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Viruses are the most abundant biological entity on Earth, 
infect every domain of life and are broadly recognized as 
key regulators of microbial communities and processes1–4. 

However, it is estimated that only a limited fraction of the viral 
diversity on Earth can be cultivated and studied under laboratory 
conditions5. For this reason, scientists have turned to metagenomic 
sequencing to recover and study the genomes of uncultivated 
viruses6–8. Typically, DNA or RNA is extracted from an environ-
mental sample, fragmented and then sequenced, generating mil-
lions of short reads that are assembled into contigs. Metagenomic 
viral contigs are then identified using computational tools and algo-
rithms that use a variety of viral-specific sequence features and sig-
natures9–11. In contrast to bacteria and archaea, many viral genomes 
are sufficiently small that they can be recovered by a single metage-
nomic contig5–7 or a single long read from Nanopore12,13 or PacBio 
technologies14. However, metagenome binning may be required for 
viruses with exceptionally large genomes, such as giant viruses15.

Assembly of viruses from metagenomes is challenging16 and the 
completeness of assembled contigs can vary widely, ranging from 
short fragments to complete or near-complete genomes17. Small 
genome fragments may adversely affect downstream analyses 
including estimation of viral diversity, host prediction or identifi-
cation of core genes within viral lineages. Viral contigs can also be 
derived from integrated proviruses, in which case the viral sequence 
may be flanked on one or both sides by regions originating from the 
host genome. Host contamination also adversely affects downstream 
analyses18, especially the estimation of viral genome size, charac-
terization of viral gene content and identification of viral-encoded 
metabolic genes.

For bacteria and archaea, genome quality can now be readily 
determined. The most widely adopted method, CheckM, estimates 
genome completeness and contamination based on the presence 
and copy number of widely distributed, single-copy marker genes19. 
Because viruses lack widely distributed marker genes, the most 
commonly used approach with regard to completeness is to apply 

a uniform length threshold (for example 5 or 10 kb) and analyze 
all viral contigs longer than this5–8. However, this ‘one-size-fits-all’ 
approach fails to account for the large variability in viral genome 
size, ranging from 2 kb in Circoviridae19 up to 2.5 megabase pairs 
(Mb) in Megaviridae20, and thus gathers sequences representing a 
broad range of genome completeness. Complete, circular genomes 
can be identified from the presence of direct terminal repeats5–8 and 
sometimes from mapping of paired-end sequencing reads21, but 
tend to be rare. VIBRANT11 and viralComplete22 are two recently 
published tools utilized to address these problems: VIBRANT cat-
egorizes sequences into quality tiers based on circularity and the 
presence of viral hallmark proteins, as well as nucleotide replica-
tion proteins, while viralComplete estimates completeness based on 
affiliation to known viruses from NCBI RefSeq.

With regard to host contamination on proviruses, existing 
approaches either remove viral contigs containing a high fraction of 
microbial genes5 or predict host–virus boundaries10,11,23,24. The for-
mer approach allows for a small number of microbial genes while 
the latter may fail to identify a host region or misidentify the true 
boundary. Other approaches detect viral signatures, but do not 
explicitly account for the presence of microbial regions9. With the 
diversity of available viral prediction pipelines and protocols, there 
is a need for a standalone tool to ensure that viral contigs do not 
contain contamination, and to remove it when present.

Here we present CheckV, a tool used for automatic estimation 
of genome completeness and host contamination for single-contig 
viral genomes. Based on benchmarking, we show that CheckV is 
computationally efficient and considerably more accurate than 
existing approaches. By collecting an extended database of com-
plete viral genomes from both isolates and environmental samples, 
CheckV was able to estimate completeness for the vast majority of 
viral contigs in the IMG/VR database, illustrating its broad appli-
cability to newly assembled genomes across viral taxa from Earth’s 
biomes. In addition, CheckV compares gene content between 
adjacent windows along each sequence to identify putative host  
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contamination stemming from the assembly of integrated provi-
ruses. Application to the IMG/VR database revealed that this type 
of contamination is rare but could easily lead to misinterpretation of 
viral genome size and viral-encoded metabolic genes.

Results
A framework for assessing the quality of single-contig viral 
genomes. CheckV is a fully automated, command-line tool used for 
assessing the quality of single-contig viral genomes. It is organized 
into three modules which identify and remove host contamination 
on proviruses (Fig. 1a), estimate completeness for genome fragments 
(Fig. 1b) and predict closed genomes based on terminal repeats and 
flanking host regions (Fig. 1c). Based on these results, the program 
classifies each sequence into one of five quality tiers (Fig. 1d)—com-
plete, high quality (>90% completeness), medium quality (50–90% 
completeness), low quality (0–50% completeness) or undetermined 
quality (no completeness estimate available)—which are consis-
tent with and expand upon the Minimum Information about an 
Uncultivated Virus Genome (MIUViG) standards17. Because host 
contamination is easily removed, it is not factored into these quality 
tiers. At present, CheckV is not optimally suited for multi-contig 
viral genomes (for example, those identified from metagenome bin-
ning), which may contain contamination from other viruses or cel-
lular organisms.

