimmunity.49 The relevance of the CTLA
gene in the susceptibility to SLE is supported by evidence from
different human populations with different polymorphisms.50–52

Interestingly, SLE patients display increased expression of CTLA in
isolated responder T cells (Foxp3−) compared to healthy controls
and patients with other autoimmune rheumatic diseases (RA or
psoriatic arthritis).53 However, these T cells exhibit defective
inhibition of T cell activation by CTLA-4 after CD3/CD28
costimulation. CTLA-4 receptors are displaced from membrane
microdomains in SLE patients and are unable to regulate the
intracellular signaling molecules triggered by T cell activation.53

Therefore, the receptor CTLA-4 in responding T cells could be a
possible target to restore the function of T cells in patients with
SLE, and there is in vitro evidence that soluble CTLA-4 from lupus
patient PBMCs regulates effector responses.54 The administration
of abatacept, a fusion protein comprising CTLA-4 linked to the Fc
portion of IgG1, has been tested clinically in several autoimmune
diseases. Abatacept has also been tested in different clinical trials
as a therapy for SLE55 and lupus nephritis56 patients in
randomized studies and, although it showed evidence of

biological activity, it did not meet the endpoint criteria of
achieving a complete response during treatment.56

BTLA expression in effector T cells is associated with SLEDAI
scores.57,58 Lupus patients have a defect in the upregulation of
BTLA expression upon activation of CD4+ T cells in comparison
with healthy controls.58 BTLA is recruited to the immunological
synapse and acts as an inhibitory receptor that negatively
regulates the immune response; this function is defective in SLE
patients but can be corrected by restoring intracellular trafficking
and lipid metabolism in lupus CD4+ T cells.58 This gives BTLA
characteristics similar to those of CTLA-4 and PD-1, and human
anti-BTLA antibodies have been developed;59,60 however, the
potential of BTLA as a possible target in autoimmune diseases has
not yet been tested.
CD69-deficient mice are healthy and do not present an

autoimmune phenotype,61 although the expression of this
receptor in Treg cells is necessary for the development of natural
Treg cells in the thymus62 and their suppressive activity in
inflammatory conditions,63 indicating that the immunomodula-
tory receptor CD69 plays a pivotal role in the maintenance of
central and peripheral tolerance.4,26 CD69 expression in Tregs
negatively regulates the production of proinflammatory cytokines
and is necessary for the suppressive function of these cells in
mouse models of autoimmune colitis.64,65 CD4+CD69+ cell
numbers are increased in lupus-prone (NZBxNZW)F1 mice and
pristine-induced SLE mice, and these cells regulate cytokine
production by effector T cells.66,67 SLE patients also present an
increased CD69/CD3 ratio in PMBCs compared to healthy controls,
which correlates with SLEDAI scores,68,69 and increased levels of
CD4+CD69+TGF-β+IL-10+Foxp3− Treg cells.70–72 The CD69+ Treg
cell population appears to be increased in a number of

Fig. 1 Membrane receptors with immunomodulatory activity in T cells and their ligands. T cell responses are controlled by multiple inhibitory
signals to prevent excessive inflammation that can occasionally cause more damage than repair. T cells express a battery of different receptors
with immunomodulatory capacity in the membrane, such as LAG-3, VISTA, TIGIT, 2B4, TIM-3, CEACAM-1, BTLA, PD-1, CTLA-4, CD5, and CD69,
which can interact with either soluble ligands or membrane proteins expressed by antigen-presenting cells (APCs), inflammatory cells, tumor
cells, or damaged cells. Ligand–receptor interactions induce inhibitory signals in the T cell and sometimes also in the target cell to control
inflammation, and the effects include decreasing proliferation, differentiation, activation, cytokine production and cell function and
promoting apoptosis, T cell exhaustion and tolerance. LAG-3 Lymphocyte-activation Gene 3, MHC II major histocompatibility complex class II,
Gal-3 Galectin-3, VISTA V-domain immunoglobulin suppressor of T cell activation, TIGIT T cell immunoreceptor with immunoglobulin and ITIM
domains, PVR poliovirus receptor, Tim-3 T cell immunoglobulin and mucin domain 3, CEACAM-1 carcinoembryonic antigen cell adhesion
molecule 1, Gal-9 Galectin-9, HMGB1 high-mobility group box 1, BTLA B- and T-lymphocyte attenuator, HVEM herpes virus entry mediator, PD-
1 programmed cell death protein, PD-L1/PD-L2 PD-1 ligand 1/PD-1 ligand 2, CTLA-4 cytotoxic T-lymphocyte-associated protein-4, Gal-1
Galectin 1, CD5L CD5 antigen-like, OxLDL oxidized low-density lipoprotein
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autoimmune and inflammatory disorders.73–75 However, although
increased in number, CD69+TGF-β+ Foxp3− Treg cells from SLE
patients are not able to inhibit the release of cytokines by
autologous lymphocytes, indicating that they do not contribute to
the regulation of autoimmunity in these patients.70 Moreover, SLE
patients who do not respond to immunosuppressive therapy have
significantly higher levels of P-glycoprotein (P-gp)+CD69+CD4+

cells in the blood and renal tissue than responsive patients. P-gp
expression in lymphocytes plays a role in the active efflux of
intracellular drugs, and the high proportion of P-gp+CD69+CD4+

cells in nonresponsive SLE patients is suggestive of corticosteroid
resistance and renal damage.76 Therefore, CD69 plays a role in
regulating the secretion of cytokines and could be a potential
target to control SLE in patients refractory to immunosuppressive
therapy. Clinical trials need to be conducted to underscore the real
value of this molecule as a therapeutic target.

