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Abstract

Cortical networks show a large heterogeneity of neuronal properties. However, traditional

coding models have focused on homogeneous populations of excitatory and inhibitory neu-

rons. Here, we analytically derive a class of recurrent networks of spiking neurons that close

to optimally track a continuously varying input online, based on two assumptions: 1) every

spike is decoded linearly and 2) the network aims to reduce the mean-squared error

between the input and the estimate. From this we derive a class of predictive coding net-

works, that unifies encoding and decoding and in which we can investigate the difference

between homogeneous networks and heterogeneous networks, in which each neurons rep-

resents different features and has different spike-generating properties. We find that in this

framework, ‘type 1’ and ‘type 2’ neurons arise naturally and networks consisting of a hetero-

geneous population of different neuron types are both more efficient and more robust

against correlated noise. We make two experimental predictions: 1) we predict that integra-

tors show strong correlations with other integrators and resonators are correlated with reso-

nators, whereas the correlations are much weaker between neurons with different coding

properties and 2) that ‘type 2’ neurons are more coherent with the overall network activity

than ‘type 1’ neurons.

Author summary

Neurons in the brain show a large diversity of properties, yet traditionally neural network

models have often used homogeneous populations of neurons. In this study, we investi-

gate the effect of including heterogoenous neural populations on the capacity of networks

to represent an input stimulus. We use a predictive coding framework, by deriving a class

of recurrent filter networks of spiking neurons that close to optimally track a continuously

varying input online. We show that if every neuron represents a different filter, these net-

works can represent the input stimulus more efficiently than if every neuron represents

the same filter.
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Introduction

It is widely accepted that neurons do not form a homogeneous population, but that there is

large variability between neurons. For instance, the intrinsic biophysical properties of neurons,

such as the densities and properties of ionic channels, vary from neuron to neuron [1–5].

Therefore, the way in which individual neurons respond to a stimulus (their ‘encoding’ proper-

ties or receptive field) also varies. A classical example is the difference between ‘type 1’ and ‘type

2’ neurons [6–10]: ‘type 1’ neurons or ‘integrators’ respond with a low firing frequency to con-

stant stimuli, which they increase with the amplitude of the stimulus. ‘Type 2’ neurons or ‘reso-

nators’ on the other hand respond with an almost fixed firing frequency, and are sensitive to

stimuli in a limited frequency band. Apart from these intrinsic ‘encoding’ properties of neu-

rons, the ‘decoding’ propertes of neurons also show a large variability (see for instance [11]).

Even if we do not take various forms of (short term) plasticity into account, there is a large het-

erogeneity in the shapes of post-synaptic potentials (PSPs) that converge onto a single neuron

(for an overview: [12, 13]), depending on amongst others: the projection site (soma/dendrite:

[14]), the number of receptors at the synapse, postsynaptic cell membrane properties ([15–17]),

the type of neurotransmitter (GABAA, GABAB, glutamate), synapse properties (channel sub-

units, [18]), the local chloride reversal potential and active properties of dendrites [12]. This het-

erogeneity results in variability of decay times, amplitudes and overall shapes of PSPs. So neural

heterogeneity plays an important role both in encoding and in decoding stimuli. Whereas the

study of homogeneous networks has provided us with invaluable insights [19–22], the effects of

neural heterogeneity on neural coding have only been studied to a limited extent [23–25]. Here

we show that networks with spiking neurons with heterogeneous encoding and decoding prop-

erties can do optimal online stimulus representation. In this framework, neural variability is not

a problem that needs to be solved, but it increases the networks’ versatility of coding.

In order to investigate coding properties of neurons and networks, we need to use a frame-

work in which we can assess the encoding and decoding properties and the network proper-

teis. To characterize the relationship between neural stimuli and responses, filter networks

(such as the Linear-Nonlinear Poisson (LNP) model [26], [27] and the Generalized Linear

Model (GLM) [28, 29], for an overview, see [30], [31]) are widely used. In these models, each

neuron in a network compares the input it receives with an ‘input filter’. If the two are similar

enough, a spike is fired. In a GLM, unlike the LNP model, this output spike train is filtered and

fed back to the neuron, thereby incorporating effectively both the neuron’s receptive field and

history-dependent effects such as the refractory period and spike-frequency adaptation. It can

be shown, that these types of filter-frameworks describe a maximum-likelihood relation

between the input and the output spikes [32], [33]. However, these models are purely descrip-

tive: they only describe how spike trains are generated, not how they should be read out or

‘decoded’. In this paper, we analytically derive a class of recurrent networks of spiking neurons

that close to optimally track a continuously varying input online. We start with two very sim-

ple assumptions: 1) every spike is decoded linearly and 2) the network aims to perform optimal

stimulus representation (i.e. reduces the mean-squared error between the input and the esti-

mate). From this we derive a class of predictive coding networks, that unifies encoding (how a

network represents its input in its output spike train) and decoding (how the input can be

reconstructed from the output spike train) properties.

We investigate the difference between homogeneous networks, in which all neurons repre-

sent similar features in the input and have similar response properties, and heterogeneous net-

works, in which neurons represent different features and have different spike-generating

properties. Firstly, we assess the properties of single-neuron (spike-triggered average, input-out-

put frequency curve and phase-response curve) and show that in this framework, ‘type 1’ or
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‘integrator’ [6, 34] neurons and resonators or ‘type 2’ neurons arise quite naturally. We show

that the response properties of these neurons (the encoding properties, [35]) and dynamics of

the PSPs they send (the decoding properties) are inherently linked, thereby giving a functional

interpretation to these classical neuron types. Next, we investigate the effects of these different

types of neurons on the network behaviour: we investigate the coding efficiency, robustness and

trial-to-trial variability in in-vivo-like simulations. Finally, we predict that 1) integrators show

strong correlations with other integrators and resonators are correlated with resonators, whereas

the correlations are much weaker between neurons with different coding properties [36] and 2)

that ‘type 2’ neurons are more coherent with the overall network activity than ‘type 1’ neurons.

Materials and methods

We analytically derive a recurrent network of spiking neurons that close to optimally tracks a

continuously varying input online. We start with two assumptions: 1) every spike is decoded

linearly and 2) the network aims to perform optimal stimulus representation (i.e. reduces the

mean-squared error between the input and the estimate). We construct a cost function that

consists of three terms: 1) the mean-squared error between the stimulus and the estimate, 2) a

linear cost that punishes high firing rates and 3) a quadratic cost that promotes distributed fir-

ing. Every spike that is fired in the network reduces this cost function. The code for simulating

such a network can be found at GitHub: github.com/fleurzeldenrust/Efficient-coding-in-a-

spiking-predictive-coding-network.

