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Abstract DNAmethylation has become increasingly recognized in the etiology of complex diseases,
including thrombotic disorders. Blood is often collected in epidemiological studies for
genotyping and has recently also been used to examine DNA methylation in epigenome-
wide association studies. DNA methylation patterns are often tissue-specific, thus,
peripheral blood may not accurately reflect the methylation pattern in the tissue of
relevance. Here, we collected paired liver and blood samples concurrently from 27
individuals undergoing liver surgery. We performed targeted bisulfite sequencing for a
set of 35 hemostatic genes primarily expressed in liver to analyzeDNAmethylation levels of
>10,000 cytosine-phosphate-guanine (CpG) dinucleotides. We evaluated whether DNA
methylation in blood could serve as a proxy for DNAmethylation in liver at individual CpGs.
Approximately 30% of CpGs were nonvariable and were predominantly hypo- (<25%) or
hypermethylated (>70%) in both tissues.While blood can serve as a proxy for liver at these
CpGs, the low variability renders these unlikely to explain phenotypic differences. We
therefore focused on CpG sites with variable methylation levels in liver. The level of blood–
liver tissue correlation varied widely across these variable CpGs; moderate correlations
(0.5� r< 0.75) were detected for 6% and strong correlations (r� 0.75) for a further 4%.
Our findings indicate that it is essential to study the concordance of DNA methylation
between blood and liver at individual CpGs. This paired blood–liver dataset is intended as a
resource to aid interpretation of blood-based DNA methylation results.
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Introduction

Procoagulantmechanisms can play a pathophysiological role
in arterial and venous thrombosis, as can anticoagulant
mechanisms in hemorrhagic disorders. Genome-wide asso-
ciation studies (GWASs) have identified several variants
within hemostatic genes that associate with circulating
levels of the respective proteins,1–4 thrombotic diseases
such as coronary artery disease (CAD),5 ischemic stroke,6

and venous thrombosis,7 as well as bleeding disorders.8,9 In
addition to genetic variants, there is increasing evidence for
the involvement of epigenetic mechanisms, such as DNA
methylation, inmany human diseases,10 and those caused by
arterial or venous thrombosis are no exception.11–14

Over the last few years, technological advances havemade
it possible to perform so-called epigenome-wide association
studies (EWASs) by the use of bead arrays that allow for
genome-wide mapping of DNA methylation at a large num-
ber of cytosine-phosphate-guanine (CpG) dinucleotide sites.
With regards to arterial thrombotic diseases, EWASs have
identified several CpGs that are differentially methylated in
cases with myocardial infarction (MI) or ischemic stroke
compared with controls.11–14 A large EWAS also identified
CpGs showing differential methylation in relation to age-
independent cardiovascular risk factors.15Amethylation risk
score, created based on these differentiallymethylated CpGs,
was significantly associated with incident cardiovascular
events in the Framingham offspring study, and this associa-
tion was independent of age, sex, and classical vascular risk
factors.15 Another recent EWAS, including nine population-
based cohorts from the United States and Europe, found that
methylation levels at 52 CpG sites were significantly associ-
ated with incident MI or coronary heart disease (CHD).16

Mendelian randomization analyses supported a causal effect
of DNA methylation on incident CHD.16 The identified dif-
ferentially methylated CpGs mainly map to genes related to
inflammation, calcium regulation, and kidney func-
tion.12,14,16 Thus, in contrast to GWASs of thrombotic and
bleeding disorders that have identified genetic variants
associated with several hemostatic genes, epigenetic studies
have so far not implicated a role for altered DNAmethylation
levels in hemostatic genes for these traits.

Most EWASs analyze methylation in DNA isolated from
peripheral blood, as it is readily available in large epidemio-
logical studies. However, for many diseases, peripheral blood
may not accurately reflect the methylation pattern in the
tissue of pathophysiological relevance that is less accessible.
Several studies have analyzed genome-widemethylation data
in different cells and tissues across individuals, and generally
found a high overall correlation inmethylation levels between
different cell lines and tissues.17–19 However, there are also
studies showing that the differences in methylation between
tissues within one person are much larger than the interindi-
vidual differences within a specific tissue,20,21 indicating that
epigenetic signatures are often tissue-specific.

In line with this, results from more recent studies on
methylation correlations have shown that it is important to
compare methylation levels in paired samples from the same

subject as such analyses are less sensitive to confounding due
to environmental, clinical, and technical factors.22,23 So far
therehavebeen fewstudiesusingwithin-subject analyses and,
as far as we are aware, they have compared DNA methylation
signatures in blood versus the brain22–24 or the eye.25 These
studies focused on variable CpG sites, and investigatedwheth-
er interindividual variation inmethylation in peripheral blood
could be used as a proxy for interindividual variation in brain
or eye methylation. The main results from these studies are
that for the majority of variable DNA methylation sites, DNA
methylation in peripheral blood cells is not a strong predictor
for the variation either in brain or in ocular tissue.22–25 Thus,
one of the challenges in epigenetic studies is to increase
knowledge of when DNA methylation data from peripheral
blood cells can be used in the prediction of the methylation
state in hard-to-access tissues that are more relevant for the
pathology of interest.