Autoimmune diabetes
The PD-1-PD-L1 interaction has central roles in regulating the
initiation and progression of autoimmune diabetes in nonobese
diabetic (NOD) mice. PD-1 blockade rapidly precipitates diabetes
in prediabetic NOD mice,41 while overexpression of PD-L1 in
pancreatic beta cells prevents diabetes in these animals.77,78 PD-1
expression is downregulated specifically in CD8+ T cells from type
2 diabetes (T2D) patients,79 suggesting that immunomodulatory
receptors have a role in the development of T2D. Moreover, PD-L1
is expressed in beta cells from type 1 diabetes (T1D) mellitus
patients, possibly to attenuate the autoimmune response
mediated by type I and II interferons through IRF1.80,81 Along
with animal evidence, these data provide the rationale for
developing new therapies to target this costimulatory pathway
in this disease without eliminating the protective role of the PD-
1–PD-L1 pathway.
In contrast, CTLA blockade only negatively regulates auto-

immune diabetes in neonatal NOD mice,40 and CTLA-4 Ig or anti-
B7-2 mAb treatment was shown to reduce the incidence of
diabetes in young mice, whereas treatment with any of these
reagents had no effect on disease progression in older mice.82

Targeting the BTLA pathway in NOD mice with an mAb that
selectively depletes pathogenic helper CD4+ T cells increases the
proportion of Treg cells and protects against spontaneous disease
onset in NOD mice.83 Adoptive transfer of OVA-specific CD8+

T cells isolated from BTLA-deficient mice into RIP-mOVA-recipient
mice (expressing membrane-bound OVA in pancreatic beta cells)
induces diabetes.9 Moreover, BTLA limits γδ T cell numbers and
sustains normal γδ T cell subset frequencies by restricting
interleukin-7 (IL-7) responsiveness and CD27−RORγt+ population
expansion.84 γδ T cells have been implicated in the development
of diabetes; however, the putative role of BTLA targeting in clinical
autoimmune diabetes treatment has not been addressed. LAG-3-
deficient NOD mice exhibit accelerated autoimmune diabetes
development mediated by expansion of pathogenic T cell clones
in the islets, which are normally restrained by LAG-3.85 However,
the onset of diabetes is accelerated even more in animals doubly
deficient in LAG-3 and PD-1, which also develop other auto-
immune diseases, such as myocarditis.86 More recently, LAG-3 has
been shown to act by limiting the function and proliferation of
Tregs due to enhanced IL-2–Stat5 signaling pathway and Eos
expression.87 TIGIT is a repressor of the CD226-activating pathway
that functions by binding the common ligand CD155. This
costimulatory axis has also been postulated to be a therapeutic
target for the treatment of T1D, as targeting TIGIT would control
the suppressive function of Tregs.88

Finally, the expression of CD69 has been associated with the
development of T2D complicated by coronary artery disease in
patients.89 Although whether there is a causal relationship is
unknown, CD69 could exert its function through the regulation of
the hypoxia-inducible factor short isoform I.1.90

Rheumatoid arthritis
T cells play a central role in the pathogenesis of RA; however, the
first attempts to target T cells for therapeutic purposes produced a
high risk of infection. Thus, the immunomodulatory receptors on
T cells have been explored as better targets for the treatment of
this often progressive and destructive chronic joint disease. CTLA-
4 deficiency affects both central tolerance and peripheral
tolerance as well as Treg-mediated suppression. Mice deficient
in CTLA-4 develop severe collagen-induced arthritis,91 and
patients with CTLA-4 mutations show expansion of Treg cells,
which leads to subsequent inflammation and autoimmunity
probably through the production of organ-specific autoantibo-
dies.92,93 The therapeutic agent abatacept (CTLA-4-Ig) has shown
efficacy in a broad spectrum of RA patients from early-stage
disease to refractory disease resistant to tumor necrosis factor-α
(TNF-α) blockers.94 Abatacept treatment results in significant
improvement in the signs and symptoms of RA95 and in patients
with juvenile idiopathic arthritis who did not respond to
traditional TNF blockers.96 Treatment with belatacept, an alter-
native human CTLA-4 Ig, in a phase I/II clinical trial evaluating
multiple doses revealed the preliminary efficacy of this drug in the
treatment of RA.97

BTLA polymorphism is associated with susceptibility to RA,98

and the expression of BTLA is decreased in T cells from patients
with RA.99 LAG-3+ Treg cells have been associated with the
development of RA, and their frequency is lower in patients with
RA than in healthy individuals.100 Moreover, LAG-3+Foxp3− Tregs
are highly effective in relieving joint severity and local and
systemic inflammation.101 TIM-3 is associated with RA disease
activity102 and involved in the immune dysregulation mediated by
TNF-α, IL-17, and interferon-γ (IFN-γ) in this disease;103 thus, TIM-3
may play an important role in the pathogenesis of RA. TIGIT
overexpression in vivo improves the severity of RA by decreasing
the production of IFN-γ and IL-17, increasing IL-10 cytokine levels
and removing anti-collagen II antibodies.104 CD4+CD28− T cells
from RA patients overexpress 2B4 together with CD226 and
CRACC, suggesting that these receptors could modulate this
disease.105 The roles of VISTA and CD5 in RA have been studied,
and the relevant expression of these molecules in the pathology
of RA relies on macrophages106 and B cells,107 respectively.
Signaling by these receptors begins in the innate phase of
inflammation, and their roles in T cells during RA need to be
explored further. The above data suggest that these immunomo-
dulatory receptors could have therapeutic roles in the develop-
ment of RA, although at the moment, there are no data on their
clinical effectiveness.
CD69-deficient mice show no overt signs of autoimmunity,97

although they are more susceptible to asthma,63 contact
dermatitis,108 myocarditis,109 colitis,64 and RA110 than wild-type
mice due to exacerbated Th1 and Th17 responses. The role of
CD69 was first described in the synovial fluid T cells of RA
patients;111 these T cells fail to express CD25 or produce IL-2, and
consequently, they are not able to proliferate properly. Moreover,
CD69 expression by synovial T cells in RA patients correlates with
disease activity.112 CD69-deficient mice show a higher incidence
and severity of collagen-induced arthritis (CIA), with exacerbated T
and B cell responses, than wild-type mice.110 These mice also
show reductions in the levels of tumor growth factor-β1 (TGF-β1)
and TGF-β2, which are protective cytokines in CIA, in inflammatory
foci and parallel increases in the levels of proinflammatory
cytokines, such as RANTES and IL-1β, leading to increased joint
inflammation and cartilage and bone erosion. The immunomo-
dulatory receptor CD69 expressed by T cells regulates the immune
response through control of TGF-β production26 and regulates the
differentiation and activation of Treg and Th17 cells through
control of the Stat5/miR-155/SOCS1 (ref. 62) and Jak3–Stat5
pathways,28 respectively. CD69 is also a hallmark of tissue-
resident memory T cells, together with CD103 and CD49a, with
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direct implications on this pathology and autoimmune diseases in
general.113 However, the potential of this receptor as a possible
therapeutic tool in RA has not been explored in the clinic.4 The
potential roles of T cell immunoreceptors and their involvement in
autoimmune pathologies are outlined in Fig. 2.
The efficacy of these immunomodulatory receptors in modulat-

ing autoimmune diseases is experimentally associated with certain
changes in immune markers, which can be exploited as
biomarkers. Some of the receptors mentioned above may indicate
the immune process that is taking place due to different
treatments. In the next few years, more research will be needed
to decipher whether these receptors should be exploited not only
to predict the efficiency of treatments and identify autoimmune
patients that could possibly benefit from the treatments but also
to predict possible adverse effects of treatments.

