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Background. Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although
there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of
clinical trials, none of them have yet been approved by the FDA. Aim. Using immunoinformatics approach to predict the most
conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata.
Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from
NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and
molecular docking were performed. Result. The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK,
while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY,
RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to
MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL
have the lowest binding energy to MHC molecules. Conclusion. The epitope-based vaccines predicted by using
immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time
consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness
of the best candidate’s epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has
predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based
vaccine against C. glabrata.
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1. Introduction

Candidiasis is a fungal infection that has a high burden of
morbidity and mortality in hospitalized and immunocom-
promised patients. It occurs in more than a quarter of a mil-
lion patients every year with incidence rates for candidemia
of 2–14 per 100000 [1–4]. In general, Candida species infec-
tion ranges from superficial mucosal candidiasis such as
vulvovaginal candidiasis and oropharyngeal candidiasis to
serious systemic infection such as candidemia or fungemia
[5–8]. Pathogenicity is facilitated by a number of virulence
factors, most importantly its ability to adhere to host surfaces
including medical devices, biofilm formation, and secretion
of hydrolytic enzymes. Also, Candida cells elaborate polysac-
charides, proteases, phospholipases, and hemolysins that
cause host cell damage which leads to the increase in the inci-
dence and antifungal resistance of NCAC species, specifically
C. glabrata, and the unfortunate high morbidity and mortal-
ity associated with these species [8, 9].

Candida glabrata (C. glabrata) is a human opportunistic
pathogen that can cause life-threatening systemic infections.
C. glabrata is not polymorphic, grows as blastoconidia
(yeast), and lacks pseudohyphal formation, so it is classified
in the genus Torulopsis. C. glabrata cells (1–4μm in size)
forms glistening, smooth, and cream-colored colonies [10,
11]. During the infection, C. glabrata pathogens invade the
macrophages, which are considered part of the innate
immune system which is the first line of defense against
invading pathogens. C. glabrata is able to modify the macro-
phage’s phagosomal compartment, avoiding full maturation
and acidification, and thus prevents the forming of the pha-
golysosomal environment [12]. C. glabrata is able to invade
the bloodstream and different organs in a mouse model that
have intragastrointestinal infections [13].

C. glabrata has a haploid genome—published in 2004 by
Dujon et al. [14]—that allows adaptation to a wide range of
environments [9, 15, 16]. Also, its genome contains more
tandem repeats of genes than the other Nakaseomyces [17]
and covers 67 genes encoding putative adhesin (cell wall pro-
teins), including the Epa family with 17 members [16, 18],
such as epithelial adhesin 1 (Epa1p) [19] and fructose
bisphosphate aldolase protein (Fba1) which play an essential
role in the pathogenicity of Candida species mainly in the
adhesion of the pathogen to the host [20, 21].

Fba1 is a yeast cell wall protein which presents in
multiple species of Candida, e.g., C. glabrata, C. parapsilo-
sis, C. tropicalis, and C. albicans fungal pathogens [22–26].
Fba1 is an important enzyme in the glycolytic pathway
[27–30] and is also a multifunctional protein [31] that
can facilitate the attachment (adhesion) to human cells
or abiotic surfaces [32–34], protects Candida cells from
the host’s immune system [33], and promotes the detoxi-
fication of the ROS generated during the respiratory burst
[21, 33, 34]. However, proteomics analysis revealed that
Fba1 is the most abundant and stable enzyme in Candida.
Moreover, it is considered one of the main immunodomi-
nant proteins [35, 36] in Candida cells and has been tested
in the murine model as a protected protein against Candida
[37], especially C. albicans, and also introduced immunity to

C. glabrata [34]; therefore, Fba1 is a potential antifungal target
in yeast [38]. Multiple vaccines used Fba1 as an immunogenic
protein against different pathogens such as the lethal and chal-
lenging S. pneumoniae, Salmonella spp., andM. bovis [39, 40].

The incidence of fungal infection has been increasing in
the last few years, due to several factors such as misuse of
broad-spectrum antibiotics, cytotoxic chemotherapy, immu-
nocompromised patients, and transplantations [15, 41].
Invasive fungal infections are a major cause of global morbid-
ity and mortality, accounting for about 1.4 million deaths per
year [42]. Systemic fungal infections cost the healthcare
industry approximately $2.6 billion per year in the USA alone
[43]. However, Candida species pose a base problem in hos-
pitals, according to Healthcare-Associated Infections (HAI)
[19, 44–46]. Although there are multiple effective vaccines
against fungal infections and some of these vaccines are
engaged in different stages of clinical trials, none of them
have yet been approved by the FDA [47]. Therefore, there
is an urgent and crucial need to design vaccines against the
Candida species that might improve the quality of life for
immunosuppressed patients [48].