We hypothesized that the lack of evidence for an associa-
tion between methylation patterns in hemostatic genes in
epigenetic studies on thrombotic and bleeding traits per-
formed so far may, at least in part, be explained by the fact
thatmethylationpatterns in blooddo not reflectmethylation
signatures in the tissue of relevance. Several hemostatic
factors are synthesized in the liver, and we recently investi-
gated allele-specific expression and methylation of 35 of
these genes.26,27 Here, we use targeted bisulfite sequencing
to allow unbiased detection of all (>10,000) CpGs within
these 35 genes. We profiled the per CpGmethylation pattern
in both liver and blood samples collected from the same
subjects at the same point of time. We focused on CpG sites
with variable methylation levels in the liver. The aim of the
present study was to evaluate whether DNA methylation
levels for some of these CpG sites in blood can be used as a
proxy for DNAmethylation of the same CpG sites in the liver.

Methods

Sample Collection
Liver tissue and venous blood samples were obtained from
27 unrelated individuals (11 women and 16 men) of Euro-
pean descent undergoing liver surgery at the Sahlgrenska
University Hospital, Gothenburg, Sweden. The mean age at
the time of sample collectionwas 66 years for women (range:
50–77 years) and 70 years for men (range: 55–83 years). The
reason for surgery was secondary malignant tumor of the
liver or the intrahepatic bile ducts or primary liver cancer.
The liver tissue samples collected for this study were as
distant as possible to the tumor or metastasis, and were all
noncirrhotic and nontumorous onmacroscopic examination
by the surgeon. For each participant, blood and liver samples
were collected on the same day, no more than 4 hours apart.
The liver samples were immediately placed in RNAlater at 4°
C and held for 3 to 4 days, then aliquoted and stored at�80°C.
The blood samples were anticoagulated with EDTA, ali-
quoted, and stored at �80°C within 24 hours. This study
was approved by the Ethics Committee at the University of
Gothenburg (ref. 665–13) andwritten informed consent was
obtained from all subjects prior to participation.
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DNA Extraction and Methylation Sequencing
We selected 35 genes with a role in the hemostatic system
and with predominant expression in the liver based on data
from the Genotype-Tissue Expression (GTEx) project.28 DNA
extraction and the target sequencing design for DNA meth-
ylation analysis of these genes have been described in detail
elsewhere.26,27 In brief, genomic DNA (gDNA) was isolated
from the liver samples using the AllPrep DNA/RNA/miRNA
Universal Kit (Qiagen, Hilden, Germany) and from the blood
samples using theQIAampDNABloodMidi Kit (Qiagen). DNA
sequencing libraries were prepared using the SureSelect
custom capture kit (Agilent, Santa Clara, California, United
States) targeting the 35 genes, including upstream (5,000 bp)
and downstream (500 bp) regions. Prepared libraries were
bisulfite-converted with the EZ DNA methylation kit (Zymo
Research, Irvine, California, United States) and all blood and
liver samples were multiplexed in one lane on the Illumina
HiSeq 2500 (Illumina, San Diego, California, United States)
with High Output mode and 100 bp paired-end reads. Raw
sequence reads were quality-controlled using FastQC (Bab-
raham Bioinformatics, Cambridge, United Kingdom). Low-
quality bases were removed and the reads were trimmed
with TrimGalore! v. 0.4.1. (http://www.bioinformatics.bab-
raham.ac.uk/projects/trim_galore/). The methylation se-
quence reads were aligned to an in silico bisulfite-
converted version of the human reference genome hg19
with Bowtie2 v. 2.2.6.29 Deduplication and CpG methylation
were then called using the Bismark v. 0.14.5 pipeline (https://
www.bioinformatics.babraham.ac.uk/projects/bismark/)
with default parameters. All genes and regions included in
this design are presented in ►Table 1. SeqMonk (v. 1.46.0,
https://www.bioinformatics.babraham.ac.uk/projects/seq-
monk/) was used for visualizations.