In the first step, CheckV identifies and removes nonviral regions 
on the edges of contigs, which can occur on assembled proviruses 
(Fig. 1a and Methods). Genes are first annotated as either viral or 
microbial (that is, from bacteria or archaea) based on comparison to 
a large database of 15,958 profile hidden Markov models (HMMs) 
(Extended Data Fig. 1 and Supplementary Table 1). We selected 
these HMMs from seven reference databases using three main crite-
ria: high specificity to either viral or microbial proteins, commonly 
occurring in either viral or microbial genomes and nonredundant 

compared to other HMMs. Starting at the 5' edge of the contig, 
CheckV compares the genes between a pair of adjacent windows 
to identify host–virus boundaries characterized by a large differ-
ence in gene content (that is, microbial versus viral) and/or nucleo-
tide composition. We optimized this approach to detect flanking  
host regions sensitively and specifically, even those containing just 
a few genes.

In the second step, CheckV estimates the expected genome 
length of contigs based on the average amino acid identity (AAI) to 
a database of complete viral genomes from NCBI and environmen-
tal samples (Fig. 1b and Methods). The expected genome length 
is then used to estimate completeness as a simple ratio of lengths, 
similar to previous approaches22,25,26. In contrast to bacteria and 
archaea, genome length is relatively invariant among related viruses 
(particularly at the family or genus rank17), which may be a result of 
conserved structural features or capsid size. For example, CheckV 
reference genomes differed by only 12.5% in length on average 
(interquartile range (IQR) = 4.2–16.7%) for viruses displaying just 
30–40% AAI (Extended Data Fig. 2).

Highly novel viruses may not display sufficient similarity to 
CheckV reference genomes for accurate estimation of complete-
ness. To address this, CheckV reports a confidence level for each 
AAI-based estimate according to the expected relative unsigned 
error rate: high confidence (0–5% error), medium confidence 
(5–10% error) or low confidence (>10% error). When AAI-based 
completeness cannot be accurately determined (>10% error), 
CheckV implements a secondary approach in which the contig 
length is compared with that of reference genomes that are anno-
tated by the same viral HMMs. Using this information, CheckV 
reports the range of completeness values corresponding to the fifth 
and 95th percentiles from the distribution of reference genome 
lengths (for example, 35–60% completeness). Compared to the 
AAI approach, the HMM approach can be more sensitive but is not 
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Fig. 1 | A framework for assessing the quality of single-contig viral genomes. a–c, CheckV estimates the quality of viral genomes from metagenomes 
in four main steps. a, First, CheckV identifies and removes nonviral regions on proviruses using an algorithm that leverages gene annotations and GC 
content. b, CheckV estimates genome completeness based on comparison with a large database of complete viral genomes derived from NCBI GenBank 
and environmental samples, and reports a confidence level for the estimate. c, Closed genomes are identified based on either direct terminal repeats, 
flanking host regions on proviruses or inverted terminal repeats. When possible, these predictions are cross-referenced with the completeness estimates 
obtained in b. Unsupported predictions are flagged as genome fragments. d, Sequences are then assigned to one of five different quality tiers based on 
their estimated completeness.
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as precise since it reports a range rather than a specific point esti-
mate. Lastly, we designed CheckV so that its database can be read-
ily updated to incorporate novel viral genomes as they are released 
in public databases (for example, NCBI GenBank and IMG/VR) or 
discovered from new metagenomics studies.

In the final step, CheckV predicts closed genomes based on three 
established approaches: direct terminal repeats (DTRs), inverted 
terminal repeats (ITRs) and integrated proviruses17. DTRs and ITRs 
are identified based on a repeated sequence of at least 20 base pairs 
(bp) at the start and end of the contig. While DTRs can play a role in 
genome integration27, they often result from assembly of short reads 
from a circular genome28 or a linear genome replicated by a mecha-
nism involving a concatemer intermediary29. Pairwise alignment of 
DTR contigs from closely related viruses can be used to determine 
whether genomes have been circularly permuted12. Inverted terminal 
repeats are a hallmark of transposons30 but have also been observed 
in complete viral genomes31 and phages32. Lastly, complete provi-
ruses are identified by a viral region flanked by host DNA on both 
sides and are commonly found in microbial (meta)genomes10,11,23,24. 
While these are well-established approaches, false positives have 
also been observed33 and so, to mitigate this, CheckV reports a con-
fidence level for putative complete genomes based on the estimated 
completeness from the AAI- or HMM-based approaches: high con-
fidence (≥90% completeness), medium confidence (80–90% com-
pleteness) or low confidence (<80% completeness).