The aim of this study is to predict the most conserved
and immunogenic B- and T-cell epitopes from the Fba1
protein of C. glabrata by using in silico tools with the
immunoinformatics approach presented in the IEDB
server [49, 50]. This approach has multiple benefits in
comparison to other approaches by being affordable, safe,
time-saving, and clinically applicable using different com-
putational software techniques [51–53]. To the best of
our knowledge, this is the first study that has predicted
the best candidates of multiple epitopes for Fba1 protein
against C. glabrata.

2. Materials and Methods

In this study, we have used a variety of bioinformatics data-
bases and tools for the prediction of the most promising pep-
tides, through three phases shown in Figure 1.

2.1. Retrieval of Fructose Bisphosphate Aldolase Protein
Sequences. 13 Candida glabrata fructose bisphosphate aldol-
ase protein sequences (361 amino acids) were retrieved from
the NCBI (https://www.ncbi.nlm.nih.gov/protein) database
on 21 January 2019. The accession numbers of fructose
bisphosphate aldolase protein sequences were
CAG61849.1, XP_448879.1, KTB01194.1, KTB08502.1,
KTB09791.1, KTB12564.1, KTB19354.1, KTB25695.1,
KTB27082.1, OXB40821.1, OXB46121.1, SLM13767.1, and
SCV14850.1 [20].

2.2. Determination of Conserved Regions. Multiple sequence
alignment (MSA) was used to determine the conserved
regions; the retrieved sequences were aligned by MSA using
Clustal W as applied in the BioEdit [54].

2.3. Prediction of B-Cell Epitope. The reference sequence of
fructose bisphosphate aldolase protein was submitted to the
following B-cell tests [49, 50].
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2.3.1. Prediction of Linear B-Cell Epitopes. A collection of
methods to predict linear B-cell epitopes based on protein
sequence characteristics of the antigen using amino acid
scales and HMMs was used.

The Bepipred tool from IEDB (http://tools.iedb.org/
bcell/result/) was used to predict the linear B-cell epitopes

from the conserved region with a default threshold value
of 0.350 [55–57].

2.3.2. Prediction of Surface Accessibility. Emini surface acces-
sibility prediction tool of the Immune Epitope Database
(IEDB) (http://tools.iedb.org/bcell/result/) was used to
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Figure 2: Bepipred linear epitope prediction: the red line is the threshold; above (the yellow part) is proposed to be part of the B-cell epitope.
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Figure 1: Schematic representation of the methodology phases.
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tupredict the surface epitopes from the conserved region with
the default threshold value 1.0 [58].

2.3.3. Prediction of Epitope Antigenicity. The Kolaskar and
Tongaonkar antigenicity method was used to detect the anti-
genic sites with a default threshold value of 1.025 (http://tools
.iedb.org/bcell/result/) [59].

2.3.4. Prediction of Discontinuous B-Cell Epitopes. This method
predicts epitopes based upon solvent-accessibility and flexibil-
ity. The methods are for modeling, docking of antibody, and
protein 3D structures (http://tools.iedb.org/bcell/result/).

The modeled 3D structure was submitted to the ElliPro
(http://tools.iedb.org/ellipro/) prediction tool to filter out
the antigenic residues. The minimum score and maximum
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Figure 4: Kolaskar and Tongaonkar antigenicity prediction test: the red line is the threshold; above (the yellow part) is proposed to be part of
the B-cell epitope.

Table 1: The proposed predicted antigenic B-cell epitopes; 9
antigenic sites were identified from fructose bisphosphate aldolase
of C. glabrata.

Start End Peptide Length

63 70 SNGGAAYF 8

73 84 KGVSNDGQNASI 12

129 134 AYFKEH 6

147 155 SEETDDENI 9

178 199 ITGGEEDGVNNEHVDKESLYTK 22

247 260 KYAAEKTGAPAGSK 14

269 280 GSGSTQEEFNTG 12

318 331 GNPEGADKPNKKFF 14

336 345 WVREGEKTMS 10
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Figure 3: Emini’s surface accessibility prediction test: the red line is the threshold; above (the yellow part) is proposed to be part of the B-cell epitope.
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distance (Angstrom) were calibrated in the default mode
with a score of 0.5 and 6, respectively [60].

2.4. Prediction of MHC Class I Binding Epitopes. The pep-
tides’ binding affinity to MHC I molecules was defined by
the IEDB MHC I prediction tool at http://tools.iedb.org/
mhc1. The binding affinity of fructose bisphosphate aldolase
peptides to MHC1molecules was obtained using the artificial
neural network (ANN) method. All conserved epitopes that
bind to MHC1 alleles at score ≤ 500 half-maximal inhibitory
concentrations (IC50) with peptides that have a length of 9
amino acids were selected for further analysis [49, 61–66].