Annotation
Genomic and functional annotation of all CpGs was performed
based on Ensembl annotation v. 6730 for the following catego-
ries: (1) upstream regions (defined as þ5 to þ2 kbp from
transcription start site [TSS]), (2) promoters (defined as þ2 to
�1 kbp from TSS), (3) first exon, (4) all other exons (i.e.,
excluding first exon), (5) exon/intron boundaries, (6) first
intron, (7) all other introns (i.e., excluding first intron), (8)
downstream (defined as up to 500 bp downstream of the
transcription termination site), (9) CpG islands (CGI), and (10)
CGI shores. CpGs were annotated as methylation quantitative
trait loci (mQTL) ordisplaying allele-specificmethylation (ASM)
based on bisulfite-sequencing studies in the liver27 or blood.31

Statistical Analyses
A principle component analysis (PCA) of the methylation
data was performed to look for potential confounders and/or
deviating samples. Variable CpGswere defined based onDNA
methylation levels in liver samples as those with a methyla-
tion range differing at least 5% across individuals after
exclusion of methylation values above the 90th and below
the 10th percentile for each CpG, as previously described.32

For variable CpGs, methylation levels in liver and blood
samples isolated from the same individuals were compared

using one-sided Pearson’s correlation test. Negligible corre-
lations were defined as r< 0.25, weak as 0.25� r< 0.5,
moderate as 0.5� r< 0.75, and strong as r� 0.75. To account
formultiple testing, we applied a false discovery rate (FDR) of
0.05. Enrichment tests on strongly correlated CpGs were
performed using Fisher’s exact test to assess whether these
CpGs appeared to be overrepresented in specific genomic or
functional contexts compared with all variable CpGs. Group-
ing of strongly correlated CpGs into different correlation
patterns was performed by manual inspection of the corre-
lation plots. Enrichment tests on continuous CpGs were
performed in comparison with all variable CpGs. All statisti-
cal analyses were performed using R software (v. 3.6.1;
https://www.r-project.org/; The R Project, Vienna, Austria).

Results

Data Quality Control
All blood samples clustered distinctly from liver samples in
PCA analyses (►Supplementary Fig. S1, available in the
online version), indicating that tissue type is the main driver
of DNA methylation within the dataset, as expected. No
confounding covariation was observed in the PCA plots
with regard to sex or age of the subjects (►Supplementary

Fig. S1A, B, respectively, available in the online version).
A total of 10 to 20M sequence reads were generated per

sample, with an average read depth of approximately 50�.
The targeted 35 hemostatic genes in our design contained a
total of 19,059 CpGs. For the downstream analyses, we only
included CpGs with available high-quality methylation calls
in five or more paired liver–blood samples. A total of 10,483
CpG sites met this criterion. For the vast majority, i.e., 83% of
these CpGs, methylation calls were present for all of the 27
paired tissue samples. For the remaining samples, 14% had
methylation calls in 20 to 26 paired samples, 3% in 10 to 19
paired samples, and 0.1% in 5 to 10 paired samples.

Patterns of Variability in CpG Methylation
As expected,methylationvalueswerebimodally distributed in
both blood and liver, with a large number of CpG sites at the
extremes (►Fig. 1A, B). We used standard deviation (SD) to
index methylation variability and observed that a relatively
largenumber ofCpGsdisplayed low levels of variability inboth
blood and liver (►Fig. 1C, D). Approximately 70% of all CpGs
(n¼ 7,499) met the present definition of variable (see Meth-
ods). The remaining nonvariable CpGs (n¼ 2,984) were hypo-
or hypermethylated in all samples, or were predominantly
hypo- or hypermethylated but with one outlier (data not
shown). In total, 777 CpGswere concurrently hypomethylated
(mean %methylation� SD; liver: 1.5� 1.2%; blood: 2.1� 2.3%;
meandifference inmethylationbetweenpaired samples� SD:
0.7� 1.4%) and 2,206 were concurrently hypermethylated
(mean� SD; liver: 95.8� 1.9%; blood: 94.8� 2.9%; mean dif-
ference in methylation between paired samples� SD:
1.6� 1.8%). While blood can be used as a proxy for liver for
these fixed methylated CpGs, the fact that they have low
variability between individuals likely limits their utility to
describe phenotypic differences in EWASs. Therefore, the
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remaining analyses will be restricted to variable CpGs. How-
ever, for the interested readers, details for the nonvariable
CpGs can be found in ►Supplementary Table S1 (available in
the online version).