An expanded database of complete viral genomes from Earth’s 
biomes. We initially formed the CheckV genome database using 
24,834 viral genomes from NCBI GenBank34 (Supplementary  
Table 2). However, uncultivated identified viruses commonly dis-
play little to no similarity to reference databases5. To mitigate this 
issue and expand the diversity of the database, we used CheckV 
to perform a systematic search for metagenomic viral contigs 
with DTRs (DTR contigs) from >14.4 billion contigs (9.7 terabase 
pairs) derived from publicly available and environmentally diverse 
metagenomes, metatranscriptomes and metaviromes downloaded 
from the following: IMG/M35, MGnify36 and recently published 
studies of the human microbiome37–39 and ocean virome6 (Fig. 2 and 
Methods). We exclusively used DTRs to identify complete genomes 
because this is the most well-established approach5–8.

Using this approach, we identified 76,262 DTR contigs after 
carefully filtering out potential false positives and verifying com-
pleteness (Extended Data Fig. 3 and Supplementary Table 3). These 
were subsequently dereplicated to 39,117 sequences at 95% average 
nucleotide identity (ANI) over 85% of the length of both sequences 
(Supplementary Table 4). DTR contigs were found in diverse envi-
ronments including the human gut (35.8%), marine (19.7%), fresh-
water (9.7%) and soils (7.0%) and were derived from major clades of 
DNA viruses, including Caudovirales (69.1%), Microviridae (11.4%) 
and CRESS viruses (2.3%) (Fig. 2a,b). DTR contigs were also iden-
tified for retroviruses (Retrovirales, n = 1,698) and RNA viruses 
(Riboviria, n = 83), which were further confirmed through identi-
fication of marker genes (for example, RdRp) and association with 
known viral families (Supplementary Information).

Next, we compared the 76,262 DTR contigs to the 24,834 GenBank 
references and dereplicated all sequences again at 95% ANI, resulting 
in 52,141 clusters. Overall, the addition of DTR contigs resulted in a 
294% increase in the number of viral clusters, which was particularly 
pronounced for the order Caudovirales (611% increase) (Fig. 2b).  
In contrast, GenBank genomes had improved representation of 
other viral clades, including RNA viruses from the Riboviria realm 
(Supplementary Table 5). For most viral clades, the sizes of DTR 
contigs and GenBank genomes were consistent, indicating no sys-
tematic artifacts in our data (Fig. 2b). One interesting exception was 
for segmented RNA viruses (Riboviria and Retrovirales), in which 
the DTR contigs tended to be smaller than the GenBank references, 

suggesting that they either represent a single genome segment or 
cover only a subset of the diversity within these large groups.

Accurate estimation of genome completeness for novel viruses. 
Having developed the CheckV pipeline and databases, we 
next benchmarked its accuracy. To evaluate genome complete-
ness, we generated a mock dataset containing fragments from 
2,000 uncultivated, complete viral genomes derived from IMG/VR 
(Supplementary Table 6). We first estimated completeness using the 
AAI-based approach after removal of all closely related sequences 
from the CheckV database (>95% AAI). This revealed a strong 
correlation with expected values (Pearson’s r = 0.941), low overall 
error (2.5% median unsigned error (MUE), IQR = 0.91–5.8%) and 
estimates for 97% of sequences (Fig. 3a). As expected, accuracy 
varied according to the confidence level, with best performance for 
high- and medium-confidence estimates (Pearson’s r = 0.986 and 
0.945, respectively). Next we applied the HMM-based approach, 
which yielded estimated completeness for 89.4% of fragments and 
94.5% >5 kb. While HMM-based estimates were considerably less 
accurate (Pearson’s r = 0.871), the lower bound of the estimated 
range was consistently below the expected value (96.6% of the time;  
Fig. 3b). This indicates that the HMM-based approach can be use-
ful for accurately obtaining a conservative lower bound on genome 
completeness, particularly for novel viruses that display low AAI to 
CheckV reference genomes.

For comparison, we applied viralComplete22 and VIBRANT11 to 
the mock dataset (Fig. 3c,d and Supplementary Table 6). viralCom-
plete estimates completeness based on affiliation to viruses from 
the NCBI RefSeq database, while VIBRANT classifies sequences 
into quality tiers based on gene content and the presence of DTRs. 
VIBRANT’s quality tiers were only weakly correlated with true 
completeness (Pearson’s r = 0.466), with a majority of near-complete 
genomes (>90% complete) classified as either low or medium quality 
(183/227, 80.6%). viralComplete showed much better performance 
(Pearson’s r = 0.703), but still displayed high error for a considerable 
number of sequences (MUE = 8.71%, IQR = 3.13–21.76%).

