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B I O P H Y S I C S

Topological tuning of DNA mobility in entangled 
solutions of supercoiled plasmids
Jan Smrek1, Jonathan Garamella2, Rae Robertson-Anderson2, Davide Michieletto3,4*

Ring polymers in dense solutions are among the most intriguing problems in polymer physics. Because of its natural 
occurrence in circular form, DNA has been extensively used as a proxy to study the fundamental physics of ring 
polymers in different topological states. Yet, torsionally constrained—such as supercoiled—topologies have been 
largely neglected so far. The applicability of existing theoretical models to dense supercoiled DNA is thus unknown. 
Here, we address this gap by coupling large-scale molecular dynamics simulations with differential dynamic micros-
copy of entangled supercoiled DNA plasmids. We find that, unexpectedly, larger supercoiling increases the size of 
entangled plasmids and concomitantly induces an enhancement in DNA mobility. These findings are reconciled 
as due to supercoiling-driven asymmetric and double-folded plasmid conformations that reduce interplasmid 
entanglements and threadings. Our results suggest a way to topologically tune DNA mobility via supercoiling, thus 
enabling topological control over the (micro)rheology of DNA-based complex fluids.

INTRODUCTION
The DNA not only is the central molecule of life but also is now 
increasingly used for biocompatible and responsive materials—such 
as DNA hydrogels (1) and origami (2)—with applications in medicine 
and nanotechnology (3). One feature that renders DNA a unique 
polymer is its ability to encode information, and this is now extensively 
leveraged to make complex structures (3, 4) and even self-replicating 
materials (5); another feature that distinguishes DNA from other 
synthetic polymers is its unique geometry, i.e., that of a (right-handed) 
helix with a well-defined pitch, which entails that DNA can display 
both bending and torsional stiffness (6). Unlike DNA’s information-
encoding capabilities, its geometrical features are far less exploited 
to create synthetic materials. In fact, DNA is, at present, largely used 
to make up biopolymer complex fluids in its simplest geometrical 
forms, i.e., that of a linear or relaxed circular (torsionally uncon-
strained) molecule (7–9). Despite this, most naturally occurring DNA 
is under torsional and topological constraints, either because it is 
circular and non-nicked, as in bacteria (10), or because of the bind-
ing of proteins that restrict the relative rotation of base pairs, as in 
eukaryotes (11–13). The torsional stress stored in a closed DNA mole-
cule cannot be mechanically relaxed (in the absence of topoisomerase 
proteins) but only rearranged or converted into bending to minimize 
the overall conformational free energy (14, 15). This entails that 
supercoiling—the linking deficit between sister DNA strands with 
respect to their relaxed state—can carry conformational informa-
tion (16) that can affect the static and dynamic properties of DNA 
plasmids (14) and even regulate gene transcription (17). Here, we 
propose that supercoiling may also be leveraged to tune the dynamics 
of DNA plasmids in solution, thus potentially allowing fine control 
over the rheology of DNA-based complex fluids in a way that is 
orthogonal to varying DNA length (18), concentration (19), or archi-
tecture (7, 20). Last, entangled solutions of DNA plasmids are inter-
esting not only because of their potential applications in bio- and 

nanotechnology but also because they enable us to study fundamental 
questions on the physics of ring polymers—one of the most active 
fields of soft matter research (21–29)—due to the extremely precise 
control over DNA lengths and topology (7–9) and access to sophis-
ticated visualization techniques (30).

To characterize the effect of DNA supercoiling on the rheology 
of entangled solutions of plasmids, here, we perform large-scale molec-
ular dynamics simulations of entangled DNA plasmids (Fig. 1, A to C), 
modeled as coarse-grained twistable chains (31). We find that while 
isolated DNA plasmids typically display a collapse with increasing 
levels of supercoiling [estimated via simulations (32) or gel electro-
phoresis (33)], here, we show that entangled DNA plasmids typically 
increase their average size with supercoiling. We further find that 
despite this swelling, larger supercoiling is accompanied by an en-
hanced mobility of the plasmids. This finding is counterintuitive and 
in marked contrast with standard polymer systems (34) in which 
larger polymer sizes correlate with slower diffusion. This speedup is 
also observed in differential dynamic microscopy (DDM) experi-
ments performed on entangled plasmids with different supercoiling 
degrees. Last, we use sophisticated techniques involving minimal 
surface construction and primitive path analysis (PPA) to quantify 
the abundance of threadings and entanglements between plasmids 
in solution and find that larger supercoiling decreases both of these 
topological constraints, in turn explaining the enhanced mobility.

We argue that our results will be key to enabling the design of 
complex fluids with rheology that can be precisely tuned using a 
combination of DNA length, concentration, topology, and super-
coiling. Beyond providing blueprints for realizing the next genera-
tion of biomimetic DNA-based materials, our results can also shed 
light into the dynamics of DNA in vivo.

RESULTS
Computational model for DNA plasmids
DNA is represented as a twistable elastic chain (31) made of beads 
of size b = 2.5 nm =7.35 base pairs (bp) connected by finitely exten-
sible springs and interacting via a purely repulsive Lennard-Jones 
potential to avoid spontaneous chain crossing (see Fig. 1) (35). In 
addition to these potentials, a bending stiffness of lp = 50 nm (6) is 
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set via a Kratky-Porod term and two torsional springs (dihedrals) 
constrain the relative rotation of consecutive beads, , at a user-
defined value 0. The torsional angle between consecutive beads  
is determined by decorating each bead with three patches, which 
provides a reference frame running along the DNA backbone. We 
finally impose a stiff harmonic spring to constrain the tilt angle  = 
 so to align the frame with the backbone, i.e., along its local tangent 
(see Fig. 1D). The simulations are performed at fixed monomer 
density ​ ​​b​ 3 ​  =  0.08​ (corresponding to a volume fraction  = 4% and 
/* ≃ 16 with * = 0.26%) and by evolving the equation of motion for 
the beads coupled to a heat bath in LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) (see Materials and Methods) (36).