Correlations in CpG Methylation Levels between Liver
and Blood
We assessed within-subject correlations in methylation lev-
els between liver and blood for each of the variable CpGs. The
majority of the correlation coefficients were close to 0 (mean

and median r¼ 0.11 and 0.07, respectively), but with a
clearly visible right skewness. The distribution for these
correlation coefficients is displayed in ►Fig. 1E. According
to our definitions in the Methods section, negligible corre-
lations were observed for 4,993 (67%), weak correlations for
1,726 (23%), moderate correlations for 451 (6%), and strong
correlations for 329 (4%) of the variable CpGs. A summary of
these results is presented in ►Table 2, and detailed in
►Supplementary Table S2 (available in the online version).
Included in the supplementary table is information on CpG

Table 1 The 35 hemostatic genes included in the targeted methylation sequencing design

Gene name Region included in the capture design Protein name

A2M chr12:9,219,804–9,280,558 Alpha2-macroglobulin

C4BPB chr1:207,257,584–207,273,837 Complement component 4 binding protein, β

CPB2 chr13:46,626,822–46,684,211 Carboxypeptidase B2 (TAFI)

F10 chr13:113,774,613–113,804,343 Factor X

F11 chr4:187,180,618–187,211,335 Factor XI

F12 chr5:176,828,639–176,844,077 Factor XII

F13B chr1:197,007,821–197,041,397 Factor XIII B

F2 chr11:46,732,043–46,761,556 Prothrombin (factor II)

F5 chr1:169,480,692–169,560,769 Factor V

F7 chr13:113,755,105–113,775,495 Factor VII

F9 chrX:138,607,895–138,646,117 Factor IX

FGA chr4:155,503,780–155,516,897 Fibrinogen α chain

FGB chr4:155,479,132–155,494,415 Fibrinogen β chain

FGG chr4:155,525,228–155,539,402 Fibrinogen γ chain

GGCX chr2:85,771,478–85,798,657 Vitamin K-dependent gamma-carboxylase

HABP2 chr10:115,305,590–115,349,860 Factor VII activating protease (FSAP)

HRG chr3:186,378,798–186,396,523 Histidine-rich glycoprotein

KLKB1 chr4:187,143,672–187,180,125 Plasma kallikrein

KNG1 chr3:186,415,098–186,461,178 Kininogen-1

LMAN1 chr18:56,994,556–57,031,508 Lectin, mannose-binding, 1

MCFD2 chr2:47,128,509–47,154,215 Multiple coagulation factor deficiency protein 2

PLG chr6:161,118,225–161,175,585 Plasminogen

PROC chr2:128,142,996–128,187,322 Vitamin K-dependent protein C

PROS1 chr3:93,591,381–93,697,934 Vitamin K-dependent protein S

PROZ chr13:113,805,468–113,827,194 Vitamin K-dependent protein Z

SERPINA1 chr14:94,842,584–94,862,029 Alpha1-antitrypsin

SERPINA10 chr14:94,749,150–94,764,608 Protein Z-related protease inhibitor

SERPINA5 chr14:95,041,731–95,059,957 Plasma serine protease inhibitor

SERPINC1 chr1:173,872,442–173,891,516 Antithrombin III

SERPIND1 chr22:21,123,383–21,142,508 Heparin cofactor 2

SERPINE1 chr7:100,764,879–100,783,047 Plasminogen activator inhibitor-1

SERPINF2 chr17:1,636,130–1,659,059 Alpha2-antiplasmin

SERPING1 chr11:57,360,027–57,382,826 Plasma protease C1 inhibitor

TFPI chr2:188,328,458–188,424,219 Tissue factor pathway inhibitor

VKORC1 chr16:31,101,675–31,111,276 Vitamin K epoxide reductase complex subunit 1

Note: Locations are given according to the human reference genome hg19.
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genomic location (chromosome number and position), gene
name, number of paired samples included in the analysis,
Pearson’s correlation coefficients, r2 as a measure of the
percent variance explained, unadjusted p-value andwhether

significant at the FDR threshold, mean percent methylation
and standard deviation in both blood and liver, mean percent
difference in methylation between paired blood–liver sam-
ples, previous evidence of genetic association (i.e., mQTL or
ASM), and genomic annotation.

All of the 35 genes harbored at least one CpG displaying a
strong correlation between liver and blood, with the excep-
tion of SERPINC1. In total, blood was able to explain >80% of
the variance in liver DNA methylation at 151 CpGs across 30
genes, and >90% of the variance in liver at 69 CpGs across 24
genes (for details, see►Supplementary Table S2, available in
the online version). The largest number of strongly correlated
CpGs (n¼ 41) was found in the gene encoding factor VII (F7).
The locations of these CpGs are displayed in a schematic of F7
and F10 together with moderately correlated CpGs and the
average percent methylation at each CpG in blood and liver
(►Fig. 2). Similar schematics for the remaining 33 genes can
be found in ►Supplementary Fig. S2 (available in the online
version).