Based on the presence of clade-specific marker genes, we deter-
mined that most sequences from the mock dataset belonged to the 
Caudovirales order of double-stranded DNA phages. To evaluate 
performance for other types of viruses, we applied CheckV to viral 
genome fragments from NCBI GenBank after removal of closely 
related genomes from the CheckV database (Supplementary Table 
7). Using the AAI-based approach (excluding low-confidence 
estimates), completeness was accurately estimated overall 
(MUE = 1.33%, IQR = 0.45–3.57%) including for viruses from dif-
ferent Baltimore classes, those infecting various hosts and those 
from different families (Fig. 3e–g). A few viral groups were prob-
lematic, including single-stranded DNA plant viruses from the fam-
ily Geminiviridae (MUE = 22.2%), where CheckV did a poor job of 
distinguishing between monopartite and segmented genomes, and 
the Asfarviridae family (170–190 kb), where CheckV identified the 
giant viruses Pacmanvirus (395.4 kb) and Kaumoebavirus (350.7 kb) 
as nearest relatives in the database.

While CheckV is not ideally suited for viral bins, we evalu-
ated its performance on a recent dataset of 2,074 giant virus 
metagenome-assembled genomes (GVMAGs)15 in which Schulz 
et al. estimated genome completeness based on 20 low-copy num-
ber nucleocytoplasmic virus orthologous groups (NCVOGs)15 
(Extended Data Fig. 4a). Using the AAI-based approach, CheckV 
estimated completeness for 6.6, 75.1 and 18.3% of GVMAGs at the 
high-, medium- and low-confidence levels, respectively. Overall, 
CheckV completeness estimates were correlated with those from 
the NCVOG approach (Pearson’s r = 0.451), but particularly for 
high-confidence CheckV estimates (Pearson’s r = 0.705). Similar 
results were observed based on an analysis of genome fragments 
from nucleocytoplasmic large DNA virus isolates40 (Extended Data 
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Fig. 4b). These correlations imply that CheckV gave broadly similar 
results compared to those of Schulz et al.15, and may be suitable for 
evaluation of the completeness of certain metagenome-assembled 
giant virus genomes.

Accurate identification of host regions on proviruses. Next, we 
evaluated CheckV’s accuracy in detecting host contamination on 
provirus sequences (Supplementary Table 8). To generate mock 
proviruses, we identified 382 bacteriophages from NCBI and paired 
them with their bacterial and archaeal hosts from the Genome 
Taxonomy Database (GTDB)41. After inserting each phage at a ran-
dom location in its host genome, we extracted genomic fragments 
varying in both length (5–50 kb) and amount of flanking host 
sequence (10–50%). Overall, CheckV detected the presence of host 
regions on 69.0% of mock proviruses and 88.3% for contigs ≥20 kb 
(Fig. 4a). The length of host regions was also accurately estimated 
(Fig. 4b), with a median unsigned error of only 0.6% (IQR = 0.16–
2.2%). As a negative control, we applied CheckV to genomic frag-
ments that were entirely viral (that is, no flanking host region).  
Only 0.80% of these sequences were classified as proviruses, 
indicating that CheckV has a low provirus false-positive rate  
(Fig. 4c). Similar results were observed when we applied CheckV 
to complete uncultivated viral genomes from IMG/VR (Fig. 4d and 
Supplementary Table 9).

For comparison, we evaluated four other tools to identify host–
provirus boundaries, including VIBRANT11, VirSorter10, PhiSpy23 
and Phigaro24. Compared to these four tools, CheckV displayed 
consistently higher sensitivity but, in particular, when fragments 
were short or host contamination was low (Fig. 4a). For example, 
VirSorter detected only 1.2% of proviruses with 10% contamination 
compared to 57.2% with CheckV. This implies that microbial genes 

at the edges of proviral contigs may be overlooked by existing tools 
and interpreted as viral encoded. In contrast, other tools identified 
host–virus boundaries on entirely viral sequences (Fig. 4c,d). For 
example, PhiSpy predicted nonviral regions on 22.9% of entirely 
viral fragments that covered 26.3% of the length of these sequences 
on average. This implies that truly viral regions may be discarded 
with existing tools and that sequences may be inadvertently clas-
sified as integrated proviruses. Apart from CheckV, VIBRANT 
performed optimally at identification of flanking host regions  
on proviruses.

Finally, we compared the computational efficiency of CheckV to 
existing tools. Using 16 CPUs (Intel Xeon E5–2698 v3 processors), 
the full CheckV pipeline was 1.6- to 11.6-fold faster than the other 
programs when applied to the mock dataset and required ~2 GB of 
memory. Using a single CPU, CheckV was still faster than VirSorter 
and VIBRANT but slower compared to viralComplete, PhiSpy and 
Phigaro (Supplementary Table 10).