2.5. MHC Class II Binding Predictions. Prediction of peptide
binding affinity to MHC II molecules was defined by the
IEDB MHC II prediction tool at http://tools.iedb.org/mhcii/
result/. MHC II molecules have the ability to bind peptides
with different lengths which make the prediction accuracy
debatable. For MHC II binding predication, human allele ref-
erence sets were used. The prediction method was selected as
NN-align to asses both the binding affinity andMHC II bind-
ing core epitopes with a length of 9 amino acid peptides at
score IC50 of 100 [49, 67].

2.6. Population Coverage Calculation. The candidate epitopes
of MHC I and MHC II and combined binding of MHC I and
MHC II alleles from Candida glabrata fructose bisphosphate
aldolase protein were employed for population coverage, and
the world population was set as a target population for the

selected MHC I and MHC II combined binding alleles using
the IEDB population coverage calculation tool at http://tools
.iedb.org/population/ [49, 68].

2.7. Homology Modeling. The reference sequence of Candida
glabrata fructose bisphosphate aldolase protein was applied
to Raptor X for modeling at http://raptorx.uchicago.edu/.
Then, the 3D structural model of the protein was visualized
by using the Chimera tool powered by UCSF [69–73].

2.8. Physicochemical Parameters. The function of vaccines is
to enhance the immunogenic response once introduced to
the immune system. Thus, it is essential to recognize the
physicochemical parameters of the protein using the protein
protogram and BioEdit [54] (available at https://web.expasy
.org/protparam/ and https://web.expasy.org/protscale/) [74].

2.9. Molecular Docking Analysis.Molecular docking was per-
formed using Moe 2007. The 3D structures of the promiscu-
ous epitopes were predicted by PEP-FOLD. The crystal
structures of HLA-A∗02:06 (PDB ID 3OXR) and HLA-
DRB1∗01:01 (PDB ID 5JLZ) were chosen as a model for
molecular docking and were downloaded in a PDB format
from the RCSB PDB resource. However, the selected crystal
structures were in a complex form with ligands. Thus, to
simplify the complex structure of all water molecules, hetero
groups and ligands were removed by Discovery Studio Visu-
alizer 2.5. Partial charge and energy minimization were
applied for ligands and targets. In terms of the identification

Table 2: List of the most promising B-cell epitopes and their surface and antigenicity.

Start End Peptide Length Surface score (Emini’s surface threshold = 1:000) Antigenicity score (Kolaskar’s test = 1:025)
129 134 AYFKEH 6 1.502 1.034

191 199 VDKESLYTK 9 2.48 1.032

190 199 HVDKESLYTK 10 2.648 1.04

Table 3: List of the promising discontinuous B-cell epitopes.

No. Residues
Number of
residues

Score

1
T300, G301, I302, R303, D304, Y305, V306, L307, N308, K309, K310, D311, Y312, I313, M314, S315, M316,
V317, G318, N319, P320, E321, G322, A323, D324, K325, P326, N327, K328, K329, F330, F331, E339, K342

34 0.867

2 D332, P333, R334, V335, W336 5 0.749

3

V3, Q4, E5, V6, L7, K8, Y25, E28, H29, K30, F31, K55, S56, A156, T157, V159, K160, K163, G177, I178, T179,
G180, G181, E182, E183, D184, G185, V186, N187, N188, E189, H190, V191, D192, K193, E194, S195, L196,
Y197, T198, K199, P200, E201, F204, A205, E208, A209, A211, P212, I213, S214, P215, A222, F223, G224,
Q231, A232, G233, N234, V235, V236, L237, S238, P239, E240, A243, D244, K247, Y248, A249, A250, E251,
K252, T253, G254, A255, P256, A257, G258, S259, K260, P261, S272, T273, Q274, E275, N278, T279, N282,
N283, T357, K358, N359, T360, L361

95 0.669

4
V15, G16, A71, G72, K73, G74, V75, S76, N77, D78, G79, Q80, N81, A82, I84, R85, C112, A113, K114, L117,
P118, D121, G122, L124, E125, A126, E128, A129, Y130, F131, K132, E133, H134, G135, E136, P137, L138,
R164, A166, A167, M168, N169, Q170

43 0.668

5 L146, S147, E148,E149, T150, D151, D152, E153 8 0.582

6 R9, K10, T11, G12, I14, R52, D53, A98, P99, A100, Y101, G102, I103 13 0.514
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of the binding groove, the potential binding sites in the crys-
tal structure were recognized using the Alpha Site Finder.
Finally, ten independent docking runs were carried out for
each peptide. The results were retrieved as binding energies.
Best poses for each epitope that displayed the lowest binding
energies were visualized using UCSF Chimera 1.13.1 software
[72, 75–78].