Enrichment of Strongly Correlated CpGs in Genomic or
Functional Contexts
We next evaluated whether CpGs with a strong correlation
between blood and liver were over- or underrepresented in
specific genomic or functional contexts. CpG sites with a
strong correlation between the two tissues were enriched in
introns (excluding the first intron; p< 0.01, Fisher’s exact
test). Contrarily, in the first intron, CGI shores, and exons
(excluding the first exon), the liver–blood correlation
appeared at a lesser extent as compared with all variable
CpGs (p< 0.05, Fisher’s exact test). No clear over- or under-
representation was observed in the remaining genomic

Fig. 1 Frequency distribution of the percent methylation, standard
deviation, and Pearson’s correlation coefficient for the investigated
CpGs. (A, B) Percent methylation for all 10,483 CpGs in blood and
liver, respectively; (C, D) standard deviation as an index of methylation
variability for all 10,483 CpGs in blood and liver, respectively; (E)
Pearson’s correlation coefficient (r) for the 7,499 variable CpGs.

Table 2 Summary of the total number of nonvariable CpGs and variable CpGs divided into strength of correlation between liver
and blood

Type Nonvariable Variable

Negligible Weak Moderate Strong

r< 0.25 (0.25� r< 0.5) (0.5� r< 0.75) (r� 0.75)

Number of CpGs 2,984 4,993 1,726 451 329

Difference in methylation (median) 0.7% 17% 14% 8% 2.4%

r (median) NA 0.02 0.29 0.6 0.88

r2 (median) NA 0.01 0.11 0.37 0.77

Nominal p< 0.05 NA 0 458 415 324

FDR< 0.05 NA 0 0 361 315

Association with genetic variant
(e.g., mQTL or ASM)

975 1,647 560 127 30

Abbreviations: ASM, allele-specific methylation; CpG, cytosine-phosphate-guanine dinucleotide; FDR, false discovery rate; mQTL, methylation
quantitative trait loci; NA, not applicable.
Note: Variable CpGs were defined based on DNA methylation levels in liver tissue samples as those with a methylation range differing at least 5% across
individuals after exclusion of methylation values above the 90th and below the 10th percentile for each CpG, as previously described.32 Difference in
methylation (%DNA methylation in liver minus that in blood, per paired sample set); r, Pearson’s correlation; r2, percent variance explained; nominal p-
value< 0.05; FDR< 0.05; previous mQTL or ASM based on publically available bisulfite-sequencing studies in blood31 and liver.27 Detailed results per CpG
are provided for nonvariable CpGs in ►Supplementary Table S1 and for variable CpGs in ►Supplementary Table S2.
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contexts (promoter, downstream, CGIs, first exon, and up-
stream; ►Fig. 3).

Correlation Patterns for CpG Methylation between
Liver and Blood
We manually inspected a large number of scatter plots for
CpGs displaying moderate and strong correlations in meth-
ylation levels between liver and blood, and identified two
main correlation patterns: (1) continuous (exemplified in
►Fig. 4A) and (2) trimodal/bimodal, with methylation levels
close to 0, 50, and 100% (i.e., trimodal), or 0 and 50%, or 50 and
100% (i.e., bimodal; exemplified in ►Fig. 4B–D). The remain-
ing CpGs were not clearly represented by either of these two
main patterns. Many of these were bimodal-like and were
predominantly fully methylated or nonmethylated, but with
several outliers that affected the correlation coefficient (data
not shown). It is of note that some CpGs displayed negative
correlations (n¼ 59 moderate and 5 strong) and were due to
fully hypo- or hypermethylated DNA methylation clusters
with a very small mean percent difference in methylation

between paired blood and liver samples (►Supplementary

Table S2 [available in the online version]; data not shown).

CpGs with Evidence of Genetic Regulation
Genetic variation at single nucleotide polymorphisms (SNPs)
is a contributor to DNA methylation variability between
individuals. Previous studies have demonstrated that there
is a significant overlap of mQTLs between tissue types, and
for these CpGs DNA methylation in blood may be a reliable
correlate of DNA methylation in other more relevant tis-
sues.33,34 However, there is also a large portion of mQTL-
associated CpGs that show tissue-specific effects.33,34 We
therefore next used publically available mQTL and ASM data
from a whole genome bisulfite-sequencing study in blood31

and from our previous ASM study in liver27 to determine the
concordance of these genotype-associated CpGs in blood and
liver. We found that 127 CpGs with moderate and 30 CpGs
with strong correlations were previously reported to associ-
ate with genetic variants in either blood or liver (see
►Supplementary Table S2, available in the online version).
It is also of note that approximately 30% of CpGs classified as
nonvariable in our study were previously associated with
genotype. These may represent CpGs associated with low-
frequency SNPs for which our sample sizemay have been too
restrictive to capture any genetic diversity and/or for which
our definition of variable may have been too constricting.

CpGs Displaying a Continuous Correlation Pattern
CpG sites that are concordant in liver and blood and linked to
genotype could, theoretically, be assessed through genotyp-
ing methods. Therefore, arguably, the most interesting novel
findings entail the CpGs classified as both variable in liver
and showing a continuous correlation pattern. In this study,
75 (23%) of the CpGs displaying a strong correlation of
methylation levels between liver and blood exhibited both
of these properties. An apparent enrichment of these CpGs
was observed in CGIs (p< 0.001, Fisher’s exact test).