Using CheckV to identify high-quality genomes from metage-
nomes and viromes. To illustrate the type of results obtained 
with CheckV and its ability to scale to large datasets, we applied 
it to 735,106 viral contigs from the IMG/VR 2.0 database25 
(Supplementary Table 11). IMG/VR contigs were previously iden-
tified from short-read metagenomic assemblies using the Earth’s 
Virome Protocol5 and a minimum contig length cutoff of 5 kb. The 
original samples were derived from many studies, the majority of 
which did not use size filtration to enrich for extracellular viral par-
ticles. Because of the sample characteristics and detection approach, 
this dataset is mostly composed of environmental dsDNA phages 
from the Caudovirales order and contains sequences from both 
lysogenic and lytic viruses.
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Fig. 2 | An expanded reference database of environmentally diverse complete viral genomes. a–c, The 76,262 complete viral genomes were identified from 
publicly available metagenomes, metatranscriptomes and viromes based on the presence of a DTR and were clustered into 39,117 nonredundant genomes 
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First, we used CheckV to identify three types of complete genome 
from IMG/VR, including DTR contigs (n = 15,211), proviruses with 
5' and 3' host regions (n = 451) and contigs with ITRs (n = 624). The 
longest DTR contig we identified was a 528,258-bp sequence from a 
saline lake in Antarctica estimated to be 100.0% complete and sup-
ported by paired-end reads that connected contig ends. Based on gene 
content and phylogeny, this sequence is probably a novel member of 
one of the recently defined clades of ‘huge’ phages42 (Supplementary 
Text and Extended Data Fig. 5). To validate the other potentially 
complete genomes, we compared the contigs to CheckV’s database 
of complete reference genomes based on AAI, estimated complete-
ness (excluding low-confidence estimates) and identified high-quality 
assemblies (that is, >90% complete). We found that 90.0% of the DTR 
contigs with estimated completeness met the high-quality standard 
compared to only 46.4% of complete proviruses and 33.2% of ITRs 
(Extended Data Fig. 6). In the case of proviruses, lower estimated 
completeness may be due to their domestication and degradation in 
the host genome over time43 or, in rare cases, due to false positives. 
Nonetheless, predictions from all three methods were highly enriched 
in high-quality genomes compared with other contigs from IMG/VR. 
These results further confirm that DTRs are a good indicator of com-
plete viral genomes most of the time33, but suggest that greater caution 
is needed when interpreting other signatures.

Next, we used CheckV to estimate completeness for the entire 
IMG/VR dataset, including genome fragments. Using the accurate 
AAI-based approach, completeness could be estimated for 80.2% 

of IMG/VR contigs with high or medium confidence, including 
84.5% from host-associated, 83.9% from marine, 75.1% from fresh-
water and 70.0% from soil environments. For the majority of these 
contigs, the best hit in the CheckV database was a DTR sequence 
(n = 501,055, 85.0%) and was often derived from the same habitat 
as the IMG/VR contig (Extended Data Fig. 7). We next applied the 
HMM-based approach to estimate the completeness range for novel 
IMG/VR contigs lacking confident AAI-based estimates, increasing 
the percentage of contigs with estimated completeness to 97.9. AAI- 
and HMM-based estimates were well correlated for contigs having 
both predictions (Spearman’s ρ = 0.90), with AAI-based predictions 
often falling within the completeness range predicted by the HMM 
approach (Extended Data Fig. 8).

We next classified IMG/VR sequences into quality tiers accord-
ing to their estimated completeness, revealing 1.9% complete, 2.4% 
high-, 6.4% medium- and 87.3% low-quality sequences, with the 
remaining 2.0% of undetermined quality (Fig. 5a). Contig sizes were 
strongly correlated with quality tiers, with complete genomes cen-
tered at 44 kb, which is consistent with genome sizes from the order 
Caudovirales (Fig. 5b). In a small number of cases, IMG/VR con-
tigs were considerably longer than expected (for example, 290 con-
tigs more than twofold expected length based on AAI) and which, 
upon inspection of k-mer frequencies, revealed the same genome 
repeated multiple times (2.0× to 6.8×) (Extended Data Fig. 9). 
While these are probably artifacts of metagenomic assembly, they 
are easily identified and less common than previously suggested42.
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We also applied CheckV to the Global Ocean Virome (GOV) 
2.0 dataset6 (Supplementary Table 12), which revealed remark-
ably similar patterns (Extended Data Fig. 10). Like IMG/VR, the 
GOV dataset contains viral contigs that are at least 5 kb but, unlike 
IMG/VR, the original samples were derived from the open ocean 
and enriched for viral particles before sequencing. We identified a 
combined total of 44,652 complete or high-quality genomes across 
both datasets, but these represented a mere 3.6% of the total number 
of contigs. The highly fragmented nature of sequences from IMG/
VR and GOV probably reflects numerous challenges in the assem-
bly of viruses from short-read metagenomes, including repetitive 
regions12, strain heterogeneity13, low-abundance viral populations33 
and low sample biomass44. Long-read sequencing circumvents many 
of these challenges and has recently been used to obtain high-quality 
viral genomes without the need for metagenomic assembly12,13.