Derivation of a filter-network that performs stimulus estimation

Suppose we have a set of N neurons j that use filters gj(t) to represent their input. Their spiking

will give an estimated input equal to

ŝðtÞ ¼
XN

j¼1

gjðtÞ � r
ideal
j ðtÞ ¼

XN

j¼1

Xnj

i¼1

gjðt � tijÞ; ð1Þ

where tij are the spike times i of neuron j (what ‘ideal’ stands for will be explained later). The

mean-squared error between the estimate ŝ and the stimulus s equals

EðtÞ ¼
Z t

0

ðsðtÞ � ŝðtÞÞ2dt ¼
Z t

0

ðsðtÞ �
XN

j¼1

Xnj

i¼1

gjðt � tijÞÞ
2dt: ð2Þ

Suppose that at time t = T + Δ we want to estimate the difference in error given that there was

a spike of neuron m at time T or not. The difference in error is given by

Eno spike at TðT þ DÞ � Espike at TðT þ DÞ ¼
Z TþD

0

ðsðtÞ �
XN

j¼1

Xnj

i¼1

gjðt � tijÞÞ
2dt

�

Z TþD

0

ðsðtÞ �
XN

j¼1

Xnj

i¼1

gjðt � tijÞ � gmðt � TÞÞ2dt ¼

�

Z TþD

0

gmðt � TÞ2dt

þ2

Z TþD

0

gmðt � TÞðsðtÞ �
XN

j¼1

Xnj

i¼1

gjðt � tijÞÞdt:

ð3Þ
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We introduce a greedy spike rule: a spike will only be placed at time T if this reduces the mean

squared error at T + Δ (see Fig 1B), so if the expression in Eq (3) is positive. This results in a

spike rule:

Z TþD

0

gmðt � TÞ sðtÞ �
XN

j¼1

Xnj

i¼1

gjðt � tijÞ

 !

dt

>
1

2

Z TþD

0

gmðt � TÞ2dt:

ð4Þ

Obviously, if the decision is made at time t = T + Δ, a spike cannot be placed in the past (t = T).

Therefore, we introduce two spike trains: the real spike train ρ(t), where a spike will be placed

at time T + Δ with the spike rule above (Eq (4)). This represents the ‘ideal’ spike train ρideal(t),
which is ρ(t) shifted by an amount of Δ, so that a spike at time T + Δ in ρ(t) is equavalent to a

spike at time T in spike train ρideal(t). This means that the neurons have to keep track of their

Fig 1. Overview of the network model. A The signal (black), ideal estimate ŝ (thin red line), delayed estimate (thick red line), ideal spike trains ρideal (open

dots) and real spike trains ρ (filled dots). B Zoom in of the yellow square in A. The decision whether the blue spike (denoted with a question mark) in ρideal

will be fired, is made at time t + Δ. The spike is fired, because the estimate with the spike (solid red line) has a smaller error than the estimate without the

spike (dashed red line). C Decoding filters g used in this network: neurons 1 and 2 (blue and green) have positive filters, neurons 3 and 4 (pink and yellow)

have negative filters.D Each neuron k filters the input s(t) using an input filter gin
k . It receives input from other neurons l via lateral filters glat

kl and sends

input to other neurons l via lateral filters glat
lk . Finally, the network activity can be decoded linearly using decoding filters gk.

https://doi.org/10.1371/journal.pcbi.1008673.g001
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own spiking history for at least Δ time and that any prediction of the input is delayed by an

amount of Δ (see Fig 1A,
PN

j¼1
gjðtÞ � rjðtÞ is an estimate of the input, delayed Δ in time).

Eq (4) defines a filter-network (Fig 1D). Each neuron m keeps track of a ‘membrane poten-

tial’ V

VmðT þ DÞ ¼
Z TþD

0

gmðt � TÞsðtÞdt

�

Z TþD

0

gmðt � TÞ
XN

j¼1

Xnj

i¼1

gjðt � tijÞdt;

ð5Þ

that it compares to a threshold Θm

Ym ¼
1

2

Z TþD

0

gmðt � TÞ2dt þ n ¼
1

2

Z D

� T
gmðxÞ

2dx: ð6Þ

Note that the threshold is not evaluated over the whole filter, but only between t = −T and t =

Δ. Only if Δ is larger than the causal part of the filter and the proposed time of the spike T
larger than the acausal part, the whole filter is taken into account, and the threshold reduces to

Ym ¼
1

2
for (L2-norm) normalized filters.

The network defined by Eq (4) can spike at any arbitrary frequency, and neurons show no

spike-frequency adaptation. Two neurons that have identical filters except for their sign, have

lateral filters gout
m ð0Þ ¼ 2ðYmÞ. Depending on the shape of the filter and the value of Δ, the max-

imum value of these lateral filters can exceed twice the threshold of the postsynaptic neuron,

so a spike in a neuron can induce a spike in a neuron with a filter that is identical except for

their sign. This ‘ping-pong effect’, which makes the estimate fluctuate very quicky around the

ideal value, can be dampened by introducting a spike cost. So to force the network to choose

solutions with realistic firing rates for each neuron, we introduce two additional terms to the

threshold:

Y
c
mðtÞ ¼

1

2

Z D

� T
gmðxÞ

2dxþ nþ mgthresholdðtm � TÞ; ð7Þ

where ν is a spike cost that punishes high firing rates in the network, which makes the code

more sparse. μgthreshold(t) is a spike cost kernel that punishes high firing rates in a single neu-

ron. The effect is equivalent to spike-frequency adaptation [37]: every time a neuron fires a

spike, it threshold is increased with μ, and decays (with filter gthreshold) back to its original

dynamic value. Compared to just adding a constant spike cost (as in citeBoerlin2011,Boer-

lin2013, Bourdoukan2012, Deneve2017), adding the temporal spike cost makes the network

activity more distributed between the neurons: a neuron can fire a few spikes, but by doing

that will increase its threshold, and another neuron will take over. In this paper we use an

exponential kernel with time constant of 60 ms unless stated differently.

The first term on the right of Eq (5) shows that neuron m is convolving the input s(t) with

an input filter g in
mðtÞ that is a flipped and shifted version of the filter neuron m represents:

Z TþD

0

gmðt � TÞsðtÞdt ¼

Z TþD

0

g in
m ðT þ D � tÞsðtÞdt ¼ ðg in

m � sÞðT þ DÞ;
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where

g in
m ðtÞ ¼ gmðD � tÞ: ð8Þ

Note that by introducing the time delay Δ between the evaluation time and the spike time, the

input filter is now shifted relative to the representing filter. The representing filter can contain

a causal part, that consists of the systems estimation on how the stimulus will behave in the

near future of the spike, i.e. the systems estimation of the input auto-correlation. Any acausal

part of the input filter is not used (since we do not know the future if the input s(t)), and van-

ishes as long as g(t) = 0 for t> Δ. The optimal value of Δ depends on how much of a prediction

the neuron wants to make into the future, but also on how long it is willing to wait with its

response.

The second term of Eq (5) denotes the lateral (j 6¼m) and output (j = m) filters, that are sub-

stracted from the filtered input as a result of the spiking activity of any of the neurons. For

well-behaved filters we can write

Z TþD

0

gmðt � TÞ
XN

j¼1

Xnj

i¼1

gjðt � tijÞdt

¼
XN

j¼1

Z TþD

0

gmðt � TÞðgj � r
ideal
j ÞðtÞdt

¼
XN

j¼1

ðg in
m � gj � r

ideal
j ÞðT þ DÞ;

ð9Þ

so that we find an output filter

gout
m ðtÞ ¼ � ðg

in
m � gmÞðtÞ ð10Þ

and lateral filters

g lat
mjðtÞ ¼ � ðg

in
m � gjÞðtÞ; ð11Þ

where t denotes the time since the spike of neuron j. Note that a spike at T can only influence

the decision process at T + Δ, so the part of the filter where 0 � t � tij < tij þ D does not influ-

ence the spiking process, and is therefore not used.