IMMUNOMODULATORY T CELL RECEPTORS IN
CARDIOVASCULAR DISEASE
Increasing numbers of clinical trials have been conducted in
patients with acute myocardial infarction (MI) and heart failure,
such as cardiomyopathy and myocarditis, using a variety of cell
types, including bone marrow stem cells, mesenchymal stem cells,
and cardiac resident stem cells. However, none of these preclinical
trials or studies have yielded clear results in terms of regeneration
of cardiac tissue. In this scenario, immunomodulation has gained
interest for its use not only as an adjuvant in cellular therapies but
also as cardioprotective therapy in different cardiovascular
diseases. T cell responses are important in the onset, progression,
and resolution of acute myocardial events and chronic heart
failure.114 Here, we review the roles of immunomodulatory T cell
receptors in different cardiovascular diseases, including athero-
sclerosis as the trigger of MI.

Immunomodulation in atherosclerosis treatment
T lymphocytes are present during all stages of development in
human atherosclerotic lesions,115 although their role in the
disease has been controversial for decades. Increasing evidence
demonstrates the modulatory role of the immune system in
experimental and clinical arteriosclerosis. The most recent and
definitive evidence comes from the CANTOS (Canakinumab
Antiinflammatory Thrombosis Outcome Study) clinical trial in
which anti-inflammatory treatment was found to be associated
with reduced cardiovascular risk.116 These works provide strong
evidence that immunomodulatory therapies have therapeutic
potential in the development and management of clinical
atherosclerosis and other chronic inflammatory conditions. Even
statins have been seen to regulate certain immune molecules,
such as modulating MHC II through arterial cells and restraining T
cell responses117 through IFN-gamma.118 T cell-mediated immu-
nity plays a significant role in atherosclerosis development.119 The
role of CD4+ T cells is quite complex; Th1 cells have a
proatherogenic role, while Treg cells protect against disease
development. However, the roles of Th2, Th17, and follicular
helper T cells are still controversial. CD8+ T cells have pleiotropic
effects on the development of atherosclerosis; they can induce an
inflammatory response via inflammatory cytokines, and cytotoxic
activity towards endothelial cells increases the progression of
atheroma plaques, whereas the same cytotoxic activity towards
macrophages and regulatory CD8+ T cell subsets can inhibit
inflammatory responses and atherosclerosis progression.120 Inter-
estingly, CD8+ T cell function is regulated by the PD-1 and Tim-3
signaling pathways in atherosclerosis.121 In humans, the CD8+PD-
1+Tim3+ T cell subset, which is enriched in central memory T cells,
is abundant in patients with atherosclerosis presenting with
increased antiatherogenic cytokine production and decreased
proatherogenic cytokine production. In patients with acute

coronary syndrome, the expression of PD-1 and PD-L1 on
circulating T cells is very low.122,123 Blockade of CD8+PD-
1+Tim3+ T cells increases TNFα and IFNγ production. Ab-
mediated inhibition of TIM-3 was shown to aggravate athero-
sclerosis by limiting efferocytosis and T cell responses in mice.124

In parallel, pretreatment of apolipoprotein-deficient (apoE−/−)
mice with CTLA-4-IgG can reverse disease acceleration, blocking
the signaling pathway in T cells and T cell activation,125 whereas
CTLA-4-blocking antibodies strongly increase atherosclerotic
lesion numbers,126 and the overexpression of transgenic CTLA-4
in apoE−/− mice enhances Treg-mediated suppression and
prevents atherosclerosis development.127 Together, these studies
demonstrate that CTLA-4 limits plaque development by inducing
anti-inflammatory T cell responses, positioning CTLA-4 as a
promising target in atherosclerosis.
The lipoprotein scavenger receptor BI (SCARB1) rs10846744

noncoding variant has been associated with atherosclerosis,
independent of traditional cardiovascular risk factors, and with
LAG3. A novel study proposed plasma LAG3 as an independent
predictor of HDL-C levels and coronary heart disease risk.128

BTLA was recently described to be mostly expressed on B cells
in patients with cardiovascular disease and in follicular B2 cells in
Ldlr−/− mice fed a high-fat diet. However, the use of an agonistic
anti-BTLA antibody was shown to inhibit atherosclerosis develop-
ment in an animal model with significant increases in regulatory B
and T cell numbers,129 indicating an immunomodulatory effect
mediated through T cells in atherosclerosis.129 These findings
suggest BTLA as a new promising target for the treatment of
atherosclerosis.
Treatment with agonistic anti-TIGIT antibodies inhibits CD4+ T

cell responses, although this treatment does not affect athero-
sclerotic lesions in LDLr−/−mice fed a high-fat diet.130 These data
suggest that myeloid cells can increase their activity by crosstalk
with T cells, negatively influencing disease. Similarly, VISTA is a
receptor and a ligand with immunosuppressive effects on IFNγ
and TNFα in both T cells and macrophages,131 which adopt an
anti-inflammatory M2 phenotype that can also play a role in
atherosclerosis development.132

Although CD5 is expressed in T cells from atherosclerotic
lesions of apoE−/− and ldlr−/− mice,133 the role of CD5
expression in T cells during disease development is unknown.
However, the role of CD69 in atherosclerosis was described
recently.32 An interaction between CD69 and OxLDL was
identified to be responsible for the anti-inflammatory pheno-
type of T cells needed to restrain plaque development. The
binding of OxLDL to CD69 in mouse and human T cells induces
the expression of NR4A1 and NR4A2, members of the NR4A
subfamily of human nuclear receptors involved in regulatory T
cell differentiation.134 CD69 depletion in the lymphoid compart-
ment of ldlr−/− mice results in reduced expression of NR4A1
and NR4A3 in T cells in mice fed a high-fat diet. The inhibition of
these signaling pathways favors the development of Th17 cells,
promoting a proinflammatory environment and accelerating the
development of atheroma plaques.32,135 In addition, the
expression of the CD69 and NR4A1 genes in peripheral blood
cells was studied in a cohort of subjects with exhaustive
characterization of subclinical atherosclerosis belonging to the
Progression of Early Subclinical Atherosclerosis (PESA) study,136

including in healthy and asymptomatic individuals. The data
showed that CD69 and NR4A1 mRNA levels decreased with the
progression of the atheroma plaque, validating the data from
the in vivo model. Analysis of the CD69 receptor in the PBLs of
this cohort showed that the loss of CD69 expression was very
significantly associated with the development of atheroma
plaques, even when this association was corrected for other
cardiovascular risk parameters, such as the levels of OxLDL.
Further studies on the new regulatory OxLDL/CD69 pair in
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human lymphoid cells during atherosclerotic disease progres-
sion will provide novel insights into targeting these pathways
for the prognostic evaluation/treatment of cardiovascular
diseases.