Using CheckV to discriminate viral-encoded functions from 
host contamination. Finally, we used CheckV to identify putative 
proviruses from the IMG/VR database that were flanked on one or 
both sides by host genes. Overall, only 17,057 contigs followed this 
pattern (Fig. 5c) with 96.5% of host regions occurring on only one 
side and typically representing a minor fraction of contig length 
(average, 26.8%; Fig. 5d). Proviruses were detected in all biomes, 
although more frequently in host-associated metagenomes. Longer 
contigs were considerably more likely to contain a host region  
(Fig. 5d), which is probably explained by the higher sensitivity of 
CheckV for longer sequences and a greater chance of intersecting a 
host–provirus boundary. Supporting these predictions, the major-
ity of long proviruses (>50 kb with >20% contamination, n = 783) 
were confirmed by either VirSorter or VIBRANT (76.8%) and con-
tained integrases (85.2%). We also used CheckV to identify pro-
viruses in the GOV dataset, revealing similar patterns (Extended 
Data Fig. 10). Together, these results confirm that the majority of 

IMG/VR and GOV sequences are entirely viral or encode a short, 
host-derived region.

Notably, even a small amount of contamination by host-derived 
sequences can impair downstream analyses, especially those 
related to the gene content and functional potential of uncultivated 
viruses18. To illustrate this potential issue, we functionally anno-
tated the 17,057 IMG/VR proviruses using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database45 and compared the func-
tions of genes in host versus viral regions. Overall, host regions 
represented only 19.2% of the genes but 59.7% of genes assigned 
to a KEGG metabolic pathway (Fig. 5f). Several pathways were 
highly enriched in host genes, including those for biosynthesis of 
antibiotics, carbon metabolism and ABC transporters (Fig. 5g and 
Supplementary Table 12). For example, 254 provirus genes were 
annotated as multidrug efflux pumps or multidrug resistance pro-
teins, but 95.3% of these were found in host regions. In contrast, 
KEGG pathways for recombination, mismatch repair and nucleo-
tide biosynthesis were all highly enriched in viral regions. Without 
the detection of provirus boundaries provided by CheckV, it would 
not have been possible to discriminate true viral-encoded functions 
from host contamination except through manual curation, which 
becomes nearly impossible for large datasets like IMG/VR.

Discussion
Here we have presented CheckV, an automated pipeline used for 
assessing the quality of single-contig viral genomes, along with 
an expanded database of complete viral genomes that we system-
atically identified from environmental data sources. We anticipate 
that CheckV will be broadly useful in future viral metagenomics 
studies and for reporting quality statistics required in the MIUViG 
checklist17. Estimation of completeness will be especially valu-
able in distinguishing near-complete genomes from short genome 
fragments, as these two types of sequence are associated with dif-

CheckV VIBRANT PhiSpy Phigaro

Mock 
proviruses 
(10% host, 
90% viral)

Mock
proviruses
(20% host, 
80% viral)

Mock 
proviruses
(50% host, 
50% viral)

VirSortera

C
on

tig
 le

ng
th

 (
kb

)
C

on
tig

 le
ng

th
 (

kb
)

b
CheckV VIBRANT VirSorter PhiSpy Phigaro

True percentage host contamination on fragments classified as provirus

E
st

im
at

ed
 h

os
t c

on
ta

m
in

at
io

n

5
10
20
50

100 100

80

60

40

20

0

10 20 50 10 20 50 10 20 50 10 20 50 10 20 50

0 20 40 60 80 10
0

33.6
21.3

47.8

90.7
92.8

0 20 40 60 80 10
0

1.0
0.8
7.4

51.9
72.3

0 20 40 60 80 10
0

3.9
3.7
12.9

75.7
89.2

0 20 40 60 80 10
0

0
0

56.0

79.4
84.3

5
10
20
50

100

0 20 40 60 80 10
0

54.1
51.3

81.3
97.5
95.6

0 20 40 60 80 10
0

1.3
4.8

37.7

78.5
91.1

0 20 40 60 80 10
0

5.5
2.9
11.9

76.8
86.7

0 20 40 60 80 10
0

0
0

51.8

80.6
85.6

5
10
20
50

100

0 20 40 60 80 10
0

72.8
80.1

92.0
97.8
99.4

0 20 40 60 80 10
0

0.3
13.6

70.7
95.5
98.9

0 20 40 60 80 10
0

9.7
0.5

11.7

70.8
88.7

0 20 40 60 80 10
0

0
0

31.9

70.2
79.7

0 20 40 60 80 10
0

0
1.1
2.2
0.5
2.4

0 20 40 60 80 10
0

0.8
5.3
10.3
9.9
13.3

0 20 40 60 80 10
0

0.8
22.6

71.0
92.2

84.2

Percentage classified as provirus
(viral region covering <95% of fragment length)