3. Result

3.1. B-Cell Epitope Prediction. The reference sequence of
fructose bisphosphate aldolase from C. glabrata was analyzed
using a Bepipred linear epitope prediction test; the average
binder’s score of the protein to B-cell was 0.199 and mini-
mum was -0.009 and 2.424 for a maximum score; all values
equal or greater than the default threshold 0.350 which were
potentially linear epitopes are shown in Figure 2.

3.1.1. Prediction of Surface Accessibility. In Emini’s surface
accessibility prediction test, for a potent B-cell epitope, the
average surface accessibility area of the Fba1 protein was

scored as 1.000, with a maximum of 7.725 and a minimum
of 0.113; all values equal or greater than the default threshold
1.000 were potentially in the surface shown in Figure 3.

3.1.2. Prediction of Epitope Antigenicity. For the Kolaskar and
Tongaonkar antigenicity prediction test, the average of anti-
genicity was 1.025, with a maximum of 1.223 and aminimum
of 0.853; all values equal to or greater than the default thresh-
old 1.025 are potential antigenic determinants (see Figure 4).
The results of all proposed conserved predicted B-cell epi-
topes are shown in Table 1. The list of the most promising
B-cell epitopes with their surface scores and antigenicity is
shown in Table 2.

3.1.3. Discontinuous B-Cell Epitope Prediction. The modeled
3D structure of the Fba1 protein was submitted to the ElliPro
prediction tool to filter out the antigenic residues. The
minimum score and maximum distance (Angstrom) were
calibrated in the default mode with a score of 0.5 and 6,
respectively (see Table 3 for more illustrations).

3.2. T-Cell Peptide Prediction

3.2.1. Prediction of MHC I Binding Profile for T Cytotoxic Cell
Conserved Epitopes. 114 epitopes were anticipated to interact
with different MHC I alleles. The core epitopes KYFKR-
MAAM and QTSNGGAAY were noticed to be the dominant
binders with 7 alleles for each (HLA-A∗24:02, HLA-A∗
30:01, HLA-A∗31:01, HLA-B∗14:02, HLA-C∗07:02, HLA-
C∗12:03, and HLA-C∗14:02) (HLA-A∗01:01, HLA-A∗
26:01, HLA-A∗29:02, HLA-A∗30:02, HLA-B∗15:01, HLA-
B∗15:02, and HLA-B∗35:01) followed by AVHEALAPI,
RMAAMNQWL, and YFKEHGEPL which bind with five
alleles; these findings are shown in Table 4.

3.2.2. Prediction of MHC II Binding Profile for T Helper Cell
Conserved Epitopes. 102 conserved predicted epitopes were
found to interact with MHC II alleles. The core epitope
LFSSHMLDL is thought to be the top binder as it interacts
with 9 alleles (HLA-DRB1∗07:01, HLA-DPA1∗01, HLA-
DPB1∗04:01, HLA-DPA1∗01:03, HLA-DPB1∗02:01, HLA-
DPA1∗02:01, HLA-DPB1∗01:01, HLA-DPA1∗03:01, and
HLA-DPB1∗04:02), followed by IRGSIAAAH which binds
to five alleles and VVAALEAAR which also binds with five
alleles but with low frequency. Followed by YQAGNVVLS
and IAPAYGIPV, these findings are shown in Table 5.

3.3. Population Coverage. The most interesting findings in this
test is the population coverage analysis result for the most
common binders to MHC I andMHC II alleles each and com-
bined among the world, exhibiting an exceptional coverage
with percentages 92.54%, 99.58%, and 98.5%, respectively.

3.3.1. Population Coverage for Isolated MHC I. Five epitopes
are given to interact with the most frequent MHC class I
alleles: AVHEALAPI, KYFKRMAAM, QTSNGGAAY,
RMAAMNQWL, and YFKEHGEPL, representing a consider-
able coverage against the whole world population. The max-
imum population coverage percentage over these epitopes is
92.54% (see Figure 5).

Table 4: Promising T-cell epitopes (class MHC I alleles) with their
position and IC50 value.