Acute myocardial infarction
MI results from occlusion of the coronary arteries, mainly due to a
thrombus caused by rupture of a lipid atherosclerotic plaque,
which causes ischemia in a region of the heart. Ischemia causes
subsequent cardiomyocyte death and triggers inflammatory and
repair mechanisms. In recent years, multiple studies have high-
lighted the roles of T cells not only in the development of
atherosclerosis but also in the progression after MI, contributing to
cardiac function and remodeling.137 Since immunomodulatory T
cell receptors are also checkpoints in the inflammation underlying
atherosclerosis, ICI therapy may create an increased risk for
atherosclerotic cardiovascular events, such as MI, in cancer
patients.138 Acute cardiovascular manifestations derived from
atherosclerosis appear progressively after several years of
subclinical disease. Although ICI therapy has been implemented
in the clinic for the past decade, it may be too early to have a clear
picture of the effect of ICIs on the incidence of acute MI. However,
in recent cumulative studies, MI has been reported to be a
complication in patients treated with ICIs, with an incidence
ranging from 1 to 3%.139,140 Some studies indicate that MI occurs
less than a year after ICI treatment, suggesting that immunomo-
dulatory therapy can accelerate the progression and instability of
pre-existing atherosclerotic lesions rather than cause de novo
plaque formation.141 An analysis of coronary plaques suggested
that the T cell proportion was higher in ICI-treated patients than in
untreated patients,142 consistent with an exacerbated T cell

response after ICI therapy in the coronary arteries, a possible
trigger of acute events.142

Beyond their roles in atherosclerotic plaque instability and
rupture, some immunomodulatory receptors have been proposed
to be involved in regulatory mechanisms limiting the degree of
inflammation after myocardial ischemic events. Variants of the PD-
1-143 and CTLA-4-encoding genes144 are associated with an
altered risk of MI,145 and proteomic profiling analysis identified
CD5 antigen-like and others as marker proteins associated with
new-onset atherosclerotic cardiovascular disease risk.145 PD-1
expression is upregulated in peripheral leukocytes when they
increase in number during the first hours after MI and then
decrease after reperfusion. In contrast, lower levels of PD-1
expression in T cells are associated with larger infarction
lesions.146

Furthermore, analyses of the peripheral blood phenotype of MI
patients revealed that circulating CD4+ T cells overexpress CD69
(ref. 147) and that regulatory T cells overexpress CTLA-4 early after
MI.148 T cells show evident CD69 expression not only in the
peripheral blood but also in the culprit coronary artery plaque.149

This evidence suggests that anti-inflammatory molecules are
rapidly stimulated after infarction to prevent excessive inflamma-
tion and damage, although little is known about the particular
mechanisms underlying these processes.

Myocarditis and dilated cardiomyopathy
Inflammation of the myocardium, or myocarditis, can be caused
by infectious or noninfectious triggers. Self-reactive CD4+ T cells
are a common feature of different types of myocarditis. These cells
recognize cardiac antigens and increase the inflammatory
response. If inflammation persists, cardiomyocyte death results

Fig. 2 Contributions of inhibitory receptors on T cells to human autoimmune diseases (blue), cardiovascular diseases (red), and cancer
(yellow) in different organs. Signaling through immunomodulatory membrane receptors is pivotal to promoting immune tolerance and
avoiding excess deleterious T cell activation and reactivity. Activation or inhibition of immunomodulatory receptors on T cells may be
beneficial or detrimental, depending on the disease context. In different cancer types, immunotherapy based on the blockade of these
inhibitory receptors leads to increased and relatively long-lasting T cell responses against tumor cells, resulting in efficient tumor clearance.
However, autoimmunity due to self-reactivity, which is related to excessive T cell activation, is the main side effect of cancer immunotherapy.
Additionally, dysfunction of inhibitory receptors on T cells is linked to different autoimmune disorders, such as thyroiditis, vasculitis, hepatitis,
type 1 diabetes, colitis, multiple and systemic sclerosis, optic neuromyelitis, asthma, psoriasis, systemic lupus erythematosus, rheumatoid
arthritis, and osteoarthritis. Favoring signaling through these receptors has emerged as a strategy to restore tolerance in autoimmune
patients. The T cell response is also an important mediator of atherosclerosis and acute and chronic myocardial disease development and
progression. Thus, different immunomodulatory receptors on T cells are therapeutic candidates in cardiovascular diseases. This schematic
summarizes the immunomodulatory T cell receptors (in parentheses) that have been implicated in different human diseases
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in the loss of myocardial tissue and fibrosis, leading to the
development of dilated chronic cardiomyopathy.150 Thymic
epithelial cells present self-antigens to immature T lymphocytes
to deplete the lymphocytes with self-reactive potential. Interest-
ingly, some cardiac antigens, such as alpha myosin heavy chain
(αMyHC), are poorly represented in the thymic epithelial cells (TEC)
repertoire of autoantigens. As a result, heart-specific autoreactive
T cells escape thymic negative selection.151 These naive T cells can
recognize cardiac autoantigens presented by dendritic cells in the
lymph nodes that drain the heart, but their activation may be
dampened by peripheral tolerance mechanisms. Peripheral
tolerance includes suppression by Treg cells and immunomodu-
latory receptors or immune checkpoints. Dysfunction or inhibition
of immune checkpoints can cause activation and expansion of
these self-reactive T cell clones. In addition, a storm of
costimulatory signals occurring in the context of heart infection
or tissue damage can contribute to overcoming peripheral
tolerance and triggering autoimmune responses to the heart.152

The potential roles of T cell immunoreceptors and their
involvement in cardiovascular diseases are outlined in Fig. 2.