In summary, we defined network that can perform near-optimal stimulus estimation

(Fig 2). Given a set of readout filters gi(t), the membrane potential of each neuron i is defined

as

ViðtÞ ¼ giðt � DÞ � sðtÞ �
XN

j¼1

gjðtÞ � rjðt � DÞ

 !

: ð12Þ

A spike is fired if this reduces the MSE of the estimate, which is equivalent to when the mem-

brane potential exceeds the threshold Y
c
m (Eq (7)). This model has two main characteristics:

the input, output and lateral filters are defined by the representing filter, and the representa-

tion of the input by the output spike train is delayed by an amount Δ in order for the network

to use predictions for the stimulus after the spike.

We conclude that a classical filter network can perform near-optimal stimulus encoding

given a certain relation between the input, output and lateral filters. In the classical framework

of LNP and GLM models, acausal filters g are used, and the readout of the model is only used
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for information theoretic purposes. However, if the readout is being done by a next layer of

neurons, or in recurrent networks, one cannot use acausal filters: every spike of a presynaptic

neuron m at time tim, can only influence the membrane potential at its target at t > tim (i.e. can

only cause a post-synaptic potential after the spike). Therefore, in a layered and recurrent net-

works, a self-consistent code will use only representative filters that are causal

gðtÞ ¼ 0 if t < 0

This means that for the input filters

g in ¼ 0 if t > D

Note that if Δ = 0, the input filter reduces to a single value at t = 0. If Δ = 0 and g(0) = 0, the

input filter and hence the output and lateral filters vanish. Note that the threshold is scaled to

the part of g between 0 and Δ, so not to the full integral over g. In this paper, we will normalize

the input filters so that the thresholds are the same for all neurons.

Fig 2. Example network response. Example of the response of a homogeneous (red) and a heterogeneous (blue) network to a constant input (first

column), to a low frequency input (5 Hz, second colum), to a high frequency input (80 Hz, third column) and to a recorded LFP-signal (right). The

homogeneous network consists of 50 neurons with a positive representing filter g and 50 neurons with a negative one (see section ‘Derivation of a filter-

network that performs stimulus estimation); the heterogeneous network consists of 100 neurons with each a different (but normalized) representing filter g.

Network parameters: Δ = 7, 5 ms, ν = μ = 0.5. No noise is added to this network.

https://doi.org/10.1371/journal.pcbi.1008673.g002
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Analysis

Generation of neuron filters. In this paper, we choose each neuron filter on the basis of 8

basis functions given by the following Γ-functions:

GnðtÞ ¼ tne� t ð13Þ

Type 1 neuron The representing filter of a ‘type 1’ neuron (Fig 3A and 3B, blue) is chosen

equal to a Γ-function (Eq (13)) with n = 3.

Fig 3. Example of a ‘type 1’ (blue) and a ‘type 2’ (red) neuron. A Representing filter of a ‘type 1’ (blue) and a ‘type 2’ (red) neuron. B Self-filters for both

neuron types. C Instantaneous frequency of the first two spikes in response to step-and-hold inputs of different amplitudes. D Average frequency in

response to step-and-hold inputs of different amplitudes. E Phase-response curves for the first and second pairs of spikes, calculated as response to a small

pulse (0.1 ms, amplitude 1.5 (‘type 2’) and 3.7 (‘type 2’)) on top of a constant input (amplitude 0.9 (‘type 1’) and 2.2 (‘type 2’)). F Spike-triggered average in

response to a white-noise stimulus (amplitude: 0.45 (‘type 1’) and 1.1 (‘type 2’)) filtered with an exponential filter with a time constant of 1 ms.

https://doi.org/10.1371/journal.pcbi.1008673.g003
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Type 2 neuron The representing filter of a ‘type 2’ neuron (Fig 3A and 3B, red) is chosen as

gtype 2(t) = Γ3(t)(0.2 − 0.8sin(0.6t)).

Off cells We call a neuron with an inverted representing filter an ‘off cell’. So a ‘type 1 off cell’

has representing filter gtype 1,off(t) = −Γ3(t) and a ‘type 2 off cell’ has representing filter gtype

2,off(t) = −Γ3(t)(0.2 − 0.8sin(0.6t)).

Homogeneous network The representing filters of a ‘type 1’-network are equal to the ‘type 1’

neuron (half of the neurons) or minus the ‘type 1’ neuron (other half of the neurons).

Type 1 & type 2 network A quarter of the representing filters of the neurons in the network

are equal to the ‘type 1’ neuron, a quarter to minus the ‘type 1’ neuron, a quarter to the

‘type 2’ neuron and a quarter to minus the ‘type 2’ neuron.

Heterogenous network The representing filters in the heterogenous network are products of

Γ functions and oscillations. This is in order to ensure that they have realistic properties

(i.e. vanishing after tens of miliseconds), while still being able to represent different fre-

quencies. Half of the neurons have a representing filter equal to gn(t) = Γ3(t)(0.2±0.8sin

(ψt)), with ψ a random number between 0 and 1.5 and half of these using an addition and

half a subtraction. The representing filters of the other half of the population are given by

gn(t) = Γ3(t)(0.2±0.8cos(ψt)).

Spike coincidence factor. The coincidence factor Γ [38, 39] describes how similar two

spike trains s1(t) and s2(t) are: it reaches the value 1 for identical spike trains, vanishes for Pois-

sonian spike trains and negative values hint at anti-correlations. It is based on the binning of

the spike train in K ¼ T
p bins of binwidth p. The coincidence factor is corrected for the

expected amount of coincidences hNcoinci of spike train s1 with a Poissonian spike-train with

the same rate ν2 as spike train s2. It gives a measure of 1 for identical spike trains, 0 if all coinci-

dences are accidental and negative values for anti-correlated spike trains. It is defined as

G12 ¼
Ncoinc � hNcoinci

1

2
ðN1 þ N2Þ

1

N ð14Þ

in which

hNcoinci ¼ 2n2pN1 ¼
2N1N2

K

Finally, Γ is normalized by

N ¼ 1 � 2n2p ¼ 1 �
N2

K

so it is bounded by 1. Note that the coincidence factor is not symmetric nor positive, therefore

it is not a metric. It is only defined as long as each bin contains at most one event, however, we

counted the bins with double spikes as bins containing one spike. Finally, it will in general sat-

urate at a value below one, which can be seen as the spike reliability. The rate as which it

reaches this value (for instance as defined by a fit to an exponential function) can be seen as

the precision. In Section Heterogeneous networks are more efficient than homogeneous net-

works we calculated the coincidence factor between the spike-train response to each stimulus

presentation for each neuron in the network, and averaged this over neurons to obtain a �G, a
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measure for the trial-to-trial variability or the degeneracy of the code of the network (Fig 4,

left).