Core epitope Start End Allele IC50

KYFKRMAAM

160 168 HLA-A∗24:02 451.84

160 168 HLA-A∗30:01 232.12

160 168 HLA-A∗31:01 131.22

160 168 HLA-B∗14:02 427.02

160 168 HLA-C∗07:02 149.13

160 168 HLA-C∗12:03 240.46

160 168 HLA-C∗14:02 6.27

AVHEALAPI

205 213 HLA-A∗02:01 154.37

205 213 HLA-A∗02:06 9.78

205 213 HLA-A∗30:01 20.96

205 213 HLA-A∗32:01 122.32

205 213 HLA-A∗68:02 55.22

RMAAMNQWL

164 172 HLA-A∗02:01 52.44

164 172 HLA-A∗02:06 237.09

164 172 HLA-A∗32:01 79.39

164 172 HLA-B∗15:01 258

164 172 HLA-C∗14:02 482

QTSNGGAAY

61 69 HLA-A∗01:01 54.18

61 69 HLA-A∗26:01 89.37

61 69 HLA-A∗29:02 56.68

61 69 HLA-A∗30:02 47.89

61 69 HLA-B∗15:01 111.57

61 69 HLA-B∗15:02 82.52

61 69 HLA-B∗35:01 99.45

YFKEHGEPL

130 138 HLA-B∗08:01 295.97

130 138 HLA-C∗03:03 42.03

130 138 HLA-C∗07:02 319.29

130 138 HLA-C∗12:03 26.8

130 138 HLA-C∗14:02 18.47
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3.3.2. Population Coverage for IsolatedMHC II. Three epitopes
were assumed to interact with the most frequent MHC class II
alleles (IRGSIAAAH, LFSSHMLDL, and VVAALEAAR) with
a percentage of 99.58%. The LFSSHMLDL epitope shows an
exceptional result for the population coverage test for MHC
II binding affinity of 96.60% globally (see Figure 6).

3.3.3. Population Coverage for MHC I and MHC II Alleles
Combined. Regarding the combined MHC I and MHC II
alleles, five epitopes were supposed to interact with the most
predominant MHC class I and MHC class II alleles (IAPAY-
GIPV, AAFGNVHGV, VVAALEAAR, YIRSTIAPAY, and
YQAGMVVLS), representing a significant global coverage
by the IEDB population coverage tool which revealed cover-
age with percentage of 98.50% as shown in Figure 7.

3.4. Homology Modeling. The 3-dimentional structure of the
fructose bisphosphate aldolase protein from C. glabrata and
the most promising peptides binding to MHC class II by
using the Chimera tool powered by UCSF are shown in
Figure 8.

3.5. Physicochemical Parameters. The length of fructose
bisphosphate aldolase protein is 361 amino acids, and its
molecular weight is 39356.3. Theoretical pI is 5.49 which
explain the pH of the protein. Total numbers of negatively
and positively charged residues that contain the fructose
bisphosphate aldolase protein are (Asp+Glu): 47 and (Arg
+Lys): 35, respectively. Also, the number of atoms that com-
pose this protein is 5488 which presented as flowing: carbon
1752, hydrogen 2716, nitrogen 470, oxygen 538, and sulfur

Table 5: Promising T-cell epitope (class MHC II alleles) with their position and peptide sequence and IC50 value and rank.