The user-defined angle 0 directly determines the thermodynam-
ically preferred pitch of the twistable chains as p = 2/0, and in turn, 
this fixes the preferred linking number to Lk = M/p, where M is the 
number of beads in the plasmid. The twist is enforced by a harmonic 
potential with stiffness t = 50b = 125 nm comparable with the 
torsional persistence length of DNA (6). In this model, the degree of 
supercoiling is defined as  ≡ Lk/M = 1/p. The twist is set by initial-
izing the patchy polymer as a flat ribbon and by subsequently slowly 
increasing the stiffness of the potential associated with the twist degree 
of freedom. Ultimately, by imposing the angle 0, one can achieve 
the desired  (which may be zero, if 0 = 0 or p = ∞). It should be 
noted that we will also consider nontorsionally constrained plasmids 
in which the torsional stiffness is set to t = 0 mimicking nicked 
circular plasmids. We recall that for supercoiled circular DNA, the 
exchange of local torsion (twist Tw) into bending (writhe Wr) must 
obey the White-Fuller-Călugăreanu (WFC) (37) theorem, i.e., Lk = 
Tw + Wr, thus conserving the linking number Lk (and thus the super-
coiling  = Lk/M) between the two DNA single strands (Fig. 1, B to D). 
Notice that our polymer model is symmetric with respect to 

supercoiling; we will thus refer to  without specifying its sign. Last, by 
simulating an ensemble of linear DNA molecules, we have computed 
the entanglement length for this model to be Me,linear = 54 ± 2 beads 
(about 400 bp) via standard PPA (see the Supplementary Materials).

Supercoiling increases the average size of DNA plasmids 
in entangled conditions
The conformational properties of polymers in solution are typically 
studied in terms of the gyration tensor

	​​ R​T​ ​  = ​   1 ─ 
2 ​M​​ 2​

 ​ ​∑ i,j=1​ M  ​​(​r​i​ 
​ − ​r​j​ 

​ ) (​r​i​ 
​ − ​r​j​ ​)​	 (1)

where ​​r​i​ 
​​ denotes the coordinate  of the position of bead i. The 

(square) radius of gyration is then defined as the trace, ​​R​g​ 2 ​  ≡  Tr [ ​R​ T​​]​. 
We find that the time and ensemble average of ​​R​g​ 2 ​​ scales as ​〈 ​R​g​ 2 ​ 〉  ∼ ​ L​​ 2​​, 
with metric exponents  ≃ 3/5 for highly supercoiled plasmids (see 
Fig. 2A and fig. S1). Instead, relaxed chains display a short chain 
regime with  ≃ 1/2 (M ≤ 200) and a crossover to smaller values of 
 ≃ 0.35 for larger chains (M ≥ 400). These exponents suggests that 
relaxed plasmids in entangled solutions assume conformations sim-
ilar to the ones of standard ring polymers (38), i.e.,  = 1/2 for small 
M/Me,linear ≲ 10 and  ≃ 1/3 for large M/Me,linear ≳ 10 (note that for 
our longest plasmids M/Me,linear ≃ 16; hence, we capture the cross-
over to the compact regime). On the other hand, supercoiling-driven 
writhing induces stronger self-interactions that are no longer screened 
by the neighbors (see Fig. 1, B and C); in this case, we thus observe 
a larger metric exponent  compatible with that of a self-avoiding 
walk. In the asymptotic limit M → ∞, we expect dense systems of 
supercoiled plasmids to fall into the universality class of ideal 
(annealed) branched polymers (39, 40), for which  = 1/3. This is 
the same exponent expected for very long flexible ring polymers, 
although the precise folding structure will be different.

The effect of supercoiling on the average size of plasmids can be 
better appreciated in Fig. 2B, where we show the (squared) radius of 
gyration rescaled by its value for relaxed plasmids and plotted against 
supercoiling. It is readily apparent that for long plasmids (e.g., M ≥ 
400 ≃ 3 kb) the greater the supercoiling, the monotonically larger 
their typical size. We highlight that this behavior is highly counter-
intuitive, as one expects supercoiling to induce a compaction of 
plasmids, as indeed is found computationally in dilute conditions 
(32). At the same time, supercoiled plasmids travel faster than their 
relaxed counterparts in gel electrophoresis (33) because of their 
overall reduced size. Supercoiling is also often associated with the 
packaging of the bacterial genome (10, 41) and with organization 
into topological domains in eukaryotes (12, 13, 42). On the contrary, 
here, we observe a monotonic increase of Rg with supercoiling that 
is in marked contrast with the overall shrinking in dilute conditions 
(this shrinking is recapitulated by our model when simulated in 
dilute conditions; see fig. S1) (32).

We argue that this stark difference is due to interchain effects and 
the global topological invariance of the system. While supercoiled 
plasmids may want to reduce their overall size, they must also re-
main topologically unlinked from the neighbors. In turn, the com-
petition between this global topological constraint and the torsional 
and bending rigidities appears to favor swelling of long molecules 
(L > 200 ≃ 1.5 kbp) but still drives the collapse of short ones (Fig. 2B).