Percentage classified as provirus

Mock viral fragments 
(5–100 kb, 100% viral)

c

Phigaro

PhiSpy

VirSorter

VIBRANT

CheckV

0 10 20 30 40 50

28.30

22.90

0.44

0.44

0.80

C
om

m
an

d 
lin

e 
to

ol

d IMG/VR circular viral contigs
(>20-bp DTR, >90% completenes

Phigaro

PhiSpy

VirSorter

VIBRANT

CheckV

C
om

m
an

d 
lin

e 
to

ol

Percentage classified as provirus

0 20 40 60 80

29.90

62.20

3.57

1.19

0.29

C
on

tig
 le

ng
th

 (
kb

)

Fig. 4 | Sensitivity and specificity of predicting host regions on viral contigs. a–c, Mock proviruses were generated for 382 paired bacteriophage–host 
pairs. Random genome fragments were extracted from mock proviruses at various lengths and levels of host contamination and used as input to CheckV 
and other tools. A fragment was classified by a tool as a provirus if it contained a predicted viral region that covered <95% of the fragment length.  
a, Sensitivity of CheckV and other tools in detecting host contamination on proviral fragments with at least 10% host contamination (n = 4,593).  
b, Estimated contamination versus true contamination for correctly classified provirus fragments. For box plots, the middle line denotes the median, the box 
denotes the IQR and the whiskers denote 1.5× IQR. c, To determine specificity, CheckV and other tools were used to predict host regions on entirely viral 
fragments (n = 1,367). d, CheckV and other tools were used to predict host regions on circular viral contigs from IMG/VR (n = 1,345).

Nature Biotechnology | VOL 39 | May 2021 | 578–585 | www.nature.com/naturebiotechnology 583

http://www.nature.com/naturebiotechnology


Articles Nature Biotechnology

ferent limitations and biases. For example, the inclusion of small 
genome fragments may result in inflated estimates of viral diver-
sity based on genome clustering due to insufficient overlap between 
sequences. Meanwhile, the removal of genes originating from the 
host genome will be critically important in reducing false positives 
in viral studies focusing on auxiliary metabolic genes or the discov-
ery of novel protein families. We also expect that CheckV’s data-
base of complete viral genomes will be a useful community resource 
that contains a wealth of untapped insights into novel viruses from  
diverse environments.

Several improvements in CheckV may be possible in the future. 
First, it will be important to incorporate new viral genomes as these 
become available, to continually expand the environmental and tax-
onomic diversity of the reference database. Inclusion of novel RNA 
viruses and eukaryotic viruses will be especially valuable, as these 
types of genome are currently under-represented in the database. 

Second, metagenomic read mapping could be used for a variety of 
inferences, including identification of circular contigs21, refinement 
of virus–host boundaries and determination of genome termini46. 
Third, viral MAGs (that is, derived from metagenome binning) 
and segmented viral genomes, which are represented by multiple 
sequences, pose several additional challenges not addressed here, 
including the presence of contamination from other viruses or cel-
lular organisms. Finally, CheckV could be adapted to detect other 
artifacts, such as chimeras resulting from the assembly of closely 
related viruses or nonviral sequences resulting from false-positive 
viral predictions.
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Methods
Database of HMMs for classification of viral and microbial genes. We selected 
HMMs from existing databases that could be leveraged to classify genes as either 
viral or microbial with high specificity. First, 125,754 HMMs were downloaded 
from seven databases: VOGDB (release 97, n = 25,399, http://vogdb.org), IMG/VR 
(downloaded January 2020, n = 25,281)25, RVDB (release 17, n = 9,911)49, KEGG 
Orthology (release 2 October 2019, n = 22,746)45, Pfam A (release 32, n = 17,929)50, 
Pfam B (release 27, n = 20,000)51 and TIGRFAM (release 15, n = 4,488)52. Next, 
we used hmmsearch v.3.1b2 (ref. 53) to align the HMMs versus 1,590,764 proteins 
from 30,903 NCBI GenBank viral genomes (downloaded 1 June 2019)34 and 
5,749,148 proteins from 2,015 bacterial and 239 archaeal genomes from GTDB, 
release 89). For computational reasons, we selected a maximum of one genome per 
GTDB family and, when multiple genomes were available, we chose the one with 
the highest CheckM quality score (completeness – 5 × contamination). Additionally, 
we ran VIBRANT v.1.2.0 (ref. 11), VirSorter v.1.0.5 (ref. 10) and PhiSpy v.3.7.8 (ref. 
23) using default parameters to identify and remove 590,484 viral proteins identified 
on proviruses in the selected GTDB genomes.