CARDIOVASCULAR IMMUNE-RELATED ADVERSE EVENTS
(IRAES) OF IMMUNOMODULATORY RECEPTOR THERAPY
Myocarditis is one of the irAEs of ICI therapy for cancer. Patients
with ICI-related myocarditis have T cell infiltration of the
myocardium usually accompanied by a severe clinical presenta-
tion, such as a decreased ejection fraction, cardiogenic shock,
severe arrhythmia, and advanced atrioventricular block.153–155 The
lack of myocarditis-specific biomarkers makes diagnosis difficult,
so only severe cases are usually reported, which could explain the
observed low incidence and high mortality. Approximately
0.1–1.1% of patients treated with ICI therapy develop myocarditis,
although myocarditis is fulminant in up to 50% of these patients.
According to different studies, the time to onset of symptoms of
ICI-induced myocarditis varies between 1 and 2.5 months after the
start of treatment with an ICI.154,156,157

ICI-induced myocarditis has been described in patients admi-
nistered an anti-PD-1 antibody, an anti-CTLA-4 antibody or a
combination of both,154 although additional studies with larger
sample sizes should be performed to attribute specific myocardial
adverse effects to each ICI.
Preclinical data indicate critical roles for the PD-1/PD-L1 and

CTLA-4 pathways in regulating autoimmune responses to the
heart. Depletion of functional PD-1 in BALB/c mice but not in
BALB/c Rag2−/− mice leads to the spontaneous development of
fatal autoimmune dilated cardiomyopathy,158 suggesting a critical
role for PD-1 in the regulation of cardiac autoimmunity mediated
by lymphoid cells. Subsequent studies have described the
increased susceptibility of PD-1-deficient mice to experimental
autoimmune myocarditis, which is established by immunization
with an αMyHC peptide.159 Mice lacking CTLA-4 die within the first
month from severe lymphoproliferative disease with involvement
of the heart and development of fulminant myocarditis.160 In
addition, the administration of anti-PD-1 plus anti-CTLA-4
combination therapy to nonhuman primates results in the
development of multiple organ toxicities, including myocarditis,
with cardiac infiltration of mononuclear cells consisting primarily
of T cells and with a composition similar to that observed in
patients with ICI-induced myocarditis.161 PD-L1 was first described
as highly expressed in the mouse heart.162 In addition, different
studies have identified PD-L1 expression in the myocardium of
patients with ICI-induced myocarditis.153 Other studies have
shown that the cardiac endothelium positively regulates PD-L1
in response to IFNγ as a mechanism of tissue-based tolerance and
T cell depletion163 in a negative feedback loop in the heart to
maintain resistance to local effector T cell-mediated responses.

The exact mechanism of ICI-induced myocarditis development
remains unclear. A suggested explanation is that T cells may
recognize homologous antigens in the heart and tumors by a
molecular mimicry mechanism.153 Specific muscle antigens, such
as troponin and desmin, were found in tumor biopsies,
supporting the idea that the same T cell clones can detect
antigens present in both the myocardium and tumors. Consis-
tently, myocarditis secondary to treatment with ICIs is more
common when there is also autoimmune involvement of the
skeletal muscle or myositis.164 As an alternative explanation, T cell
clones that recognize different antigens can undergo aberrant
activation. As discussed above, some T cell clones that recognize
cardiac epitopes escape negative selection in the thymus, so
when peripheral tolerance mechanisms are blocked by immu-
notherapy, the expansion of a heart-specific T cell response can
be triggered.151

Although CD69 involvement in human disease remains
unexplored, preclinical studies indicate that a lack of other
immunomodulatory T cell receptors increases susceptibility to
myocarditis and dilated cardiomyopathy. CD69 deficiency leads to
exacerbated Th17-mediated autoimmune myocarditis and sub-
sequent cardiomyopathy after immunization with the αMyHC
peptide.109 Although LAG-3 deficiency alone does not induce
cardiac autoimmunity, depletion of LAG-3 in PD-1-deficient mice
increases the susceptibility to spontaneous T cell-mediated
fulminant myocarditis.86 Finally, administration of an anti-Tim-3
antibody exacerbates male myocardial inflammation in a mouse
model of viral myocarditis.165,166 Taken together, this evidence
suggests that multiple inhibitory signals in T cells prevent cardiac
autoimmunity.

ICIS IN CANCER
In recent years, there has been a large increase in the
development and implementation of cancer immunotherapies.
FDA approval of the use of blocking antibodies specific for CTLA-4
(ipilimumab) or PD-1 (nivolumab) in humans and biologics such as
CTLA-4-Ig (abatacept) has been key to producing significant
improvements in the treatment of various types of cancer,
especially melanoma. Unlike radiotherapy and chemotherapy,
which are intended to directly interfere with the growth and
survival of tumor cells, immunotherapies target tumors indirectly,
favoring an increase in antitumor immune responses that arise
spontaneously in many patients. ICI therapy could therefore be
used to modulate the immune response to improve the treatment
of many types of cancer (Fig. 2).

Cancer mechanisms to bypass the immune system
To understand the modes of action of ICIs, it is important to
recognize the dynamic interaction between cancer and the
immune system that occurs during the course of the disease.
Cancer cells are genetically unstable, which contributes to their
uncontrolled proliferation and expression of antigens that the
immune system can recognize. These antigens include normal
proteins overexpressed by cancer cells and new proteins that are
generated by mutation and genetic rearrangement.167 Cytotoxic
CD8+ T cells are particularly effective in mediating antitumor
immune responses by recognizing tumor-specific antigens pre-
sented by MHC I. CD8+ T cells become licensed effector cells after
appropriate stimulation by antigen-presenting cells, which collect
antigens at the tumor site. In addition to displaying antigenic
peptides presented on MHC molecules, antigen-presenting cells
must provide costimulatory signals via surface receptors, such as
CD28, and cytokines, such as IL-12, for effective stimulation of
T cells.168

Tumor cells adopt a variety of mechanisms to prevent immune
recognition and immune-mediated destruction. Established
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tumors arise through the selection of clones that can evade the
immune system, a process known as immunoediting.169 Tumor
cells can evade immune recognition directly by inhibiting
molecules that make them vulnerable, such as tumor antigens
or MHC class I.170 Alternatively, tumors can evade immune
responses by taking advantage of mechanisms the body has
developed to prevent immunopathologies. The mediators
involved in these mechanisms include inhibitory cytokines, such
as IL-10 and TGF-β; inhibitory cell types, such as Tregs, regulatory
B cells, and MDSCs; metabolic modulators, such as indoleamine
2,3-dioxygenase; and immunomodulatory receptors, such as PD-1
and CTLA-4.171,172