For the shortest plasmids considered here (M = 100 ≃ 730 bp), 
we observe an interesting exception to the behavior described above, 
whereby the typical size is nonmonotonic for increasing supercoiling 

A B

C ED F

Fig. 1. Modeling supercoiled plasmids as twistable chains. (A) Snapshot of simulation 
of entangled plasmids with length L = 200b ≃ 1.47 kbp and  = 0.04. (B) A single 
plasmid taken from (A), with an inset showing the patches in detail. (C to E) Snapshots 
of plasmids with (C)  = 0, L = 100b ≃ 750 bp, (D)  = 0.06, L = 100b ≃ 750 bp, and 
(E)  = 0.06, L = 400b ≃ 3 kbp. Backbone beads are shown in gray; one set of patches 
is shown in orange. The other patches are not shown for clarity. (F) Sketch of tilt  and 
twist  between consecutive beads (another angle  is set between blue patches, 
not shown). The tilt angle  is subject to a stiff potential with equilibrium 0 =  to 
maintain the frame coplanar and aligned with the backbone.
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levels. We attribute this peculiar behavior to a buckling transition 
(see below). More specifically, for  = 0, we find that the conforma-
tions are typically larger than the relaxed ones, but they suddenly 
become more collapsed for  > 0 (Fig. 2B). [Notice that with  = 0, 
we mean plasmids that are intact and torsionally constrained to 
have linking number deficit equal to zero. These are different from 
relaxed (nicked) plasmids that are not torsionally constrained, as the 
latter do not need to obey the WFC theorem; we denote them with 
“R” throughout.]. We also examined the distributions of radius of 
gyration and noticed that relaxed short plasmids display a weakly 
bimodal distribution that is not found in larger plasmids (Fig. 2, 
C and D). This bimodal distribution reflects the fact that they can be 
found in two typical conformational states: either open (large Rg) or 
more collapsed (small Rg); imposing a certain supercoiling level 
appears to lock the molecules in one of the two states. Because the 
conformational space of non-nicked plasmids must satisfy the WFC 
topological conservation law, zero supercoiling (Lk =  = 0) hinders 
the writhing of the plasmid because it would be energetically too 
costly for them to writhe multiple times with opposite sign to 
achieve a null global writhe, given their short length (L/lp = 5). This 
entails that short plasmids with  = 0 are locked into open, not 
self-entangled, conformations. On the contrary, for  > 0, the im-
posed writhing induces a conformational collapse, akin to a sharp 
buckling transition (43).

We note that the stable open state at  = 0 for short plasmids is 
similar to the one computationally observed in dense solutions of 
semiflexible rings (44). These systems are expected to give rise to 
exotic columnar phases that would be thus intriguing to investigate 
in the context of dense solutions of short non-nicked plasmids 
with  = 0.

We finally stress once more that the monotonic increase observed 
for long plasmids of their typical size with supercoiling is neither 
expected nor trivial and is in marked contrast with the overall shrink-
ing behavior found in the literature for long dilute supercoiled plas-
mids (32). Because the monomer concentration is constant for all of 
the systems studied, and the critical overlap concentration scales as 
​c * = 3M / (4 ​R​g​ 3 ​)​, one finds that c/c* increases with supercoiling. Thus, 
one would naïvely expect solutions of supercoiled plasmids to be 
effectively more entangled than their relaxed counterparts. As a con-
sequence, we would also expect highly supercoiled long plasmids to 
display reduced mobility with respect to relaxed ones.

Supercoiling enhances DNA mobility
We study the dynamics of entangled plasmids at different levels of 
supercoiling by computing the time- and ensemble-averaged mean 
squared displacement (TAMSD) of the center of mass (CM) of the 
plasmids as g3(t) = 〈[rCM,i(t + t0) − rCM,i(t0)]2〉i, t0 (other gi quantities 
are reported in fig. S4). Curves for g3 are shown in Fig. 3 (A and B) 
for different values of plasmid supercoiling and length. At odds with 
the findings of the previous section, we find that higher values of 
 yield faster mobility especially for longer plasmids.

The diffusion coefficient of the center of mass computed as 
​​D​ CM​​ = ​lim​ t→∞​​ ​g​ 3​​(t ) / 6t​ allows us to more precisely quantify how 
the mobility of the plasmids changes as a function of length and 
supercoiling. We find that while DCM attains a plateau at small , 
at larger supercoiling it increases exponentially (see Fig. 3C), al-
beit more simulations are needed to confirm this conjecture (see 
below for an argument supporting the exponentially faster mobili-
ty). In addition, we find that the diffusion coefficient as a function 
of plasmid length scales as DCM ∼ M−2.2 and M−2.45 for relaxed and 
highly supercoiled large plasmids, and is compatible with the scal-
ing of torsionally relaxed and flexible ring polymers (Fig. 3D) (22). 
The slightly stronger dependence on plasmid length for larger super-
coiling suggests that these plasmids may effectively undergo a more 
traditional reptation-like relaxation and for which we expect D ∼ 
M−2.4 (22, 35). As we shall see below, this conjecture is confirmed by 
the fact that we find most of the plasmids to display two plectone-
mic tips and thus preferentially assume linear-like rather than 
branched structures (see also the Supplementary Materials).

We finally note that the solutions with M = 800 ≃ 6 kbp are not 
displaying a freely diffusive behavior despite the fact that we ran 
them for more than 107 Brownian times (see table S1); in turn, DCM 
is overestimated as its calculation assumes free diffusion. Despite 
this, values of DCM for M = 800 ≃ 6 kbp nicely follow the general 
trend of the other datasets (see Fig. 3, C and D).