Mean-squared error, network activity and effciency. The Mean-Squared Error (MSE) is

for N measurements in time is defined by

MSEðs; ŝÞ ¼
XN

n¼1

ðsn � ŝnÞ
2

However, this typically increases with the stimulus amplitude and length. To assess the perfor-

mace of networks independently of stimulus amplitude, we normalized the mean-squared

error by deviding it by the mean-squared error between the stimulus and an estimate of a con-

stant zero signal (or equivalently, the MSE between the stimulus and network estimate if the

Fig 4. eterogeneous networks are more efficient and show less trial-to-trial variability. Results of two simulations using the same stimulus,

but different initial network states, in a homogeneous ‘type 1’ network (first row), a network with ‘type 1’ and ‘type 2’ neurons (second row) and

a heterogeneous network (third row). Each data point was simulated ten times and averaged. The network network activity A (first column),

spike reliability �G (second column), network MSE (third column) and efficiency E (fourth column) are shown as a function of the time constant

(τ) and amplitude of the stimulus. All networks perform well over a wide range of stimulus amplitudes and frequencies, but the heterogeneous

network is more efficient for a wider range of input parameters, in particular for fast-fluctuating low amplitue signals. The bottom row shows the

same data presented differently: every data point is the average over 10 trials of a single value of the input stimulus amplitude and τ. This shows

how the network activity, error and efficiency depend on the spike reliability �G. Parameters: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100, trials = 10. The

white star denotes the parameter values used in section Heterogeneous networks are more efficient than homogeneous networks.

https://doi.org/10.1371/journal.pcbi.1008673.g004
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network would be quiescent, MSEno spikes):

MSE ¼
MSE

MSEno spikes
: ð15Þ

An MSE close to zero means a good performance, whereas a value close to one means perfor-

mance that is comparable to a network that doesn’t show any activity. Given that the goal of

this network is to give an approximation of the input signal with the lowest number of spikes

as possible, we define the network activity A (in Hz) as

A ¼
spikes

NneuronTsim
; ð16Þ

where N is the number of neurons, and T the duration of the stimulus, and the efficiency E (in

seconds) of the network as

E ¼
1

MSE � A
: ð17Þ

Alternative measures of efficiency were also calculated (see Figs A and B in Section C of the

supplementary S1 Text), but did not significantly alter our conclusions.

Results

In this section, we will discuss the properties of the network derived in section Derivation of a

filter-network that performs stimulus estimation. We will start with the general network

behaviour, and show that it can track several inputs. Next, we will show that this framework

provides a functional interpretation of ‘type 1’ and ‘type 2’ neurons. In the following sections,

we will zoom in on the relation between trial-to-trial variability and the degeneracy of the code

used, and on the network’s robustness to noise. Finally, we will make experimental predictions

based on the network properties.

Network response

In Fig 2, the response of two different networks is shown: a homogeneous network, consisting

of 50 neurons with a positive representing filter g (see section Analysis) and 50 neurons with a

negative one and a heterogeneous network (bottom), consisting of 100 neurons with each a

different (but normalized, based on Γ-fuctions) representing filter g. Both networks can track

both constant and fluctuating inputs with different frequencies well. Note that even though

there is no noise in the network, the network response is quite irregular, like in in-vivo record-

ings. Note also that the heterogeneous network is better at tracking fast fluctuations. How well

the different types of networks respond to different types of input, what the response proper-

ties of the networks are, and what the influence of the type of filter g is, will be investigated in

the following sections.

‘Type 1’ and ‘type 2’ neurons

If we create representing filters randomly (see section Analysis), they generally fall into one of

two types: unimodal ones (only postitive or only negative) or bimodal ones (both a positive

and a negative part). In this section, we will investigate the difference between neurons using

these two types of representing filters.

In Fig 3 the response of a single neuron with a unimodal (blue) or multimodal (red) repre-

senting filter (both are normalized with respect to the input filter gin, so between t = 0 ms and t
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= Δ = 7, 5 ms) to different types of input is shown (see section Analysis). Note that these simu-

lations are for single neurons, so there is no network present, like in in-vitro patch-clamp

experiments. A neuron with a unimodal representing filter (Fig 3A and 3B, blue) shows a con-

tinuous input-frequency curve (Fig 3C and 3D). Such a neuron with a unimodal representing

filter has a unimodal Phase Response Curve (PRC) and Spike-Triggered Average (STA) (Fig

3E and 3F). A neuron with a multimodal representing filter (Fig 3A and 3B, red) does initially

only respond with a single spike to the switching on of the step-and-hold current. Only for

high current amplitudes it starts firing pairs of doublets, due to the interaction between the fil-

tering properties and the spike-frequency adaptation. It has a bimodal PRC within the doublets

(Fig 3E, solid red line), but a unimodal PRC between the doublets (Fig 3E, dashed red line).

Such a neuron with a multimodal representing filter also has a bimodal Spike-Triggered Aver-

age (Fig 3F, red line). The input-frequency curves, PRC and STA together, show that neurons

with unimodal representing filters show ‘type-1’ -like behaviour, whereas neurons with multi-

modal fitlers show ‘type 2’-like behaviour.

Homogeneous and heterogeneous networks

In the previous section, we showed that ‘type 1’ and ‘type 2’ neurons appear naturally in the

predictive coding framework we defined in section Derivation of a filter-network that per-

forms stimulus estimation. Even though the single-neuron response properties of ‘type 1’ and

‘type 2’ neurons have been studied extensively, most simulated network consist of a single or a

few homogeneous populations of leaky integrate-and-fire (‘type 1’) neurons. Here, we will

investigate the effect of heterogeneity in the response properties of single neurons on the net-

work properties and dynamics. We will compare a homogeneous network consisting of ‘type

1’-neurons, an intermediate network consisting of ‘type 1’ and ‘type 2’-neurons, and a hetero-

geneous network (see section Analysis).

Heterogeneous networks are more efficient than homogeneous networks. The trial-to-

trial variability of network responses depends critically on both the network structure and on

the input stimuli used. For instance, it has been shown that (sub)cortical responses to stimuli

with naturalistic statistics are more reliable than responses to other stimuli [40–46]. This sug-

gests that, depending on the cortical area and the input statistics, neural networks can use

codes that are highly degenerate or non-degenerate. For clarification, we define here a degen-

erate code as a code in which the stimulus can be represented with a low error by several differ-

ent population responses. Therefore, a degenerate code will show a high trial-to-trial

variability, or a low spike reliability. We hypothesize that a network consisting of neurons that

represent similar features of the common input signal (i.e. several neurons have the same rep-

resenting filter g) will use more degenerate codes than networks consisting of neurons that

represent different features of the input signal (i.e. every neuron has a different representing

filter g). So we hypothesize that homogeneous networks will show a higher trial-to-trial vari-

ability (i.e. a lower spike reliability). Here, we investigate the relation between trial-to-trial vari-

ability, network performance, input statistics and the network heterogeneity. We do this by

simulating the response of three different networks with increasing levels of heterogeneity (a

network consisting only of identical ‘type 1’ neurons, a mixed network consisting of ‘type 1’

and ‘type 2’ neurons and a heterogeneous network in which each neuron is different, see sec-

tion Analysis) to input stimuli with different statistical properties (varying the amplitude and

the autocorrelation time constant τ).

In Fig 4, we simulated three networks (see also section Analysis): a homogeneous network

(first row), a mixed network (second row, consisting for 50% of ‘type 1’ neurons (positive and

negative filters) and for 50% of ‘type 2’ neurons (positive and negative filters) and a
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heterogeneous network (third row). We varied both the amplitude and the time constant of

the input signal (by filtering the input forwards and backwards with an exponential filter). To

determine the level of degeneracy of the code the network uses, we performed the following

simulations: we computed the network response to the same stimulus (T = 2500 ms) twice, but

before this stimulus started, we gave the network a 500 ms random start-stimulus. Note that

there was no noise in the network except for the different start-stimuli. We calculated four net-

work performance measures:

Network Activity A (Hz) We assessed the total network activity (Fig 4, first column), as the

average firing frequency per neuron (see section Analysis).