Immune exhaustion also contributes to immune dysfunction in
cancer. Originally described in the context of chronic viral
infection, where the host cannot eliminate the pathogen, it is
now evident that exhausted T cells can also promote cancer
development.173,174 Under these conditions, the persistent high
antigenic load leads T cells to regulate immunomodulatory
receptors, whose signaling subsequently leads to a progressive
loss of proliferative potential and effector functions and, in some
cases, exhausted T cell elimination.175 Therefore, exhaustion is a
physiological mechanism designed to limit immunopathology
during persistent infection and a major obstacle to antitumor
immune responses.176

Anti-CTLA4 treatment
CTLA-4 blockade has been shown to promote T cell activation and
intratumoral Treg cell depletion.177 Ipilimumab (IgG1) and
tremelimumab (IgG2) are the two human anti-CTLA-4 antibodies
that have undergone clinical evaluation. In a 2010 phase III clinical
trial, in previously treated patients, treatment with ipilimumab at a
dose of 3 mg/kg with or without administration of a gp100
peptide vaccine was evaluated and compared to peptide vaccine
administration alone, finding an improvement in overall survival
(OS) in both groups of patients who received ipilimumab, which
led to the approval of ipilimumab for patients with metastatic
melanoma.178 A similar test was performed with a combination of
dacarbazine with or without ipilimumab at a dose of 10 mg/kg,
which improved survival but increased liver toxicity.179 In addition,
a pharmacokinetic analysis showed that ipilimumab had linear
pharmacokinetics in the dose range of 3–10mg/kg.180 The efficacy
of ipilimumab was validated in a randomized, double-blind, phase
III trial after complete resection of high-risk stage III melanoma.181

Studies in other types of cancer have shown the efficacy of
ipilimumab in some renal cell carcinoma patients, including
patients who did not respond to other immunotherapies.182 In
patients with B cell lymphoma, CTLA-4 blockade with ipilimumab
had antitumor activity and was well tolerated at doses of 1 and 3
mg/kg;183 however, a phase III trial did not show a significant
difference in terms of survival between the ipilimumab group and
the placebo group in patients with castration-resistant metastatic
prostate cancer.184 Tremelimumab, an alternative antibody that
blocks CTLA-4, continues to be investigated in clinical trials and
has also demonstrated long-lasting responses and acceptable
tolerability in patients with melanoma,185 refractory metastatic
colorectal cancer,186 hepatocellular carcinoma,187 or malignant
mesothelioma.188

Anti-PD1 treatment
PD-1 regulates the activation of T cells in peripheral tissues and is
expressed in activated T cells, Treg cells, activated B cells, and NK
cells. The endogenous PD1 ligands, PD-L1 and PD-L2, are
expressed in activated immune cells and nonhematopoietic cells,
including tumor cells; tumor cell expression is the mechanism by
which these cells circumvent the immune system189. Inhibition of
these interactions with therapeutic antibodies improves the T cell
response and stimulates antitumor activity.162

The first anti-PD-1 inhibitor evaluated was nivolumab (BMS-
936558), a human mAb (IgG4) that blocks the immunomodulatory
receptor PD1.190

A phase I trial in which different doses were tested found that
nivolumab is safe and produces positive responses in 16–31% of
pretreated patients across all types of solid tumors tested, with a
duration of at least 1 year.191 For ipilimumab, both adverse effects
and efficacy depend on the dose, but for nivolumab, these
correlation are not observed, which can be explained by the high
correlation between the receptor and antibody even at low
doses.192

Pembrolizumab (MK-3475) is an alternative humanized high-
affinity IgG4 antibody recognizing PD1. It has been evaluated in
several phase I clinical trials, and three different doses have been
tested in patients with metastatic melanoma who were never
previously treated and in a cohort patients including patients
previously treated with ipilimumab and those who were not
previously treated with ipilimumab. Most of the adverse effects
observed were seen with the highest dose, and no significant
differences among the three treatment subgroups were, but
patients with a smaller tumor burden had a greater capacity to
respond to pembrolizumab.193

Pidilizumab (formerly CT-011) is a humanized anti-PD-1 IgG1
antibody. It was one of the first anti-PD-1 agents used in cancer
patients. Several clinical trials at different stages, which treated
patients with hematological malignancies or metastatic mela-
noma, have shown that treatment is generally well tolerated, with
no treatment-related deaths, but in some patients, previous
treatment with ipilimumab did not produce an advantage in
treatment response. Pidilizumab appears to be associated with
lower response rates in melanoma than nivolumab or pembroli-
zumab, but the 1-year OS rate is similar to that reported in studies
of nivolumab.193,194

Anti-PD-L1 treatment
MPDL-3280A is an anti-human IgG1 antibody engineered to block
PD-L1, with the Fc domain of IgG1 mutated to completely nullify
the effects of antibody-dependent cellular cytotoxicity and
complement-dependent toxicity. Furthermore, PD-L1 is particu-
larly expressed in tumors infiltrated by immune cells, which
implies that this treatment mainly benefits patients with more
inflamed tumors.193 This antibody exerts its mechanism of action
by blocking PD-1/PD-L1 signaling, and unlike antibodies that block
PD-1, those that block PD-L1 avoid the side effects that result from
blocking the interaction of PD1 with PD-L2 and that of PD-L1 with
CD80. MPDL3280A has been evaluated in multiple tumor types,
with safety and preliminary efficacy identified in melanoma, renal
cell carcinoma, non-small cell lung carcinoma, colorectal cancer,
gastric cancer, and squamous cell carcinoma of the head/neck.
Other PD-L1-inhibiting antibodies are BMS-936559, which has
been shown to be safe and clinically active in various types of
tumors in phase I clinical trials, and MEDI-4736, which is currently
in clinical development.191