DDM of DNA plasmids confirms simulations
To experimentally validate the prediction that supercoiling enhances 
the mobility of plasmids in dense solutions, we perform fluorescence 
microscopy experiments on 3 mg/ml solutions (corresponding to a 
volume fraction of 0.4%) made of 6-kb plasmids. We label 0.001% of 
the molecules in solution and use DDM to determine the diffusion 
coefficient from videos recorded on a custom fluorescence light-sheet 

A B

C D

Fig. 2. Supercoiling increases plasmids size in entangled conditions. (A and 
B) Radius of gyrations Rg plotted against (A) contour length M and (B) supercoiling . 
Notice that for short lengths M = 100, increasing  induces a collapse of the plasmids, 
whereas for longer lengths it drives swelling. The scaling of Rg as a function of plasmid 
length M is compatible with that of flexible rings [ = 1/2 with crossover to  ≃ 1/3 (38)] 
and that of self-avoiding walks ( = 3/5) for relaxed and highly supercoiled plasmids, 
respectively. (C) The distribution of Rg for M = 100 is weakly bimodal, showing that 
plasmids can be in either an “open” or a “collapsed” state. Setting a supercoiling  = 
0 stabilizes the open state, whereas  > 0 induces writhing and collapse. (D) For longer 
plasmids (M = 400), larger supercoiling  broadens the distribution enlarges the 
average size. The unit of length is b = 2.5 nm, and the entanglement length for 
linear counterparts is Me,linear = 54 beads.
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microscope (Fig. 4A) (45). DDM, as compared to single-particle 
tracking, allows us to measure the dynamics of the diffusing mole-
cules without having to resolve and track individual molecules over 
time—optimal for DNA of this size (Rg < 100 nm). To pinpoint the 
role of supercoiling, we compare a solution of plasmids extracted 
from Escherichia coli in the stationary phase against the same solu-
tion pretreated with topoisomerase I to relax the excess supercoiling 
(see Materials and Methods) (46).

As one can notice (see Fig. 4B), the intermediate scattering func-
tion (ISF) shows a faster decay for supercoiled DNA compared to 
relaxed circular DNA, indicating faster dynamics. We fit each ISF 
with a stretched exponential f(q, t) = exp [ − (t/)] using  ≃ 0.9 − 1 
to determine the decay time  as a function of q (Fig. 4C). As shown, 
the decay times are well fitted by a power law ∼q−2 that we use to 
extract the diffusion coefficients via the relation  = (2Dq2)−1. The 
resulting diffusion coefficients are D = 0.34(1) m2/s and D = 
0.44(1) m2/s for relaxed and supercoiled solutions, respectively.

We should note that while our choice of plasmid length allows 
us to purify them without introducing substantial nicks (∼80% 
are without nicks and thus supercoiled), determining their precise 
supercoiling level is not straightforward. In vivo, supercoiling for 
plasmids in the stationary phase of cell growth (the phase at 
which we extract our plasmids) is ∼2% (47, 48). Thus, these results 
suggest that increasing supercoiling in solutions of entangled 
plasmids speeds them up and are thus in qualitative agreement with 
the simulations.

We should mention that while the experiments are at lower 
volume fraction with respect to simulations (when considering bare 
DNA), the buffering condition effectively thickens the diameter of 
DNA (49), thus rendering the precise comparison of experimental 
and simulated volume fractions difficult. We also note that because 
of the small size of the plasmids, we are unable to accurately mea-
sure their size using single-molecule imaging. In turn, this renders 
the precise estimation of the overlap concentration also challenging 
[indirectly estimated to be about c* ≃ 0.6 mg/ml (18, 49)]. We are 
currently investigating alternative approaches, such as dynamic light 
scattering, so that in future work we can compare the intriguing 
predictions regarding the different sizes of supercoiled and relaxed 
circular DNA in dense solutions.

Supercoiling induces a buckling transition in short plasmids
The consequence of writhing on the plasmid conformations is not 
captured by Rg alone (50, 51). Instead, it is informative to study 
shape descriptors that can be computed via the eigenvalues of the 
gyration tensor RT (which we denote as a, b, and c, with a > b > c 
and ​​R​g​ 2 ​  =  a + b + c​). Typical shape descriptors are the asphericity 
(50–52) ​a  =  [​(a − b)​​ 2​ + ​(a − c)​​ 2​ + ​(b − c)​​ 2​ ] / 2 ​R​g​ 4​​, which quantifies the 
deviation from a perfectly spherical arrangement and the nature of 
asphericity quantified by either the prolateness (see fig. S2) or the 
anisotropy ​an  =  3(​a​​ 2​ + ​b​​ 2​ + ​c​​ 2​ ) / (2 ​R​g​ 4​ ) − 1 / 2​ (shown in Fig. 5, A and B). 
These shape descriptors reveal that for M = 100 ≃ 730 bp and  = 0, 
plasmids are stabilized in an open, highly symmetric, and oblate 
(M&M’s) state. Furthermore, they reveal that these short plasmids 
undergo a buckling transition to a closed, asymmetric, and prolate 
(rugby ball) shape for  > 0. The sharp first-order–like buckling 
transition (see Fig. 5A and the Supplementary Materials) is weak-
ened for larger contour lengths (see Fig. 5B), as self-writhing is ener-
getically allowed even for  = 0 (negative and positive self-crossings 

A

C D

B

Fig. 3. Supercoiling enhances plasmid mobility. (A and B) Time-averaged mean 
squared displacement (TAMSD =g3) of the plasmids for (A) M = 100 ≃ 730 bp and 
(B) M = 400 ≃ 3 kbp. Dotted lines are linear functions of lag time as a guide to the 
eye. (C and D) Diffusion coefficient of the center of mass ​​D​ CM​​  = ​ lim​ t→∞​​ ​g​ 3​​(t ) / 6t​ 
against (C) supercoiling  and (D) length M. In (C), exponentials ~ exp (/0.05) (solid) 
and ∼ exp (/0.02) (dashed) are drawn as a guide to the eye (see below for a justifi-
cation of exponential speedup). In (D), the best fits to the largest M for relaxed 
(nicked) and  = 0.06 yield M−2.2 and M−2.45, respectively. Error bars are comparable 
to symbol size. R = “relaxed.”