Fig. 2 Schematic illustrations of F7 and F10 depicting DNA methylation patterns and location of correlated CpGs in blood and liver tissue. At
least 5 kbp upstream and 0.5 kbp downstream of each gene are included: blue indicates the gene structure and red CpG islands. Variable CpGs
and those displaying moderate and strong correlations are shown in gray. The average methylation status of the 27 samples for each CpG in
blood and liver is also presented; purple represents a low degree of methylation (hypomethylation) and green a high degree of methylation
(hypermethylation). All other genes can be found in ►Supplementary Figure S2 (available in the online version).

Fig. 3 Enrichment analysis for variable CpGs with strong within-
individual correlations in methylation levels between liver and blood
in different genomic contexts. Data are presented as percent CpGs
correlating between tissues. �p< 0.05, ��p< 0.01, ���p< 0.001
(Fisher’s exact test).
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Of the 35 genes, 18 did not harbor any CpG with a
continuous methylation correlation pattern. However,
A2M, F10, F11, F2, F5, HABP2, KLKB1, KNG1, LMAN1, PLG,
PROC, PROS1, SERPINA5, and SERPING1 all harbored 1 to 5 CpG
sites with these properties, and SERPINF2 and F9 each had 7
and 9 of these sites, respectively (►Table 3). The largest
number (n¼ 24) of CpGs with these properties was found in
F7, and these CpGs were all located in CGIs and/or in the
promoter (►Table 3).

Discussion

Several hemostatic factors are produced in the liver and DNA
methylationmay contribute to regulation of the expression of
these genes. Given the difficulty in obtaining liver tissue
samples, it is of great importance to know whether DNA
methylation in blood could serve as a proxy for DNAmethyla-
tion in liver. Therefore, we used liver tissue and blood samples
obtained from the same individuals at the same point in time
to explore the degree of correlation in DNAmethylation levels
at individual CpG sites between liver and blood for 35 hemo-
static genes. We used a within-subject approach and found
that concordance of DNAmethylationbetweenblood and liver
varied widely at individual CpGs. Approximately 30% of CpGs
were nonvariable comprising concurrently hypo- or hyper-
methylated CpGs. Of the approximately 7,500 variable CpGs,
6% were moderately correlated and 4%were strongly correlat-
ed. The DNAmethylation level in blood could serve as a proxy
for the methylation level in liver at these sites.

To thebestofourknowledge, this is thefirst studyanalyzing
DNAmethylationcorrelationsbetweenhumanliverandblood.

A few other studies with similar within-subject design have
been performed on other tissues.22–25 However, these
assessed genome-wide DNAmethylation patterns with Bead-
Chip arrays rather than specific genes of interest with targeted
sequencing. In one study paired blood and brain sampleswere
obtained from 27 patients with epilepsy undergoing neuro-
surgery, and significant correlations in methylation levels
between brain and blood were detected for less than 2% of
the variable CpGs after a Bonferroni correction.22 Two other
smaller studies (n¼ 12 and n¼ 16) used paired blood and
brain samples and identified correlation for approximately
10%of theanalyzedvariableCpGswhenapplying less stringent
correction formultiple testing.23,34Lastly, onestudycompared
paired blood and eye tissue collected postmortem from eight
donors, and only a small proportion of the CpG sites showed
correlation in DNA methylation levels between blood and
different ocular tissues.25 The results from these four studies
are thus in line with our present findings, that DNA methyla-
tion correlation at individual variable CpGs between liver and
blood is generally low.

Among the CpGs displaying strong correlation between
liver and blood in the present study, we observed two
correlation patterns. The first main pattern was a trimodal/
bimodal correlation pattern, withmethylation levels close to
0, 50, and 100% (i.e., trimodal), or 0 and 50%, or 50 and 100%
(i.e., bimodal). A similar trimodal pattern among correlated
CpGs was reported in a study on DNA methylation in blood
versus eye25 and in another study on blood versus postmor-
tem brain tissue,32 and these authors concluded that this
pattern is likely to bemediated byDNA sequence variation. In
line with this, 9% of CpGs with strong correlations between
blood and liver had previously been demonstrated to be
mQTL or ASM-associated CpGs in two bisulfite-sequencing
studies in blood31 and liver.27 For these CpGs, this supports
the use of blood-based studies to explore DNA methylation
as a mechanistic link between noncoding SNPs and varia-
tions observed in gene expression, circulating protein levels,
and disease traits. However, from a biomarker perspective,
genetically associated CpGs could potentially be assayed
using regular DNA sequencing or genotyping, which is less
labor-intensive than bisulfite-conversion sequencing.