Combination therapies
Blocking immune checkpoint molecules with multiple inhibitory
antibodies can improve treatment efficacy. For example, for
ipilimumab, the percentage of patients with a reduction in tumor
size or the ORR (objective response ratio) achieved with
monotherapy was 6%, and the OS time was 10 months.178 In
phase I work, nivolumab had an ORR of 31%, and the OS time was
17 months. However, in a phase I trial combining ipilimumab with
nivolumab, the ORR was 53% at the maximum tolerated dose, and
all subjects who responded to treatment showed a ≥80% decrease
in their tumor burden after 12 weeks of treatment.195 Patients
treated with this combination therapy showed a more frequent
rate (53%) of adverse effects. This combination, and other
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combinations of mAbs, should be confirmed in other phase III
clinical trials, which are currently underway.191 Combination
therapy with other noninhibitory immune checkpoint agents is
also being evaluated. The feasibility of other combination therapy
strategies is being explored in different trials, each with
compelling preclinical justification. The most direct combination
therapy approach would be a combination of immunotherapy and
chemotherapy, as there is a multitude of preliminary data from
patients who have been included in clinical trials evaluating
immunoregulators after an insufficient response to conventional
chemotherapy; in particular, there are treatments that combine
ipilimumab with cycles of chemotherapy with carboplatin, etopo-
side or paclitaxel in patients with lung cancer196–198 and advanced
melanoma.199

The combination of ICIs with alternative treatments that favor
systemic stimulation of the immune system, such as vaccines,
cytokine therapy, and adoptive cell therapy,200–202 would be an
interesting approach. The combination of immunomodulatory
agents with agents producing a local effect that causes tumor
regression, such as radiotherapy, is based on the abscopal effect,
which describes the phenomenon of tumor regression outside the
irradiated field caused by the release of cytokines and antigens
induced by irradiation that enhances the systemic immune
response against the tumor. The combination of radiotherapy
with ipilimumab has been evaluated in phase I/II trials in prostate
cancer, which showed an improvement in treatment response
with tolerable adverse effects.203 Similar to the combination with
radiotherapy, other combinations are being investigated with
different alternatives strategies for local control, such as cryoabla-
tion and electrochemotherapy. The abscopal effect is also
observed after treatment with cytotoxic therapies, such as B-Raf
protein or VEGF inhibitors, capable of stimulating the immune
system by favoring the production of antigens.202,204 Some of
these studies, such as one combining ipilimumab with GM-CSF,
showed an improved survival rate with few side effects for the
patients treated with the combination therapy compared to those
treated only with ipilimumab. The combination of ipilimumab with
bevacizumab, a VEGF-blocking antibody, improves the immune
responses against tumors with tolerable toxicity. However, some
combined therapies, such as treatment with vemurafenib and
ipilimumab, produce high liver toxicity.205 In summary, the use of
combined therapies seems to be a step forward in the search for a
cure for cancer, but more studies are needed to adjust the doses
very precisely and reduce adverse effects.
The dual blockade of LAG-3/PD-1 was recently identified to be

clinically relevant and is being tested in clinical trials. A
recombinant fusion protein with four extracellular domains of
LAG-3 has been tested safely in combination with pembrolizumab
or nivolumab in patients with melanoma with progressive disease
after immunotherapy.206 Similarly, the combination of anti-VISTA
molecules with anti-PD-1 therapy is under investigation. Combi-
nation of CA-170, an oral inhibitor of VISTA, with PD-1 has shown
positive results in different clinical trials.207

ICI-based therapies have been able to increase the average life
expectancy of cancer patients, yet mortality remains high among
patients with advanced-stage disease, highlighting the need for
further innovation in the field. These therapies appear to be most
effective in patients with pre-existing antitumor immunity,
suggesting that, in patients without such immunity, these drugs
cannot mediate de novo antitumor immune responses. It would
therefore be interesting to implement de novo generation of
antitumor immunity with these treatments. To achieve this
objective, it is essential to improve the understanding of the
mechanisms of action of these treatments to identify ways to
improve their use not only through specific guidance in certain
types of patients who are more likely to respond but also through
a correct combination with other therapies that will increase the
responses of patients in whom these treatments are less efficient.

Furthermore, as the understanding of the mechanisms of action of
these therapies improves, it will also be easier to prevent possible
adverse effects caused by these therapies.

ICIS AND IRAES
Although there is no doubt that treatments targeting these
immunomodulatory T cell receptors have created a new era in
cancer treatment and increased patient survival, different adverse
events related to the immune system have been observed. These
adverse events are called irAEs and are directly related to the
mechanisms of action of PD-1 and CTLA-4.139 Under physiological
conditions, these molecules prevent autoimmunity and limit
activation of the immune system, but inhibition of these two
receptors as a cancer therapy causes a wide range of side effects
that resemble autoimmune reactions. Analysis of sera and biopsies
from patients with irAEs has revealed that these reactions are
mediated by activated CD4+ and CD8+ T cells infiltrating tissues,
as well as by increases in the levels of proinflammatory
cytokines.208 IrAEs can impact multiple organs and systems,
including the skin, gastrointestinal tract, liver, endocrine system,
eyes, kidneys, nervous system, pancreas, and heart. Almost all
patients treated with ICIs experience mild side effects, such as
diarrhea, fatigue, itching, rash, nausea, and decreased appetite.
Apart from myocarditis mentioned earlier in this review, serious
adverse reactions include severe diarrhea, colitis, increased
alanine aminotransferase levels, inflammatory pneumonitis, and
interstitial nephritis.209 Patients who experience exacerbation of
pre-existing autoimmune conditions, such as psoriasis,210 or who
develop new autoimmune conditions, such as T1D mellitus,211

have also been reported. Particularly serious side effects may
require cessation of treatment, although these patients may still
respond thereafter.
Anti-CTLA-4 antibody-induced IrAEs are common but generally

low grade, although severe and life-threatening cases have also
been reported. The skin and gastrointestinal tract are more
frequently affected, while hepatic, endocrine, and neurological
events are less common.212 Rash is generally the first irAE to
manifest after the first or second dose of ipilimumab.213 Colitis
and diarrhea are the most common gastrointestinal IrAEs after the
first few months of ipilimumab treatment, which can be very
serious, particularly in rare cases where perforation of the
gastrointestinal tract occurs. A phase III trial in patients with
advanced melanoma demonstrated that ipilimumab adverse
events were mild, with sporadic life-threatening cases.214 Anti-
CTLA-4 antibodies can induce a severe and extensive form of
inflammatory bowel disease, suggesting the need to avoid
nonsteroidal anti-inflammatory drugs in patients treated with
anti-CTLA-4 therapy.215 Hepatic irAEs are rare and may manifest as
an acute hepatitis or biliary pattern, which can be reversed with
corticosteroids.216 In addition, autoimmune hypophysitis has been
reported in up to 17% of patients with melanoma or renal cell
carcinoma treated with anti-CTLA-4 therapy, which may be related
to pituitary gland enlargement and hormonal deficiencies.217 The
risk of irAEs in the case of ipilimumab treatment depends on the
dose, and the mean time to onset of adverse effects is
10 weeks.218