Core sequence Allele Start End Peptide sequence IC50 Rank

LFSSHMLDL

HLA-DRB1∗07:01 132 146 KEHGEPLFSSHMLDL 17.8 3.37

HLA-DPA1∗01 135 149 GEPLFSSHMLDLSEE 93.6 5.05

HLA-DPB1∗04:01 135 149 GEPLFSSHMLDLSEE 93.6 5.05

HLA-DPA1∗01:03 133 147 EHGEPLFSSHMLDLS 46 4.82

HLA-DPB1∗02:01 133 147 EHGEPLFSSHMLDLS 46 4.82

HLA-DPA1∗02:01 134 148 HGEPLFSSHMLDLSE 59 6.3

HLA-DPB1∗01:01 134 148 HGEPLFSSHMLDLSE 59 6.3

HLA-DPA1∗03:01 135 149 GEPLFSSHMLDLSEE 12 1.14

HLA-DPB1∗04:02 135 149 GEPLFSSHMLDLSEE 12 1.14

IRGSIAAAH

HLA-DRB1∗01:01 81 95 NASIRGSIAAAHYIR 31.5 15.98

HLA-DRB1∗04:01 81 95 NASIRGSIAAAHYIR 86.5 7.02

HLA-DRB5∗01:01 81 95 NASIRGSIAAAHYIR 7.3 1.55

HLA-DQA1∗01:02 80 94 QNASIRGSIAAAHYI 59.3 3.74

HLA-DQB1∗06:02 80 94 QNASIRGSIAAAHYI 59.3 3.74

HLA-DQA1∗05:01 81 95 NASIRGSIAAAHYIR 4.6 0.27

HLA-DQB1∗03:01 81 95 NASIRGSIAAAHYIR 4.6 0.27

YQAGNVVLS

HLA-DRB1∗01:01 227 241 HGVYQAGNVVLSPEI 19.7 11.15

HLA-DRB1∗09:01 227 241 HGVYQAGNVVLSPEI 80.9 5.58

HLA-DQA1∗01:02 227 241 HGVYQAGNVVLSPEI 91.3 6.42

HLA-DQB1∗06:02 227 241 HGVYQAGNVVLSPEI 91.3 6.42

HLA-DQA1∗05:01 224 238 GNVHGVYQAGNVVLS 7.9 0.96

HLA-DQB1∗03:01 224 238 GNVHGVYQAGNVVLS 7.9 0.96

VVAALEAAR

HLA-DRB1∗03:01 41 55 SSTVVAALEAARDAK 50.9 2.91

HLA-DRB1∗09:01 41 55 SSTVVAALEAARDAK 95.1 6.59

HLA-DRB5∗01:01 41 55 SSTVVAALEAARDAK 15 3.71

HLA-DQA1∗01:02 40 54 SSSTVVAALEAARDA 38.1 1.93

HLA-DQB1∗06:02 40 54 SSSTVVAALEAARDA 38.1 1.93

HLA-DQA1∗05:01 42 56 STVVAALEAARDAKS 16.2 2.87

HLA-DQB1∗03:01 42 56 STVVAALEAARDAKS 16.2 2.87

IAPAYGIPV

HLA-DRB1∗01:01 94 108 IRSIAPAYGIPVVLH 12.1 6.74

HLA-DRB1∗07:01 91 105 AHYIRSIAPAYGIPV 34.1 6.37

HLA-DRB1∗15:01 94 108 IRSIAPAYGIPVVLH 79.2 8.07

HLA-DQA1∗05:01 94 108 IRSIAPAYGIPVVLH 16.5 2.94

HLA-DQB1∗03:01 94 108 IRSIAPAYGIPVVLH 16.5 2.94
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12. N-terminal of the sequence considered is M (Met). The
half-life of the fructose bisphosphate aldolase protein esti-
mate is 30 hours (mammalian reticulocytes, in vitro) and
more than 20 hours (yeast, in vivo). The aliphatic index
and the grand average of hydropathicity (GRAVY) value of
vaccine were determined as 80.55 and −0.264, respectively.
Instability of the fructose bisphosphate aldolase protein is
computed to be 29.93, meaning the protein is stable [74].
The amino acids that compose the protein fructose bispho-
sphate aldolase with their molecular weights are shown in
Table 6 and Figure 9.

3.6. Molecular Docking. The best epitopes that displayed the
lowest binding energies visualized by using UCSF chimera
1.13.1 software are shown in Table 7 and Figures 10–25.

4. Discussion

In the present study, we predicted the most conserved and
immunogenic B- and T-cell epitopes from Fba1 protein of
C. Glabrata by using the immunoinformatics approach in
order to develop an effective epitope-based vaccine against
this fungal pathogen which has emerged in recent years as a
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Figure 5: Global coverage for the top five MHC I peptides (AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and
YFKEHGEPL). Note: in the graph, the line (-o-) represents the cumulative percentage of population coverage of the epitopes; the bars
represent the population coverage for each epitope.
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serious health problem especially among immunosuppressed
and hospitalized patients [7]. A previous study conducted by
de Klerk et al. [79] showed that the Fba1 protein has the
ability to provoke immune responses in human against M.
mycetomatis [79]. Also, several recent publications have used
the Fba1 protein as a strong antigenic target for predicting B-
and T-cell epitopes in order to design promising vaccines
against fungal and bacterial pathogens such asM. mycetoma-
tis, P. aeruginosa, L. monocytogenes, and S. mansoni by using
in silico tools [80–83]. Hence, there are more studies to
explore the fructose bisphosphate aldolase protein immuno-
genic role and the possibility to find common conserved epi-
topes for different organisms.

The principle of using a cocktail of B- and T-cell epitopes in
the epitope-based vaccine to trigger humoral as well as cellular
mediated immune response is very promising to clear infection
instead of humoral or cellular immunity alone, and it was
applied before to enhance protection against different kinds of
infectious diseases [84, 85]. In this study, the analysis of the
Fba1 protein revealed 11 effective epitopes for B-cells (AYFKEH,
VDKESLYTK, andHVDKESLYTK) andT-cells (AVHEALAPI,
KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, YFKEH-
GEPL, IRGSIAAAH, LFSSHMLDL, and VVAALEAAR).