Spike Reliability Γ The coincidence factor Γ [38, 39] (see section Analysis) describes how sim-

ilar two spike trains are: it reaches a value of 1 for identical spike trains, vanishes for Poisson

spike trains and negative values hint at anti-correlations. We calculated the coincidence fac-

tor between the spike-train response to each stimulus presentation for each neuron in the

network, and averaged this over neurons to obtain �G, a measure for the trial-to-trial vari-

ability of the network (Fig 4, second column). If the network uses a highly degenerate code,

the starting stimulus will put it in a different state just before the start of the stimulus used

for comparison, and the trial-to-trial variability will be high (low �G). On the other hand, if

the network uses a non-degenerate code, the starting stimulus will have no effect, and the

trial-to-trial variability will be low (high �G). Therefore, �G (Fig 4, left) represents the non-

degeneracy of the code: a �G close to zero corresponds to a high degeneracy and a high trial-

to-trial variability, and a �G close to one a low degeneracy and a low trial-to-trial variability.

Error MSE To assess the performace of the network, we calculated the normalized mean-

squared error (MSE (Fig 4, third column), see section Analysis), so that a value of MSE
close to zero means a good network performance, and a value close to one means perfor-

mance that is comparable to a network that doesn’t show any activity.

Efficiency E (s) Given that the goal of this network is to give an approximation of the input

signal with the lowest number of spikes as possible, we define the network efficiency (in sec-

onds) as the inverse of the product of firing rate and the error (see section Analysis), so that

the efficiency decreases with both the network activity and the error (MSE (Fig 4, fourth

column).

In Fig 4, it is shown that all three networks (homogeneous, type 1 & type 2 and heteroge-

neous, respective rows) perform well (small error, second column) over a wide range of stimu-

lus amplitudes and frequencies. The performance of the network depends strongly on the

heterogeneity of the network and the characteristics of the stimulus: heterogeneous networks

show a smaller MSE (second column), especially for fast-fluctuating (small τ) input. However,

this comes at the cost of a higher activity A (first column), in particular at larger stimulus

amplitudes. If we summarize this by the efficiency E (fourth column), we see that the heteroge-

neous network is more efficient, in particular for low amplitude and fast fluctuating stimuli.

Alternative measures of efficiency were also calculated (see section C of the supplementary S1

Text), but did not significantly alter our conclusions.

The amplitude of the stimulus relative to the amplitudes of the neural filters and the amount

of neurons is important. This can be understood using a simplified argument: to represent a

high-amplitude stimulus requires all the neurons to fire at the same time, which makes the

code highly non-degenerate: Since the filter amplitudes are between 1 and 2, a stimulus with

an amplitude (standard deviation) of 20 would need an equivalent number of the N = 100
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neurons (the ones with a positive filter) to spike at the same time to reach the amplitude of the

peaks. This results in a reliable, non-degenerate code (high �G). Alternatively, when a low-

amplitude stimulus is represented by many neurons with relatively high-amplitude filters, the

network can ‘choose’ which neuron to use for representing the input, thereby making the code

degenerate (low �G). This argument does not take into account the temporal aspect of the rep-

resenting filters (i.e. that each spike contributes an estimate into the future), the fact that repre-

senting filters can have positive and negative parts and the implemented spike-frequency

adaptation, but the argument does show that the stimulus amplitude needs to be considerably

lower than the sum of the absolute value of all the representing filters in the network.

Note that none of the networks is very good at responding to very low stimulus amplitudes:

this is because most fluctuations are smaller than the filter amplitudes. This is reflected in the

spike reliability �G (third column). In a homogeneous network consisting of identical neurons

representing a low amplitude input, there is no difference between a spike of neuron A or one

of neuron B, making the code highly degenerate (low �G). When the amplitude of the stimulus

increases, more neurons are recruited to represent the stimulus, thereby increasing both the

network activity A and the spike reliability �G. When the stimulus amplitude becomes too high

to represent properly, both the error MSE and �G increase sharply (bottom left), and the effi-

ciency E decreases (bottom right). Therefore, in our framework, a high trial-to-trial variability,

or a low spike reliability �G is a hallmark of an efficiently coding network, and a strong decrease

of the trial-to-trial variability (an increase in �G) is a sign of a network starting to fail to track

the stimulus. This happens for lower amplitudes for the heterogeneous network than for the

homogeneous network.

In conclusion, all three networks can track stimuli with a wide range of parameters well,

but the heterogeneous network performs shows a lower error for an only small increase in

activity, therefore the heterogeneous network is more efficient than the homogeneous net-

work. However, the homogeneous network can track higher amplitude stimuli, in particular

slowly fluctuating ones. The efficiency of the code is high for intermediate values for the

trial-to-trial variability: a very low trial-to-trial veriability (high �G) corresponds with a low

efficiency, but so does a very high trial-to-trial variability (�G close to 0). So in our frame-

work, an high to intermediate trial-to-trial variability is a hallmark of an efficiently coding

network.

Heterogeneous networks are more robust against correlated noise than homogeneous

networks. In the previous section it was shown that heterogeneous networks are more effi-

cient than homogeneous networks in encoding a wide variety of stimuli. However, these net-

works did not contain any noise. It has been shown that cortical networks receive quite noisy

input, which is believed to be correlated between neurons [47–49]. Therefore, we will test in

this section how robust homogeneous and heterogeneous networks are against correlated

noise.

To test for robustness against noise, we chose a stimulus that all networks responded well

to: amplitude = 10, τ = 15 ms (see the white start in Fig 4). Noise was added in a ‘worse case

scenario’: it had the same temporal properties as the stimulus (i.e. it was white noise filtered

with the same filter with τ = 15 ms) and several neurons received the same noise. Two parame-

ters were varied: the amplitude of the noise, and the correlations between the noise signals that

different neurons receive. This was implemented as follows: next to the stimulus, every neuron

received a noise signal and we varied the relative amplitude of the noise signal (anoise/asignal).

Correlations between the noise signals for different neurons were simulated by only making a

limited amount of noise copies, that were distributed among the neurons. So in Fig 5, the top

horizontal row of each axis corresponds to the situation in which each neuron receives an
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independent noise signal, the bottom horizontal row of each axis represents the situation

where all neurons receive the same noise signal (and hence there is from the network’s point

of view no difference between signal and noise) and the leftmost column of each axis corre-

sponds to the situation without noise.