In anti-PD-1/PD-L1 treatment, 30–40% of patients experience
skin toxicities.219 The most common skin toxicities are lichenoid
reactions, vitiligo, pruritus, and eczema. Vitiligo is observed only in
patients with metastatic melanoma. Antibodies targeting the PD-
1/PD-L1 axis have shown a favorable toxicity profile in preliminary
trials with rates of relatively severe adverse events of 13% in
patients receiving MK-3475, 9% in patients receiving BMS-936559,
and 14% in patients receiving nivolumab. A unique and life-
threatening toxicity for these agents is pneumonitis, which was
the cause of death in three patients (1%) in a phase I clinical trial
of nivolumab despite corticosteroid treatment.219 Cardiac irAEs
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due to PD-1 axis blockade have attracted attention due to the
high mortality rates but have an incidence of less than 1%.
Endocrinopathies derived from PD1 axis blockade include
hypophysitis, thyroiditis, hypothyroidism, hyperthyroidism, and
T1DM. In addition to the previously described pathologies, there
are some rare ICI-mediated toxicities that have neurological,
ocular, or hematological manifestations.
The incidence of adverse effects is higher in patients treated

with combination therapies, who are more susceptible to acute
kidney injury than those treated with ipilimumab, nivolumab, or
pembrolizumab monotherapy. Up to 7% of people treated with
anti-PD-1 monotherapy and up to 33% of patients treated with
combination anti-PD-1 and anti-CTLA-4 therapy develop hepati-
tis.220 Combined treatment with these ICIs causes a decrease and
blockade in Treg cell function, which also produces other
pathologies that are included within the irAEs, such as increases
in the incidence of proatherogenic lesions or pneumonitis.
Another event considered an irAE is the generation of auto-
antibodies, as occurs in thyroiditis, since treatment with PD1
inhibitors can promote the mobilization of pre-existing auto-
antibodies against the thyroid.220 The study of the pathophysiol-
ogy of these adverse effects and toxicities should produce a more
precise understanding of the functions of ICIs in the tumor and
tissue contexts and thus favor the improvement of therapies, with
avoidance of possible adverse effects.
Autoimmune diabetes mellitus is related to blockade of CTLA-4,

PD-1, its ligand (PD-L1), and combination ICI therapy.
Recently, it has been demonstrated that a constitutive reduction

in CTLA-4 signaling does not accelerate SLE in a susceptible
NZM2328 animal model.221 Although a patient with de novo SLE
nephritis after ipilimumab treatment was reported,222 SLE patients
treated with ICIs do not seem to exhibit disease worsening.223 De
novo cases of SLE have yet to be reported in patients treated with
other ICIs.
In general, the knowledge of possible biomarkers in the field of

immunotherapy is very limited in aspects related to predicting the
efficiency and suitability of different treatments. The field of
biomarkers for predicting possible adverse effects induced by
immunotherapy is even less investigated. Therefore, the develop-
ment of the field of biomarkers to cover the negative aspects of
immunotherapy and potentially predictand the suitability of
treatments will be very important.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
T cells are key in the development and control of inflammatory
diseases of autoimmune origin or cancer; very recently, it has been
shown that they also play key roles in pathologies such as acute
MI, atherosclerosis, and myocarditis, highlighting the relevance of
T cells in cardiovascular disease.224 Different molecular tools
blocking immunomodulatory receptors on T cells have emerged
as some of the most promising cancer therapies in the last
decade. However, the potential of targeting immunomodulatory T
cell receptors in other diseases, such as autoimmunity or
cardiovascular disease, which is the leading cause of death
worldwide,225 has been little explored. In addition to the most
well-known receptors in clinical practice, PD-1 and CTLA-4, there is
a battery of immunomodulatory receptors whose immunoregula-
tory properties have been described more recently, but their
therapeutic potential in clinical practice remains unexplored. In
contrast, other T cell receptors, such as CD69, have roles in the
development of autoimmunity and in cardiovascular disease in
mice and humans, and blockade of this receptor has antitumor
properties;226 however, its role in human cancer has never been
addressed.227 In this review article, we have summarized the
mechanisms of action of these immunomodulatory receptors

expressed by T cells, paying special attention to the less explored
receptors, including their potential development in the clinic for
treatment of cancer, cardiovascular disease, or autoimmune
diseases, such as diabetes, lupus, or RA.
The use of inhibitory drugs and mAbs against these immuno-

modulatory receptors can be equally effective in cancer and
autoimmune diseases. An example is abatacept (CTLA-4-Ig), which
is used mainly in melanoma, but recent clinical trials show that it
has potential in the treatment of autoimmune diseases, such as
RA, in patients refractory to treatment with TNF-α blockers,
indicating the potential of immunomodulatory receptor-based
therapies in several pathologies that have not yet been explored.
In this regard, the integration of technologies to deliver and
control drug or mAb release has become one of the more
important challenges in the field of immunotherapy. The
strategies to deliver these drugs to the target organ are almost
as important as the mechanism of action. For this reason, research
in nanotechnology, one of the known strategies to improve the
nanodelivery of chemotherapeutic agents, is becoming of interest
in the field of immunotherapy.228 In addition, the development of
cellular therapies (e.g., CAR T cells) as targeted vehicles for use
with regulatory molecules and/or combination with immunother-
apy is a trend that we will see developed in the coming years and
that, hopefully, will further improve the therapeutic potential not
only in cancer but also in autoimmune and cardiovascular
diseases.229 In parallel, we need to advance the knowledge on
the molecular and cellular mechanisms triggered by these
receptors in each tissue, especially to prevent the triggering of
adverse immune effects associated with these therapies in the
most vulnerable tissues.
The field of biomedicine faces a challenge in the coming years,

in which the study of the immunomodulatory receptors of T cells
in the context of numerous pathologies can represent a great step
forward in the treatment of fatal or chronic diseases that are
highly prevalent in the world and lack cures. The enormous
success of targeting the immune checkpoints PD-1 and CTLA4 in
cancer should be enough to encourage the scientific community
to study the other immunomodulatory T cell receptors in depth in
the coming years and bring therapies related to these receptors
closer to clinical practice in autoimmune and cardiovascular
diseases.
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