However, the molecular docking, which evaluates the
binding affinity to MHC molecules [51, 52], showed that
the peptides QTSNGGAAY and LFSSHMLDL are the best
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Figure 7: Global population proportion for the top five MHC I and II epitopes in combined mode (IAPAYGIPV, AAFGNVHGV,
VVAALEAAR, YIRSTIAPAY, and YQAGMVVLS). Notes: in the graphs, the line (-o-) represents the cumulative percentage of population
coverage of the epitopes; the bars represent the population coverage for each epitope.
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Figure 8: Structural position of the promising B-cell epitope (AYFKEH (in purple color), VDKESLYTK (in yellow color), and
HVDKESLYTK (in red color)) in 3-dimensional structure of the fructose bisphosphate aldolase protein from C. glabrata using Chimera
tool powered by UCSF.
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Table 6: Amino acid composition of the protein (fructose bisphosphate aldolase) with their number and molecular weight (Mol%) using
BioEdit software version 7.0.5.3.

Amino acid Number Mol% Amino acid Number Mol%

Ala A 39 10.80 Leu L 23 6.37

Cys C 3 0.83 Met M 9 2.49

Asp D 21 5.82 Asn N 19 5.26

Glu E 26 7.20 Pro P 15 4.16

Phe F 14 3.88 Gln Q 8 2.22

Gly G 30 8.31 Arg R 10 2.77

His H 12 3.32 Ser S 23 6.37

Ile I 20 5.54 Thr T 17 4.71

Lys K 25 6.93 Val V 29 8.03

Trp W 3 0.83 Tyr Y 15 4.16
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Figure 9: Graph showing amino acid composition of fructose bisphosphate aldolase protein and their molecular weights using BioEdit
software 7.0.5.3.

Table 7: Docking results of the most promiscuous epitopes that show the best binding affinity.

Epitope Binding MHC molecule Binding energy (ΔG∗ kcal/mol)

AVHEALAPI HLA-A∗02:06 -15.8010

KYFKRMAAM HLA-A∗02:06 -20.5935

QTSNGGAAY HLA-A∗02:06 -30.5467

RMAAMNQWL HLA-A∗02:06 -20.6392

YFKEHGEPL HLA-A∗02:06 -16.7505

IRGSIAAAH HLA-DRB1∗01:01 -20.6557

LFSSHMLDL HLA-DRB1∗01:01 -25.5732

VVAALEAAR HLA-DRB1∗01:01 -19.8404
∗Global energy: it is the energy required to estimate the strength of association between the epitope within the active.
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Figure 10: Illustration of the 2D interaction of the best docking poses of AVHEALAPI in the binding sites of HLA-A∗02:06.

Figure 11: Illustration of the 3D interaction of the best docking poses of AVHEALAPI in the binding sites of HLA-A∗02:06.

Figure 12: Illustration of the 3D interaction of the best docking poses of KYFKRMAAM in the binding sites of HLA-A∗02:06.

11Journal of Immunology Research



candidates for designing an effective epitope-based vaccine
against C. glabrata.

After retrieving the various sequences of C. glabrata
fructose bisphosphate aldolase protein, the protein reference
sequence was submitted to the Bepipred linear epitope
prediction test, Emini surface accessibility test, and Kolaskar

and Tongaonkar antigenicity test in the IEDB, to determine
the affinity of B-cell epitopes and their position regarding
the surface and their immunogenicity. Three peptides have
passed (AYFKEH, VDKESLYTK, and HVDKESLYTK) in
all the prediction tests shown in Tables 1 and 2 and
Figures 2–4. However, the MHC I binding prediction tool

Figure 13: Illustration of the 3D interaction of the best docking poses of KYFKRMAAM in the binding sites of HLA-A∗02:06.

Leu
230

H

O

O

O

O

OO

O

O

O

O

O

O

OH

N
H H

N

Ala
Asp
30

Phe
241

N

H

HN

Tyr
27

H2N

H2N

�r
10

Phe
8

 +NH1 

Glu
232

Lys
243

+ +
�r
233

NH HO

N N

N
H H

H

Gln
32

Val
25

OH

Figure 14: Illustration of the 2D interaction of the best docking poses of QTSNGGAAY in the binding sites of HLA-A∗02:06.

Figure 15: Illustrate the 2D interaction of the best docking poses of QTSNGGAAY in the binding sites of HLA-A∗02:06.
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Figure 16: Illustration of the 2D interaction of the best docking poses of RMAAMNQWL in the binding sites of HLA-A∗02:06.

Figure 17: Illustration of the 2D interaction of the best docking poses of RMAAMNQWL in the binding sites of HLA-A∗02:06.