B

A

C

Fig. 4. DDM of entangled plasmid DNA confirms the predictions from molecular 
dynamics simulations. (A) Snapshot from light-sheet microscopy showing fluores-
cent 5.9-kbp DNA plasmids (comparable with M = 800 is the molecular dynamics 
simulations) at a concentration of 3 mg/ml concentration [c* ≃ 0.6 mg/ml (49) and 
c/c* ≃ 5]. (B) Intermediate scattering function (ISF) obtained from DDM measure-
ments. (C) Scaling of the ISF decay time with wave vector, showing that it scales as 
q−2. The fitted diffusion coefficients are D = 0.34(1) m2/s and D = 0.44(1) m2/s for 
relaxed and supercoiled plasmids, respectively.
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must cancel each other to satisfy the WFC conservation law). At the 
same time, both short and long plasmids display a general increase 
in asphericity, prolateness, and anisotropy with increasing super-
coiling, strongly suggesting that the plasmids assume elongated and 
double-folded conformations (see fig. S2).

Supercoiling decreases the spanning minimal surface
It is natural to associate the open-oblate/closed-prolate conforma-
tions assumed by DNA plasmids to a larger/smaller (minimal) span-
ning area, respectively (53). The size of this area may be relevant for 
the dynamics because it could be “threaded” by neighboring plas-
mids, hence hindering the dynamics (24, 54, 55). To quantify this in 
more detail, we calculated the minimal surface (53) using the algo-
rithm in (55, 56) for flexible ring polymers. We found that the min-
imal area grows approximately linearly with the plasmids’ contour, 
as expected for  ≤ 1/2 (Fig. 5C) (55). We also observed that it over-
all decreased with supercoiling with the notable exception of short 
M ≤ 200 ≃ 1.5 kbp plasmids, for which there is a small increase for 
 = 0 with respect to the relaxed case, again confirming the “topo-
logical locking” of open conformations (Fig. 2A).

A crude way to estimate the decrease in “threadable” area of a 
plasmid Σ is via recursive bisections of a perfect circle into several 

connected smaller circles joined at a vertex mimicking writhe-induced 
self-crossing. Each time a circle is split into two smaller ones, the new 
radii are R′ ≃ R/2 and thus n circles (with n − 1 self-crossings) have 
radii R′ = R/n, yielding an overall spanning surface Σ ≃ n(R/n)2 ∼ 
1/n ∼ 1/. The same scaling of the threadable area is obtained if 
considers the supercoil as if wrapped around a cylinder of radius r 
(57) and projected in 2D; in this case, one would find that the en-
closed area in each of the n superhelix turns is about rLee/(n − 1), 
where Lee is the end-to-end length of the plasmid. Given that r ∼ 1/ 
(57) and that Lee is expected to be insensitive on  for large super-
coiling (see also Fig. 2B showing plateauing of Rg for M ≤ 400), one 
finds a total threadable area scaling as Σ ≃ nrLee/(n − 1) ∼ 1/. The 
fact that our data are instead more compatible with an exponential 
decrease of Σ as a function of supercoiling (Fig. 5D) suggests that 
the approximation of the supercoil wrapped around a cylinder may 
not be accurate. In fact, considering the large persistence length of 
DNA, it may be thermodynamically preferred to flatten and shrink 
the many inner openings at the expense of storing longer contour 
length at the fewer tips (see also snapshots in Fig. 1, B to E, and inset 
of Fig. 5C). These estimations are in good agreement with the scal-
ing of the minimal surface, although we cannot rule out other func-
tional forms (for instance, exponential; see Fig. 5D). [Note that the 
so-called magnetic moment and radius (58) give similar results, 
albeit different scaling (see fig. S3).]

Supercoiling reduces threadings
Motivated by the observation that the minimal surface—or “thread-
able area”—sharply decreases with supercoiling, we decided to quan-
tify more precisely the number of threadings per plasmid for 
different levels of supercoiling. To this end, we identify a plasmid to 
be “passively threaded” by another when the minimal surface of the 
former is intersected by the contour of the latter (at least twice, as 
they are topologically unlinked) (Fig. 6A) (55). As shown in Fig. 6B, 
the average number of threadings per plasmid 〈nt〉 also appears to 
decrease exponentially with supercoiling and to mirror the behavior 
of the mean threadable area 〈Σ〉. [As for the minimal surface Σ, a 
notable exception to this general trend is the case of short plasmids 
(M = 100) for which we find that 〈nt〉 is statistically larger for  = 0 
than for relaxed plasmids because of the topological locking that we 
explained above.]

On the basis of these findings, we can also advance an argument 
as for why the diffusion coefficient of plasmids increases exponen-
tially with supercoiling: Recent evidence suggests that the dynamics 
of ring polymers with threadings slow down exponentially with the 
number of threadings [e.g., entangled rings (55, 59, 60), melts of 
tadpole-shaped polymers (20, 61), or compressed long plasmids (62)]. 
We thus expect the dynamics of highly supercoiled (threading poor) 
plasmids to be exponentially faster than their relaxed (threading-rich) 
counterparts, as seen in Fig. 3C.

Intriguingly, in the case of short plasmids in which setting  = 0 
increases the threadable area and also the number of threadings, we 
also find a slower dynamics, in full agreement with our argument 
(see Figs. 3C and 6B).