The second pattern was a continuous correlation pattern,
i.e., methylation levels spanning a wide range. This pattern
was observed for 75 CpGs. We observed an enrichment of
continuous CpGs in regulatory elements (CGIs, promoters,
and upstream regions), whereas the enrichment analysis of
all strongly correlated CpGs showed an enrichment in
introns. This could indicate that the continuous CpGs are
more relevant for gene regulation. However, evidence is now
mounting that methylation in introns may also play a role in
regulation,35 and more studies are clearly needed to unravel
the regulatory mechanisms of gene body methylation. Fur-
thermore, it should be noted that due to the small number of
both variable and continuous CpGs in relation to all CpGs
analyzed, the results for the enrichment of this subset should
be interpreted with caution.

The gene containing the largest number of CpGs that were
both variable in liver and displayed strong and continuous

Fig. 4 Representative examples of the two main CpG methylation
correlation patterns between liver and blood samples; (A) continuous
correlation, here exemplified by CpG position chr17:1642181 in SERPINF2,
and (B) trimodal correlation pattern, exemplified by CpG position
chr4:155515417 in FGA; (C,D) bimodal correlation patterns, exemplified by
CpG position chr12:9253895 in A2M and chr1:169533986 in F5,
respectively.
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Table 3 Number and genomic locations of variable CpGs displaying strong and continuous correlation in methylation levels
between liver and blood

Number of informative CpGs per region

Gene
name

Nr
CpGs

Upstream Promoter Exon Intron CGI CGI shore

A2M 1 Chr12:9230732

F10 4 Chr13:113776950 Chr13:113784015
Chr13:113786948
Chr13:113793118

Chr13:113784015

F11 2 Chr4:187200776
Chr4:187205797

F2 1 Chr11:46748284

F5 3 Chr1:169504830
Chr1:169514790
Chr1:169515916

F7 24 Chr13:113761619
Chr13:113761653
Chr13:113761670
Chr13:113761687
Chr13:113761721
Chr13:113761755
Chr13:113761789
Chr13:113761857
Chr13:113761891
Chr13:113761925
Chr13:113761959
Chr13:113762033

Chr13:113761619
Chr13:113761653
Chr13:113761670
Chr13:113761687
Chr13:113761721
Chr13:113761755
Chr13:113761789
Chr13:113761857
Chr13:113761891
Chr13:113761925
Chr13:113761959
Chr13:113762033
Chr13:113762509
Chr13:113762554
Chr13:113762577
Chr13:113762623
Chr13:113762657
Chr13:113762708
Chr13:113762844
Chr13:113763310
Chr13:113763372
Chr13:113763406
Chr13:113763474

Chr13:113765997

F9 9 ChrX:138633272
ChrX:138643737

ChrX:138621897
ChrX:138624419
ChrX:138634842
ChrX:138640263
ChrX:138641008
ChrX:138641086
ChrX:138642197

HABP2 4 Chr10:115306262 Chr10:115313586
Chr10:115318439
Chr10:115343587

KLKB1 2 Chr4:187149540 Chr4:187172280

KNG1 5 Chr3:186427341
Chr3:186427950
Chr3:186429140
Chr3:186432858

Chr3:186440243

LMAN1 2 Chr18:57002439
Chr18:57002464

PLG 5 Chr6:161122707 Chr6:161134274 Chr6:161131516
Chr6:161137990
Chr6:161152449

PROC 2 Chr2:128146272
Chr2:128169899

Chr2:128146272

PROS1 1 Chr3:93685812

SERPINA5 1 Chr14:95045497

SERPINF2 7 Chr17:1642181
Chr17:1643012
Chr17:1643709
Chr17:1643934
Chr17:1644992

Chr17:1645152 Chr17:1648295

SERPING1 2 Chr11:57362618 Chr11:57381989

Abbreviations: CGI, CpG island; Nr, number.
Note: “Exon” and “intron” annotations are based only on the second to last exon/intron in the transcript (i.e., omitting the first exon/intron). For the
remaining contexts, if one CpG overlapsmore than one annotated region, both are presented. Genes are listed alphabetically. For further details for a
specific CpG, see online ►Supplementary Table S2.
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correlations inmethylation between the tissues was F7. These
CpGs were located in a CGI, which overlaps the F7 promoter.
This gene encodes the vitamin K-dependent serine protease
coagulation factorVII (FVII),which isoneof thekey initiatorsof
the coagulation cascade. Plasma concentrations of FVII have
been shown to associate with incident MI and ischemic
stroke.36–39 Interestingly, F7 promoter methylation levels in
peripheral blood mononuclear cells have been linked to plas-
ma concentrations of activated FVII and CAD.40 Taken together
with the findings in our study, it is possible that F7 promoter
methylation in the livercontributes to the regulationofplasma
concentrations of FVII, and that blood may well be used as a
proxy tissue for liver in this particular case.