Figure 18: Illustration of the 3D interaction of the best docking poses of YFKEHGEPL in the binding sites of HLA-A∗02:06.
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Figure 20: Illustration of the 3D interaction of the best docking poses of IRGSIAAAH in the binding sites of HLA-DRB1∗01:01.

Figure 19: Illustration of the 3D interaction of the best docking poses of YFKEHGEPL in the binding sites of HLA-A∗02:06.

Figure 21: Illustration of the 3D interaction of the best docking poses of IRGSIAAAH in the binding sites of HLA-DRB1∗01:01.
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using an artificial neural network (ANN) [61] with half max-
imal inhibitory concentration ðIC50Þ ≤ 500 revealed 114
conserved peptides interacting with various MHC I alleles.
Three peptides were noticed to have the highest affinity in
corresponding to their interaction with MHC I alleles. The
peptide YIRSIAPAY from 93 to 101 had the affinity with 8
alleles to interact with HLA-A∗26:01, HLA-A∗29:02, HLA-
B∗15:01, HLA-A∗30:02, HLA-B∗15:02, HLA-B∗35:01,
HLA-C∗14:02, and HLA-C∗12:03, followed in order by
KYFKRMAAM from 160 to 168 which interacts with 7 alleles

(HLA-A∗24:02, HLA-A∗31:01, HLA-A∗30:01, HLA-B∗
14:02, HLA-C∗07:02, HLA-C∗14:02, and HLA-C∗12:03)
and QTSNGGAAY from 61 to 69 which interacts with 7
alleles (HLA-A∗01:01, HLA-A∗26:01, HLA-A∗30:02, HLA-
A∗29:02, HLA-B∗15:02, HLA-B∗15:01, and HLA-B∗35:01)
(see Table 4), while MHC II binding prediction tool using
NN-align [67] with half-maximal inhibitory concentration
ðIC50Þ ≤ 100 revealed 102 conserved peptides that interact
with various MHC II alleles. Two peptides (LFSSHMLDL
and YIRSIAPAY) were noted to have the highest affinity in
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Figure 22: Illustration of the 3D interaction of the best docking poses of LFSSHMLDL in the binding sites of HLA-DRB1∗01:01.

Figure 23: Illustration of the 3D interaction of the best docking poses of LFSSHMLDL in the binding sites of HLA-DRB1∗01:01.
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corresponding to their interaction with MHC II alleles; both
had the affinity to interact with 9 MHC II alleles (see
Table 5). Moreover, the predicted epitopes which have the
high affinity to interact with MHC I, MHC II, and combined
MHC I with MHC II international alleles were analyzed by
population coverage resource in the IEDB [68]. The popula-
tion coverage of the five most promising epitopes (AVHEA-
LAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL,
and YFKEHGEPL) for MHC I alleles was 92.54%, while
for the three epitopes (IRGSIAAAH, LFSSHMLDL, and
VVAALEAAR) that showed high affinity to MHC II alleles,
it was 99.58% throughout the world according to the IEDB
database as shown in Figures 5 and 6. It should be noted that
the population coverage of the five most promising epitopes
that exhibited binding affinity to both MHC I and MHC II
alleles (IAPAYGIPV, AAFGNVHGV, VVAALEAAR,
YIRSTIAPAY, and YQAGMVVLS) was 98.50% globally
(see Figure 7). However, the molecular docking revealed that
the epitopes QTSNGGAAY and LFSSHMLDL have high
binding energy to MHC molecules HLA-A∗02:06 and
HLA-DRB1∗01:01, respectively, which indicate favored
affinity and stability in the epitope-molecule complex shown

in Table 7 and Figures 10–25. This study was limited by
being strictly computational, and more in vitro and in vivo
studies to prove the effectiveness of the proposed peptides
are highly recommended.

5. In Conclusion

The epitope-based vaccines predicted by using immunoin-
formatics tools have remarkable advantages over the conven-
tional vaccines in that they are more specific, less time
consuming, safe, less allergic, and more antigenic. Further
in vivo and in vitro experiments are needed to prove the
effectiveness of the best candidate’s epitopes QTSNGGAAY
and LFSSHMLDL. To the best of our knowledge, this is the
first study that has predicted B- and T-cell epitopes from
the Fba1 protein by using in silico tools in order to design
an effective epitope-based vaccine against C. glabrata.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Figure 24: Illustration of the 2D interaction of the best docking poses of VVAALEAAR in the binding sites of HLA-DRB1∗01:01.

Figure 25: Illustration of the 2D interaction of the best docking poses of VVAALEAAR in the binding sites of HLA-DRB1∗01:01.
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