Fig 5. Heterogeneous networks are more robust against noise. Network activity A (first column), network error �MSE (second column) and efficiency E (third column)

of a homogeneous network (top row), a network with ‘type 1’ and ‘type 2’ neurons (middle row) and a heterogeneous network (bottom row). Next to the stimulus, each

neuron in the network was presented with a noise input, with a varying relative amplitude (horizontal axis) and number of copies of the noise signal (vertical axis; 1 copy

means all neurons receive the same noise, 100 copies means all neurons receive independent noise). Network: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100. Stimulus: amplitude = 10,

τ = 15 ms. Noise: τ = 15 ms.

https://doi.org/10.1371/journal.pcbi.1008673.g005
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In Fig 5, it is shown that all three networks are very effective in compensating for indepen-

dent noise by increasing their firing rate. Note that the stimulus and the noise add quadrati-

cally, so that a signal with amplitude 10 and noise with amplitude 12 (relative amplitude 1.2)

add together to a total input of amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 122
p

¼ 15:5 for each neuron. However, the

firing rate of a network with signal amplitude = 10 and noise amplitude = 12, is much higher

than the firing rate of a network that receives a signal with amplitude 15.5 and no noise (com-

pare Figs 4 and 5). So the networks increase their activity both due to the increased amplitude

of the input, and in order to compensate for noise. The bottom row of each subplot in Fig 5

corresponds to a simulation where all neurons in the network recieve the same noise signal. In

this case, it is impossible for the network to distinguish between signal and noise. In the row

above, only two noise copies are present, in the row above that five, and so on. The homogene-

neous network can handle higher amplitudes of independent noise (top part of each subplot)

before the representation breaks down (MSE > :2), but all networks are able to compensate

for independent noise amplitudes up to equal to the signal amplitude (signal-to-noise

ratio = 1). The heterogeneous network however, is better at dealing with correlated noise (bot-

tom part of each subplot): it shows a lower error and higher efficiency for when there are few

copies of the noise signal (alternative measures of efficiency were also calculated (see Fig A in

the supplementary S1 Text), but did not significantly alter our conclusions). The type 1’& type

2 network appears to combine the properties of both networks: it has a low error in both repre-

senting independent noise and at representing correlated noise. These differences in robust-

ness against noise probably have a relation with ambiguities in degenerate codes, as will be

discussed in the Conclusion and discussion.

Predictions for experimental measurements

In the previous sections, we derived a predictive coding framework and assessed the efficiency

and robustness of representing a stimulus of homogeneous and heterogeneous networks. In

this section, we will simulate often-used experimental paradigms, to assess what can be

expected from such measurements with respect to the effect of the predictive coding frame-

work on correlation structures.

Signal and noise correlations. The predictive coding framework that we derived in sec-

tion Derivation of a filter-network that performs stimulus estimation predicts a specific corre-

lation structure: neurons with similar filters g should show positive signal correlations

(because they use similar input filters), but negative noise (also termed spike count) correla-

tions (because they have negative lateral connections). In many experimental papers, noise

and signal correlations between neurons are measured [50, 51] (for an overview, see [52]).

However, the methods authors use vary strongly: the amount of repetitions of the stimulus var-

ies from tens to hundreds, the windows over which correlations are summed vary from tens of

miliseconds to hundreds of miliseconds and the strength of the stimulus (i.e. network

response) varies from a few to tens of Hz. All these parameters strongly influence the conclu-

sions one can draw about correlations between (cortical) neurons. In order to be able to com-

pare the correlations this framework predicts with experiments, we performed the following

simulation (based on [51], Fig 6): we chose a 20 s. stimulus (exponentially filtered noise, τ = 15

ms), and showed a network of N = 100 neurons 300 repetitions. We chose the stimulus ampli-

tude so that the network response was around 8 Hz. In order to be able to compare neurons

with similar filters and neurons with different filters, we used the ‘type 1 & type 2’ network (see

section Analysis). To assess the effects of shared noise, each neuron received a noise signal that

was the sum of an independent noise signal, and a noise signal that was shared between 10

neurons (amplitude signal = 2.7, amplitude independent noise = 0.5, amplitude correlated
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noise = 0.5). In this simulation, we can compare neurons that share a noise source, and neu-

rons that don’t.

In Fig 6, the signal and noise correlations between ‘type 1’ and ‘type 2’ and ‘on’ and ‘off’

cells (see section Analysis) and Fig 3) are shown. We ran a simulation consisting of 300 trials,

in which the same signal, but a different noise realization was used. We used the same method

as [49] (Note that the spike-count correlation is proportional to the area under the noise cross-

correlogram in this method):

Fig 6. Signal and noise correlations in a network with ‘type 1’ and ‘type 2’ neurons. (see section Analysis and Fig 3). Next to the stimulus, each

neuron in the network was presented with a noise input (of which half the power was independent, and half was shared with a subset of other

neurons). A) Signal correlations between ‘type 1’ on-cells (solid blue line) and between a ‘type 1’ on and off cell (dashed blue line). B) Noise

correlations between ‘type 1’ on-cells (solid blue line) and between a ‘type 1’ on and off cell (dashed blue line) receiving independent noise. C) Noise

correlations between ‘type 1’ on-cells (solid blue line) and between a ‘type 1’ on and off cell (dashed blue line) receiving shared noise. D) Signal

correlations between ‘type 2’ on-cells (solid red line) and between a ‘type 2’ on and off cell (dashed red line). E) Noise correlations between ‘type 2’

on-cells (solid blue line) and between a ‘type 2’ on and off cell (dashed red line) receiving independent noise. F) Noise correlations between ‘type 2’

on-cells (solid red line) and between a ‘type 2’ on and off cell (dashed red line) receiving shared noise. D) Signal correlations between a ‘type 1’ and a

‘type 2’ on-cell (solid purple line) and between a ‘type 1’ on and a ‘type 2’ off cell (dashed purple line). E) Noise correlations between a ‘type 1’ on-cell

and a ‘type 2’ on-cell (solid purple line) and between a ‘type 1’ on and a ‘type 2’ off cell (dashed purple line) receiving independent noise. F) Noise

correlations between a ‘type 1’ on-cell and a ‘type 2’ on-cell (solid purple line) and between a ‘type 1’ on and a ‘type 2’ off cell (dashed purple line)

receiving shared noise. Network parameters: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100, Ntrial = 300. Stimulus: τ = 15 ms, amplitude = 2.7. Noise: τ = 15 ms,

amplitude independent noise = 0.5, amplitude shared noise = 0.5.

https://doi.org/10.1371/journal.pcbi.1008673.g006
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• For the signal correlations (Fig 6, first column), we calculated the average spike train over

the 300 trials and calculated the cross-correllogram, normalized to the total average number

of spikes.

• For the noise correlations (Fig 6, second column), we subtracted the cross-correlogram of

the averaged spike trains (see above) from the cross-correlograms averaged over all trials.

• For the noise correlations, shared noise condition (Fig 6, third column), we simply calcu-

lated the noise correlations as above for two neurons that shared a noise source.

We performed this correlation analysis for two ‘type 1’ neurons (Fig 6, top row, blue), for

two ‘type 2’ neurons (Fig 6, middle row, red) and for a ‘type 1’ and a ‘type 2’ neuron (Fig 6, bot-

tom row, purple). We performed the correlation analysis also between two neurons with the

same representing filter (solid line) and with a neuron and a neuron with an inverted repre-

senting filters (‘off-cells’, dashed lines).

We start by looking at cells with similar filtering properties. In Fig 6A, we show that ‘type 1’

neurons show positive signal correlations with other ‘type 1’ neurons (solid blue line), and nega-

tive signal correlations with their off-cells (dashed blue line). As expected, ‘type 1’-neurons show

negative noise correlations with other ‘type 1’-neurons (Fig 6B, solid blue line), and positive noise

correlations with their off-cells as long as noise is independent (dashed blue line). When neurons

share a noise source (Fig 6C), the noise correlations are positive, but show a small negative deflec-

tion around zero lag for on cells (solid blue line). For ‘type 2’ neurons, we can show similar con-

clusions: two on-cells have positive signal correlations (Fig 6D, solid red line), negative noise

correlations for independent noise ((Fig 6E, solid red line), and positive noise correlations with a

negative peak around zero for shared noise ((Fig 6F, solid red line). An on and an off cell show

negative signal correlations (Fig 6D, dashed red line), but hardly any noise correlations for inde-

pendent noise (Fig 6E, dashed red line) or shared noise (Fig 6F, dashed red line).