One important strength of this study is that we used a
within-subject approach, i.e., the two tissues were derived
from the same individual at the same point in time, meaning
that comparisons between tissues were done at the same
biological age, within the same sex, and under the same
study-specific and environmental circumstances. Further-
more, all 54 samples were processed at the same time and
run on the same sequencing lane to minimize technical
confounding. Finally, we used targeted bisulfite sequencing
as opposed to commercially available methylation arrays,
which provides a much higher resolution of individual CpGs.
Current arrays cover <4% of CpGs and have poor coverage
over the gene bodies of hemostatic genes, meaning that
potentially informative CpG sites are currently overlooked
in the majority of array-based DNA methylation studies. In
fact, of the 10,483 CpGs included in our study, only one
variable methylation site with strong correlation between
liver and blood is represented. Therefore, as DNA methyla-
tion studies, such as EWAS, move away from array-based to
whole-genome bisulfite-sequencing-based, this paired data-
set will be a valuable resource.

With this being said, we recognize that there are several
limitations to this study. First, as both liver tissue and whole
blood are complex tissues consisting of heterogeneous cel-
lular populations, our results reflect the mean DNA methyl-
ation level at each CpG site. Therefore, we acknowledge that
possible confounding due to variability in cell-type compo-
sition between individuals is an important limitation of our
study. Although we would have liked to adjust for this by
using cell-type deconvolution algorithms, we were con-
strained by the targeted design employed in this study.
However, while we recognize that this is a limitation, it is
of note that accounting for cell heterogeneity is of much
greater importance in EWAS when studying disease states,
where changes in cellular composition often strongly asso-
ciate with the disease phenotype. Second, our target design
was limited to 5,000 bp upstream and 500 bp downstream of
each gene, which means we could have overlooked CpGs in
relevant regulatory elements outside of these regions. How-
ever, as described above, it still provides a great enrichment
compared with commonly used array-based analyses. Third,
the study participants were patients undergoing resection of
liver/hepatic bile duct metastasis or primary liver cancer,
which may limit the generalizability of the findings. Fourth,
our study included only 27 individuals. While large from a

within-subject analysis point of view, it is likely that we did
not have enough genetic diversity to capture all potential
mQTL or ASM-CpGs. Thus it is possible that additional CpG
sites may be strongly correlated in a larger study. Finally, we
recognize that this study should preferably be replicated in
an independent sample for confirmation.

In conclusion, our data show that it is essential to
examine the concordance of DNA methylation between
blood and liver at individual CpGs when interpreting
blood-based EWAS results for the investigated 35 hemo-
static genes that are predominantly expressed in liver.
Approximately 30% of 10,483 CpGs analyzed in this study
were nonvariable and were predominantly hypomethylated
or hypermethylated in both tissues. Among the CpGs with
variable methylation levels in liver, only 4% displayed a
strong correlation to methylation levels in blood and 6%
displayed a moderate correlation. This paired blood–liver
dataset, derived from high-resolution targeted bisulfite
sequencing, is intended as a resource for the thrombosis
and hemostasis research community to aid interpretation of
blood-based DNA methylation results. These markers may
enhance the identification of meaningful epigenetic differ-
ences in these 35 hemostatic genes for thrombotic and
bleeding disorders.

What is known about this topic?

• DNA methylation has been recognized in the etiology
of several thrombotic diseases.

• Epigenetic studies, such as epigenome-wide associa-
tion studies (EWASs) have not yet implicated a role for
altered DNAmethylation levels in hemostatic genes for
thrombotic disorders.

• DNA methylation patterns are often tissue-specific,
and most EWASs are performed on DNA isolated
from peripheral blood which may not accurately re-
flect themethylation pattern in the tissue of relevance.

What does this paper add?

• Here 35 hemostatic genes with predominant expres-
sion in the liver were examined by targeted bisulfite
sequencing to evaluate whether DNA methylation
levels in blood can be used as a proxy for liver at
10,483 individual CpGs.

• Approximately 30% CpGs were nonvariable and were
predominantly hypomethylated (<25%) or hyperme-
thylated (>70%) in both tissues. For the remaining
variable CpGs, moderate correlations (0.5� r< 0.75)
were detected for 6% and strong correlations (r� 0.75)
for a further 4% of CpGs.

• Concordance of DNA methylation between blood and
liver at individual CpGs varied widely. This paired
blood–liver dataset is intended as a resource for the
thrombosis and hemostasis research community to aid
interpretation of blood-based DNAmethylation results.
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