Supercoiling reduces entanglements
The shape descriptors studied above suggest that long plasmids as-
sume prolate double-folded conformations, but it remains unclear 
whether the conformations are simply plectonemic (linear-like) or 
more branched into comb, star, or tree-like structures (63). We thus 

A B

C D

Fig. 5. Supercoiling induces buckling in short plasmids and reduces the thread-
able area. (A) The anisotropy shape descriptor (an, see text) for short plasmids M = 
100 ≃ 730 bp displays a sharp buckling transition between an open and roughly 
symmetric state for  = 0 and a collapsed and anisotropic one for  > 0. In inset, two 
examples of conformations are shown. (B) For longer plasmids (M ≥ 200 ≃ 1.5 kbp), 
supercoiling shifts the anisotropy to larger values, indicating a smoother transition 
to more prolate conformations. (C) Scaling of the average minimal surface size 〈Σ〉 
as a function of plasmid length (solid line shows the linear scaling). In inset, two 
examples of surfaces for M = 100 ≃ 730 bp are shown. (D) The size of the minimal 
surface area monotonically decreases with supercoiling (with the exception of short 
M ≤ 200 ≃ 1.5 kbp plasmids). The solid and dashed lines scale as 1/ and e−/0.035, 
respectively, and are drawn as a guide to the eye. R = relaxed. The unit of length is 
b = 2.5 nm. The error bars, typically smaller than the symbol size, represent the 
error of the mean area.
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computed the local absolute writhe along the contour length, W(s), 
from which the number and location of plectonemic tips can be 
identified as the local maxima of W(s) (see Materials and Methods 
and the Supplementary Materials) (64, 65). This calculation reveals 
that most of the conformations with  ≥ 0.04 have two tips and so 
are mainly linear-like plectonemic conformations (see fig. S5). (For 
smaller supercoiling, it is difficult to unambiguously distinguish tips 
from other regions of large curvature.)

In light of this finding, another apparent controversy arises. 
Arguably, linear chains half the length as their ring counterparts are 
expected to diffuse slower than the rings due to reptation relaxation 
induced by ordinary entanglements (assuming that the entanglement 
length is the same for the two systems) (22); instead, we observe the 
opposite trend. To explain this result, we adapted the PPA (66) and 
isoconfigurational mean path (IsoMP) (67) methods to estimate the 
effective entanglement length of these systems (see Fig. 6, C and D, 
and fig. S10). For PPA, we determined an effective entanglement 
length Me by leveraging the fact that the tips of linear-like or branched 
conformations represent effective termini that can be pinned in space 
(see the Supplementary Materials for more details on PPA and IsoMP 
methods). (Note that the PPA method typically fails for standard flex-
ible ring polymers because there are no well-defined ends to pin.)

We find that irrespective of the method chosen, the scaling of the 
effective entanglement length is compatible with Me ∼ 1/2 (Fig. 6F), 
suggesting that the larger the supercoiling, the less entangled the 
plasmids. [The numerical difference of PPA and IsoMP is a known 
feature for topologically constrained ring polymers (67, 68) with 
Me,PPA/Me,IsoMP ≃ 3/2 and is in agreement with our findings for 
plasmids.] We argue that this effective reduction in entanglement 
[opposite to what one would naïvely expect considering ​c / c * ∼ ​ R​g​ 3 ​ / M​ 

or similar packing length arguments as ​p  =  1 / (​​ chain​​ ​L​ee​ 
2 ​)​, Lee being 

the end-to-end distance] is due to the fact that supercoiling (i) in-
duces highly anisotropic conformations and (ii) increases the local 
concentration of intrachain beads (69). Because the superhelix radi-
us of plasmids scales as r ∼ 1/ (57) and most plasmids display only 
two tips (fig. S6), this entails that the intrachain density intra ∼ M/V ∼ 
2 (with V = r2Lee the approximated cylindrical volume of the 
supercoil) grows with supercoiling.

Notably, we also find that the effective persistence length, 
computed as the decay length of the tangent-tangent correlation, 
​​c​ t​​  =  exp (− l / ​l​p​ * ​)​, along the plasmid backbone (from tip to tip) scales 
as ​​l​p​ * ​  ∼ ​ ​​ 1/2​​, in turn yielding ​​M​ e​​  ∼ ​ l​p​ * ​​ or ​​M​ e​​  ∼ ​ l​k​ * ​​ (Fig. 6F). This is 
compatible with the fact that our systems appear to be at the cross-
over between the semiflexible and stiff regimes, based on the values 
of density, stiffness, and chain diameter and as supported by the 
typical values of Me extracted from both PPA and IsoMP, which are 
of the order of the effective Kuhn length ​​l​k​ * ​  ≃  2 ​l​p​ * ​​ (Fig. 6F). In this 
crossover, both tube diameter and entanglement length scale linearly 
with the Kuhn length lk (70). The stiffening of the supercoiled plas-
mids can be naturally thought of as due to the self-writhing; in par-
ticular, one may argue that the shorter the contour length between 
self-crossings, i.e., the smaller 1/, the longer the effective persistence 
length displayed by the plasmids. A Flory-type estimate of the inter-
action free energy of n monomers Fint ∼ kTvn2/r3, per superhelix 
turn (n ∼ −1 and r ∼ −1), gives Fint ∼ . This can be viewed as if the 
excluded volume of the cylindrical Kuhn monomer v (composed of 
​​l​k​ * ​ / d​ spherical beads in line) grew by a factor of . Because ​v  ∼ ​ (​l​k​ * ​)​​ 