We now focus at cells with different filtering properties. ‘Type 1’ and ‘type 2’ on cells show

positive signal correlations (Fig 6G), solid purple line). Note that the peak is shifted towards

positive lags, meaning that the ‘type 2’ neurons spike earlier in time than ‘type 1’ neurons.

‘Type 1’ and ‘type 2’ on cells show only small noise correlations for independent noise (Fig 6H,

solid purple line). When noise is shared (Fig 6I, solid purple line), a small deflection at zero lag

can be seen.

Under experimental conditions, correlations are often summed over a window of about 10

miliseconds or more. Therefore, we conclude that even though the predictive coding frame-

work predicts negative noise correlations between similarly tuned neurons, and positive noise

correlations between oppositly tuned neurons, these would be very hard to observe experimen-

tally. For shared noise, we expect to see noise correlations with a similar sign as the signal cor-

relations, but with small deflections at small lags, as shown in Fig 6C, 6F and 6I.

‘Type 2’ neurons show more coherence with network activity. To examine how the two

different neuron types couple to the network activity in response to a temporally fluctuating

stimulus, we study the spike coherence with a simulated Local Field Potential (LFP). In Fig 7,

we analyse the network activity of the different types of neurons, using the ‘type 1 & type 2’-

network (see section Analysis and Fig 3). Next to the stimulus, each neuron in the network

was presented with a noise input (of which half the power was independent, and half was

shared with a subset of other neurons). Network: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100. Stimulus: τ
= 15 ms, amplitude = 2.7. Noise: τ = 15 ms, amplitude independent noise = 0.5, amplitude

shared noise = 0.5. For the network activity, each spike was convolved with a Gaussian kernel

(σ = 6 ms). Looking at the network activity (Fig 7A and 7B), it is clear that ‘type 2’ neurons

(red line) respond in a much more synchronized manner (high peaks), and ‘type 1’ neurons
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(blue line) respond in a much more continuous way. We quantified this, by convolving each

spike with a Gaussian kernel (σ = 6 ms), and calculating both the correlations between the net-

work activity and that of a single neuron (Fig 7C), and by calculating the ‘spike-triggered net-

work activity’ [53] (Fig 7D). From this it is clear, that ‘type 2’ neurons show a much stronger

coupling to the overall network activity (making them ‘chorists’) than ‘type 1’ neurons (mak-

ing them ‘soloists’). So we predict that ‘type 2’ neurons are more coherent with the network

activity/LFP than ‘type 1’ neurons.

Conclusion and discussion

Biological data often show a strong heterogeneity: neural properties vary considerably from

neuron to neuron, even in neurons from the same network [1–5], but also see [54]. Theoretical

networks, however, often use a single or only a very limited amount of ‘cell types’, where neu-

rons from the same cell type have the same response properties. In order to investigate the

Fig 7. Network activity in a ‘type 1 & type 2’ network. (see section Analysis and Fig 3). A) Average activity of the whole network (black), ‘type 1

on cells’ (blue line) and ‘type 2 on cells’ (red line). B) Spike response of the network. C) Average cross-correllogram between the network activity

and ‘type 1, on’ cells (blue line) or ‘type 2, on’ cells (red line). D) Spike-triggered network activity for ‘type 1, on’ cells (blue line) or ‘type 2, on’

cells (red line). Next to the stimulus, each neuron in the network was presented with a noise input (of which half the power was independent, and

half was shared with a subset of other neurons). Network: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100. Stimulus: τ = 15 ms, amplitude = 2.7. Noise: τ = 15

ms, amplitude independent noise = 0.5, amplitude shared noise = 0.5. For the network activity, each spike was convolved with a Gaussian kernel

(σ = 6 ms).

https://doi.org/10.1371/journal.pcbi.1008673.g007
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effects of network heterogeneity on neural coding, we derive a filter network that efficiently

represents its input from first principles. We start with the decoding instead of with the encod-

ing (this is not common, but has been done before [55]), and formulate a spike rule in which a

neuron only fires a spike if this reduces the mean-squared error between the received input

and a prediction of the input based on the output spike trains of the network, implementing a

form of Lewicki’s ‘matching pursuit’ [56]. Linear decoding requires recurrent connectivity, as

neurons representing different features in the input should inhibit one another to alllow linear

decoding, something that has been shown in experiments [57]. A similar framework has been

formulated in homogeneous networks with integrate-and-fire neurons, the so-called ‘Spike-

Coding Networks’(SCNs) [58–61] and in networks using conductance-based models [62].

Effectively, this network performs a form of coordinate transformation [63]: each neuron rep-

resents a particular feature of the input, and only by combining these features the complete

stimulus can be reconstructed. This network is related to autoencoders, in that it finds a sparse

distributed representation of a stimulus by using an over-complete set of basis functions in the

form of a feed-forward neural-network. The homogeneous integrate-and-fire networks in this

framework have been shown to operate in a tightly balanced excitatory-inhibitory regime,

where a large trial-to-trial variability coexists with a maximally efficient code [64]. Because of

their linear read-out and filtering, only linear computations can be performed in this frame-

work, which leaves open the questions whether the results presented here also hold for non-

linear network computations [65, 66]. Recently, the SCN framework has been extended to

include non-linear computations [67]. It is an interesting question to see whether the conclu-

sions remain the same for non-linear computations.

With the derived filter network, we are able to study both single neuron and network prop-

erties. On the single neuron level, we find that the single-neuron response properties are equiv-

alent to those of ‘type 1’ and ‘type 2’ neurons (for an overview see [8, 9, 68]): Neurons using

unimodal representing filters showed the same behaviour as ‘type 1’ cells (continuous input-

frequency curve [6], unimodal Phase-Response Curve (PRC) [7, 69] and a unimodal Spike-

Triggered Average (STA) [70]), whereas neurons using bimodal filters correspond to ‘type 2’

cells (discontinuous input-frequency curve, bimodal PRC and a bimodal STA). This should be

the case, as the STA is a result of the filtering properties of the neuron, and proportional to the

derivative of the PRC [71]. In this framework, neurons with bimodal representing filters will

also send bimodal Post-Synaptic Potentials (PSPs) to other neurons, so excitatory post-synap-

tic potentials (EPSPs) with an undershoot or inhibitory post-synaptic potentials (IPSPs) with a

depolarizing part. This might sound counterintuitive, because we often think of EPSPs as hav-

ing a purely depolarizing effect on the membrane potential of the postsynaptic neuron, and of

IPSPs as having a purely hyperpolarizing effect. However, a post-synaptic potential might have

both excitatory and inhibitory parts, depending on the type of synapse and the ion channels

present in the membrane. For instance, an undershoot after an EPSP can be observed as an

effect of slow potassium channels [17] such as IM [16], IA [15] or IAHP [72]. IPSPs can have

direct depolarizing effects when the inhibition is shunting [73], [74], or due to for instance dei-

nactivation of sodium channels, or slow activation of other depolarizing channels such as Ih.

The observation that neurons using unimodal representing filters show ‘type 1’ behaviour and

neurons using bimodal representing filters show ‘type 1’ behaviour gives a functional interpre-

tation of these classical neuron types: ‘type 1’ cells are more efficient at representing slowly

fluctuating inputs, whereas ‘type 2’ cells are made for representing transients and fast-fluctuat-

ing input. This can also be observed in the network activity: ‘type 2’ neurons show a much

stronger coupling to the overall network activity (making them ‘chorists’ [53]) than ‘type 1’

neurons (making them ‘soloists’). This is expected, as ‘type 1’ neurons are generally harder to

entrain [69], whereas ‘type 2’ neurons generally show resonant properties [75]. So we predict
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that ‘type 2’ neurons are more coherent with the network activity (local field potential) than

‘type 1’ neurons.

We compare both the functional coding properties and the activity of networks with differ-

ent degrees of heterogeneity. We found that all networks in this framework can respond effi-

ciently and robustly to a large variety of inputs (varying amplitude and fluctuation speed)

corrupted with noise with different properties (ampitude, fluctuation speed, correlation

between neurons). All networks show a high trial-to-trial variability, that decreases with the

network efficiency. So we confirmed that in our framework trial-to-trial variability is not nec-

essarily a result of noise, but is actually a hallmark of efficient coding [76–78]. In-vivo record-

ings typically show strong trial-to-trial variability between spike trains from the same neuron,

and spike trains from individual neurons are quite irregular, appearing as if a Poisson process

has generated them. In in-vitro recordings on the contrary, neurons show very regular

responses to injected input current, especially if this current is fluctuating ([79, 80]. It is often

argued that this is due to noise in the system and therefore that the relevant decoding parame-

ter should be the firing rate over a certain time window (as opposed the timing of individual

spikes, [81], but see also [82]). Here, we show in noiseless in-vivo-like simulations that the gen-

erated spike trains are irregular and show large trial-to-trial variability, even though the precise

timing of each spike matters: shifting spike times decreases the performance of the network.

Therefore, this model shows how the intuitively contradictory properties of trial-to-trial vari-

ability and coding with precise spike times can be combined in a single framework. Trial-to-

trial variability is here a sign of degeneracy in the code: the relation between the network size,

filter size and homogeneity of the network versus the amplitude determines whether there is

strong or almost no trial-to-trial variability. Moreover, we show that the trial-to-trial variability

and the coding efficiency depend on the frequency content of the input, as has been shown in

several systems [40, 43, 45, 79].

In our framework, heterogeneous networks are more efficient than homogeneous net-

works, especially in representing fast-fluctuating stimuli: heterogeneous networks represent

the input with a smaller error and using fewer spikes, in line with earlier research that found

that heterogeneity increases the computational power of a network [23, 24], especially if they

match the stimulus statistics [83]. Moreover, heterogeneous networks are not only more effi-

cient, they are also more robust against correlated noise (noise that is shared between neurons)

than homogeneous networks, in line with previous results [25, 84, 85]. This might be the result

of heterogeneous networks using a less degenerate code: these networks are better at whitening

the noise signal, because each neuron projects the noise onto a different filter, thereby effec-

tively decorrelating the noise. Put differently, the heterogeneous network projects the signal

and noise into a higher-dimensional space [63], thereby more effectivily projecting noise and

signal into different dimensions. Homogeneous networks are better at compensating for inde-

pendent noise. This is probably due to a combination of two factors: 1) a homogeneous net-

work being better at compensating for erronous spikes (a ‘mistake’ in the estimate is easier to

compensate if the same but negative filter exist than if this doesn’t exist) and 2) a homogeneous

network is better at representing high-amplitude signals. The optimal mix of neuron types

probably depends on the stimulus statistics and remains a topic for further study. The effects

of neural diversity on computational properties of networks remains an open question (for a

review, see [86]). It has for instance been shown that neural diversity can improve network

information transmission [87] and results in efficient and robust encoding of stimuli by a pop-

ulation [4]. Recently, it has been shown that other forms of heterogeneity also result in advan-

tages for network computation: diversity in synaptic or membrane time constants increases

stability and robustness in learning [88] and diversity in network connectivity enables net-

works to track their input more rapidly [89], improves network stability and can lead to better
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performance [90]. So diversity in network properties has shown to result in computational

advantages on several levels and for different functions.

The predictive coding framework predicts a specific correlation structure between neurons:

negative noise correlations between neurons with similar tuning, and positive noise correla-

tions between neurons with opposite tuning. This may appear to be contradictory to earlier

results [91, 92]. However, as neurons with similar tuning most likely recieve inputs from com-

mon sources in previous layers, these neurons will also share noise sources, resulting in corre-

lated noise between neurons. We showed that in this situation, the negative noise correlations

are only visible as small deflections of effectively positive correlations. It has been argued that

in order to code efficiently and effectively, recurrent connectivity should depend on the statis-

tical structure of the input to the network [93] and that noise correlations should be approxi-

mately proportional to the product of the derivatives of the tuning curves [94], although these

authors also concluded that these correlations are difficult to measure experimentally. Others

suggest that neurons might be actively decorrelated to overcome shared noise [95]. We con-

clude that even though different (optimal) coding frameworks make predictions about correla-

tion structures between neurons, the opposite is not true: a single correlation structure can

correspondd to different coding frameworks. So measuring correlations is not sufficient

(although informative) to determine what coding framework is used by a network [35, 96, 97].

Supporting information

S1 Text. Section A: A word on notation. Section B: Technical notes. Section C: Efficiency

measures, including Supplemental Figures A and B. Fig A: Comparison of efficiency mea-

sures Results of two simulations using the same stimulus, but different initial network states, in

a homogeneous ‘type 1’ network (first row), a network with ‘type 1’ and ‘type 2’ neurons (sec-

ond row) and a heterogeneous network (third row). Three alternative efficiency measures are

compared: 1) the network efficiency multiplied by the stimulus amplitude (Ea, see supp. eq.

(10), first column), 2) the network efficiency multiplied by the stimulus power (Ea2, see supp/

eq. (11), second column) and 3) the network cost (C, see supp. eq. (12), third column). The bot-

tom row shows how the network efficiency or cost depends on the spike reliability �G. Parame-

ters: Δ = 7, 5 ms, ν = μ = 1, 5, N = 100, #trials = 10. The white star denotes the parameter values

used in section ‘Heterogeneous networks are more efficient than homogeneous networks’ of

the main text. Fig B: Comparison of efficiency measures for the noise simulations Efficiency

normalized by amplitude Ea (first column), amplitude squared Ea2 (second column) and cost

(third column) of a homogeneous network (top row), a network with ‘type 1’ and ‘type 2’ neu-

rons (middle row) and a heterogeneous network (bottom row). Next to the stimulus, each

neuron in the network was presented with a noise input, with a varying relative amplitude (hor-

izontal axis) and number of copies of the noise signal (vertical axis; 1 copy means all neurons

receive the same noise, 100 copies means all neurons receive independent noise). Network:

Δ = 7, 5 ms, ν = μ = 1, 5, N = 100. Stimulus: amplitude = 10, τ = 15 ms. Noise: τ = 15 ms.

(PDF)
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