2
​ d​ 

(71), the effective length Kuhn length ​​l​k​ * ​  ∼ ​ ​​ 1/2​​.
Then, in the stiff regime, the plasmids behave as if they were 

rigid chains of diameter 2r ∼ 2/ confined within narrow tubes with 

A B C

D E F

Fig. 6. Supercoiling reduces threadings and entanglements. (A) Snapshot of two threading plasmids (relaxed, M = 800 ≃ 6 kbp) with minimal surfaces drawn and inter-
sections highlighted by arrows. (B) Number of threadings per plasmid as a function of supercoiling (dashed = exponential, solid = 1/). (C) Number of threadings per 
plasmid as a function of DNA length (dashed = 1/M, solid = M1/2). (D and E) Snapshots of the PPA analysis run on a system with plasmids M = 800 ≃ 6 kbp and  = 0.06. (F) The 
effective entanglement length increases with supercoiling as Me/Me,linear ∼ , with  ≃ 0.5 for both PPA and IsoMP methods. Note that Me,linear = 54 ± 2 (PPA) and Me,linear = 
49 ± 2 (IsoMP). The effective persistence length lp/lp,linear also shows a scaling compatible with 1/2 (lp,linear = 18 ± 1).
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diameter a; in analogy with the classical Odijk problem (72), we can 
thus write ​​M​ e​​  = ​ a​​ 2/3​ ​l​k​ 1/3​​. In turn, the value of the tube diameter can 
be obtained from the estimate that in each area element aMe spanned 
by the plasmid, there is about one transversal segment, i.e., saMe ≃ 
1, where s = /(2r)2 is the arc length density and  is the polymer 
volume fraction ( = r3M(b/r)/V in terms of supercoil turns with r ∼ 
b/). Combining these together (70), we expect Me ≃ lk−2/5(d/lk)4/5 ∼ 
0.1 to be attained at very large values of , for which the stiff regime 
(a ≪ Me and lk ≪ Me) is justified.

Last, we note that for short plasmids, the PPA method cannot 
identify an entanglement length, confirming that these are very poorly 
entangled in the standard sense. Hence, their dynamics are mostly 
determined by threadings, which are abundant also in short plasmids 
(see Fig. 6, B and C).

DISCUSSION
In this work, we have studied the dynamics of entangled solutions 
of DNA plasmids to understand how supercoiling can be leveraged 
to tune the rheology of dense DNA solutions orthogonally to other 
traditional methods, such as varying length or concentration. We have 
found that, contrary to what is typically assumed, the size of long 
plasmids increases with supercoiling when in entangled solutions.

In dilute conditions, supercoiled plasmids are expected to fall into 
the universality class of interacting annealed branched polymers for 
which a metric exponent  = 7/13 is expected asymptotically (39, 63). 
In the melt phase, the self-interactions are screened, and we thus 
expect supercoiled plasmids to behave as ideal annealed branched 
polymers or lattice animals for which  = 1/4 (40); being unphysical 
in d = 3, we expect the size of very large supercoiled plasmids in the 
melt to scale with a metric exponent  = 1/3. Although this is the same 
scaling expected for relaxed rings (23, 73), the folded structures are 
expected to be different. The supercoiling-driven swelling can still 
be achieved through a non-universal prefactor in front of a super-
coiling independent universal scaling M1/3, for instance, because of 
an effectively larger persistence length (as we found in this work; 
Fig. 6F). The fact that we observe a metric exponent that depends on 
 (Fig. 2A) thus suggests that our simulations are not in the asymp-
totic limit, and yet still in a regime that is experimentally interesting.

We find that the swelling of supercoiled plasmids is mirrored by 
an enhanced mobility. Our predictions are supported by experiments 
that show that the diffusion coefficient of entangled intact and 
supercoiled ( ≃ 0.02) plasmids is larger than that of relaxed ones, 
i.e., with  ≃ 0. We found that this enhanced mobility is due to severely 
asymmetric conformations that greatly reduce the threadable area and 
number of threadings. In parallel, entanglements are also reduced as 
supercoiling increases the effective entanglement length by increasing 
the local concentration of intra-chain contacts. We note that thread-
ings are abundant also in short plasmids (Fig. 6B) that are poorly 
entangled in the standard sense; we observe that, in this case, thread-
ings play a major role in determining the dynamics of short plasmids 
(notably for M = 100, the case with  = 0 is slower and displays more 
threadings than the relaxed one). We have thus found that the un-
expected enhanced diffusivity of entangled supercoiled DNA is due to 
a combination of reduced entanglements and, in particular, threadings.

We conjecture that beyond the range of lengths studied in this 
work (0.7 to 6 kbp), supercoiled plasmids in entangled solutions may 
display branched and annealed conformations (i.e., with nonfixed 
branching points), triggering the need of arm retraction or plectoneme 

diffusion/hopping relaxation mechanisms. These processes are 
notoriously slow, on the order of kbp2/s (74), and we thus predict a 
re-entrant slowing down of the diffusion of supercoiled plasmids. 
They ought to behave as quenched/annealed branched polymers on 
time scales shorter/longer than plectoneme diffusion, respectively. 
Ultimately, despite the expected onset of (exponentially) slowly dif-
fusive “branched-polymer–like” regime for supercoiled plasmids, 
relaxed ones will still display many more threadings, which we 
argue will still (exponentially) slow down their dynamics also in the 
large length limit. Dissecting the contribution of these mechanisms 
will require longer simulations than currently possible.

In summary, our results suggest a route for the topological tuning 
of the rheology of DNA-based complex fluids that uses supercoiling 
as a mean to control DNA mobility. We note that the fact that 
supercoiling regulates the number of threadings per plasmids can 
also be leveraged in polydisperse systems or in blends of linear and 
supercoiled DNA or other biopolymer composites, where threading 
of rings by the linear fraction is key to determine the stress relax-
ation of the fluids (20, 21, 61, 75).

In the future, it would be interesting to further investigate longer 
plasmids with selected or varying levels of supercoiling. Albeit ex-
perimentally difficult, this may be feasible using cesium chloride gra-
dient separation techniques (76). Ultimately, understanding how 
DNA topology and supercoiling affect the dynamics and conforma-
tional properties of plasmids in entangled or crowded conditions 
may not only reveal novel pathways to finely tune the rheology of 
complex biopolymer fluids but also shed light on the role of super-
coiling on chromosome dynamics in vivo (10, 77).

MATERIALS AND METHODS
Molecular dynamics
Each bead in our simulation is evolved through the Langevin equa-
tion ​​m​ a​​ ​∂​ tt​​ ​​ → r ​​ a​​  =  − ∇ ​U​ a​​ − ​​ a​​ ​∂​ t​​ ​​ → r ​​ a​​ + ​√ 

_
 2 ​k​ B​​ T ​​ a​​ ​ ​​ → ​​ a​​(t)​, where ma and a 

are the mass and the friction coefficient of bead a, and ​​​ → ​​ a​​​ is its sto-
chastic noise vector satisfying the fluctuation-dissipation theorem. 
U is the sum of the energy fields (see the Supplementary Materials). 
The simulations are performed in LAMMPS (36) with m =  = kB = 
T = 1 and using a velocity-Verlet algorithm with integration time 
step t = 0.002 B, where B = 2/kBT ≃ 0.03 s is the Brownian time 
( = 3w, with w = 1 cP the viscosity of water).

Branching analysis
Following (64, 77), we compute the absolute writhe of a segment of a 

plasmid as ​W(s ) = (1 / 4 ) ​∫ s−l​ 
s
  ​​ ​∫ s​ 

s+l
 ​​∣(​r​ 1​​ − ​r​ 2​​) · (d ​r​ 1​​ × d ​r​ 2​​) / ​∣​r​ 1​​ − ​r​ 2​​∣​​ 3​∣​ with 

window l = 50 beads. This calculation yields a function W(s) whose 
maxima represent regions of high local writhe and can identify tips 
of plectonemes. In addition to being a local maximum, we require 
that W(s) > 0.35 to avoid false positives. See the Supplementary 
Materials for more details.

Primitive path analysis
Following (66), we fix certain polymer segments in space, turn in-
trachain repulsive interactions off, and keep interchain interactions 
on. We then run simulations at low temperature 0.01 to find a 
ground state. The resulting chain conformations (primitive paths) 
are made of straight segments connected by sharp kinks due 
to entanglements. The entanglement length is then given by 
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​​N​ e​​  = ​ r​ee​ 
2 ​ / (M ​b​pp​ 2 ​ )​, where ree is the mean endpoint distance, M is the 

number of monomers between the fixed points, and bpp is the mean 
bond length of the primitive path. We adapt the classical PPA for 
plasmids by fixing the tips of all detected plectonemes instead of 
the end points of linear chains (see the Supplementary Materials).

DNA preparation
Double-stranded 5.9-kbp DNA plasmids are replicated in E. coli, 
collected at the onset of stationary phase, before being extracted and 
purified using our previously described protocols (49). Following 
purification, the DNA solution is ∼80% supercoiled and ∼20% relaxed 
circular, as determined from gel electrophoresis (fig. S6). To produce 
concentrated solutions of relaxed circular DNA, topoisomerase I 
(New England Biolabs) is used to convert the DNA topology from 
supercoiled to relaxed circular (fig. S6) (79). Both supercoiled and 
relaxed circular DNA solutions are concentrated to 3 mg/ml using 
Eppendorf Vacufuge 5301.

Fluorescence imaging
To visualize DNA diffusion in concentrated solutions, supercoiled 
or relaxed circular DNA is labeled with YOYO-1 dye (Thermo Fisher 
Scientific) at a 4:1 bp:dye ratio and added at a concentration of 
0.045 g/ml to 3 mg/ml solutions of supercoiled or relaxed circular 
DNA described above. Glucose (0.9 mg/ml), glucose oxidase 
(0.86 mg/ml), and catalase (0.14 mg/ml) are added to inhibit photo-
bleaching (46, 80). The DNA solutions are pipetted into capillary 
tubing that is index-matched to water and imaged using a custom-
built light-sheet microscope with a 488-nm excitation laser, an exci-
tation objective of 10× 0.25 numerical aperture (NA), an imaging 
objective of 20× 1.0 NA, and an Andor Zyla 4.2 CMOS camera. At 
least four sample videos are recorded at 50 frames per second for 
2000 frames. The video dimensions are 256 pixels × 768 pixels, 
which are then analyzed by examining regions of interest (ROIs) of 
256 pixels × 256 pixels (50 m × 50 m).

DDM analysis
We follow methods previously described to investigate DNA diffusion 
using DDM (45). Briefly, from each ROI, we obtain the image struc-
ture function or DDM matrix D(q, t), where q is the magnitude of 
the wave vector and t is the lag time. To extract the transport dy-
namics of the diffusing DNA molecules, we fit the structure func-
tions to D(q, t) = A(q)[1 − f(q, t)] + B(q), where B is a measure of 
the camera noise, A depends on the optical properties of both the 
sample and microscope, and f(q, t) is the ISF. On the basis of our 
previous studies of microspheres and DNA diffusing in crowded 
environments, we fit the ISFs to stretched exponentials of the form 
f(q, t) = exp − (t/(q))(q), where  is the characteristic decay time 
and  is the stretching exponent, both of which depend on q (46).

For normal free diffusion, one expects ISFs described by a simple 
exponential, i.e.,  = 1, while our scattering functions are better fitted 
with stretching exponents between 0.9 and 1. Having extracted the 
decay times of density fluctuations  over a range of spatial frequen-
cies q, we fit the results to  = (2Dq2)−1 to determine the diffusion 
coefficient, D, for the DNA plasmids.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/20/eabf9260/DC1

View/request a protocol for this paper from Bio-protocol.
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