Based on the hmmsearch results, we calculated the percentage of viral and 
microbial genes matching each HMM at bit-score cutoffs ranging from 25 to 
1,000, in increments of 5. We then selected the lowest bit-score cutoff for each 
HMM that resulted in a difference >100-fold between the percentage of the total 
viral gene set and that of the total microbial gene set matched by the HMM (that 
is, bit-score cutoff for which the hits were strongly enriched in either virus or 
microbial genes). To limit false positives, we excluded HMMs that were classified 
as microbial specific but were derived from primarily viral databases (VOGDB, 
IMG/VR, RVDB) or contained viral terms (viral, virus, virion, provirus, capsid, 
terminase) for HMMs from other databases. Using this approach, 114,765 HMMs 
were identified as either viral specific or microbial specific.

Next, we selected the maximally informative subset of HMMs to reduce 
the size of the database and limit CheckV computing time. First, we retained 
44,415 HMMs with at least 20 viral hits or at least 100 microbial hits after applying 
the bit-score cutoffs. Next, we calculated the Jaccard similarity between all pairs 
of HMMs based on each HMMs set of gene hits. For computational efficiency, we 
used the ‘all_pairs’ function in the SetSimilaritySearch Python package (https://
github.com/ekzhu/SetSimilaritySearch). Jaccard similarities were used as input 
for single-linkage clustering with a Jaccard similarity cutoff of 0.5, resulting in 
15,958 nonredundant HMMs (8,773 viral specific, 7,185 microbial specific). To 
form the final database, we selected the HMM with the greatest number of gene 
hits from each cluster of HMMs.

Identification of virus–host boundaries. Given a viral contig, CheckV predicts 
host–virus boundaries in three stages.

First, proteins are predicted using Prodigal v.2.6.3 (option ‘-p meta’ for 
metagenome mode)54 and compared to the 15,958 HMMs using hmmsearch. 
Each protein is classified as viral, microbial or unannotated according to its 
top-scoring hit after applying the HMM-specific bit-score cutoffs. Viral- and 
microbial-annotated genes are assigned a viral score of +1 and –1, respectively. 
Additionally, the GC content of each gene is calculated (range, 0–100).

Second, CheckV scans across the contig and quantifies differences in the viral 
score (that is, +1 or –1) and GC content between a pair of adjacent gene windows. 
The 5' gene window extends to the left contig endpoint, and the 3' gene window 
is sized to contain 30% of genes on the contig with no fewer than 15 genes and no 
more than 50 genes. The 3' window may contain fewer then 15 genes if it ends at 
the right contig endpoint. CheckV then computes a breakpoint score, S, based on 
the absolute difference in the average viral score, V, and average GC content, G, 
between genes in the 5' and 3' windows: S = |V5' – V3'| + 0.02×|G5' – G3'|. Unannotated 
genes are not included when calculating V. The value of S ranges from 0 to 4, 
given that |V5' – V3'| and 0.02×|G5' – G3'| both range from 0 to 2. CheckV also stores 
the orientation of each breakpoint (that is, host–virus or virus–host) based on 
the values of V5′ and V3′. These scores are computed at each intergenic position, 
moving from the 5' end to the 3' end of the contig.

Third, CheckV identifies breakpoints based on the following rules: S ≥ 1.2, 
≥30% genes annotated as microbial in the host region, ≥2 microbial-annotated 
genes in the host region and ≥2 viral-annotated genes in the viral region. 
For very short contigs (fewer than ten genes), CheckV requires only one 
microbial-annotated gene in the host region and one viral-annotated gene in the 
viral region. After these filters, CheckV chooses the first encountered breakpoint 
with the highest score. After selecting the first breakpoint, CheckV then repeats 
the steps listed above to search for additional breakpoints, using the last identified 
breakpoint as the new starting position for the 5' gene window. The algorithm 
ends when no new breakpoints are found. Algorithm parameters were fine-tuned 
empirically based on a dataset of mock proviruses and sequences from the  
IMG/VR database.

AAI-based estimation of genome completeness. Given a viral contig, CheckV 
estimates genome completeness in four stages. First, it performs an amino acid 
alignment of Prodigal-predicted protein-coding genes from the contig against 
the database of reference genomes using DIAMOND v.0.9.30 (ref. 55), with the 
option ‘–evalue 1e-5–query-cover 50 --subject-cover 50 -k 10000’. Based on these 

alignments, the following metrics are computed for the viral contig versus each 
reference genome: AAI: length-weighted average identity across aligned proteins; 
alignment fraction (AF): percentage of amino acids aligned from the query 
sequence; and alignment score: AAI × AF. Second, CheckV identifies the top 
hit in the database for the contig (that is, the reference genome with the highest 
alignment score) and all reference genomes with alignment scores within 50% of 
the top hit. The expected genome length of the viral contig, Ĝ, is then estimated 
by taking a weighted average of the genome sizes of matched reference genomes, 
where the alignment scores are used as weights. Reference genome lengths 
are further weighted based on their source: 2.0 for isolate viruses and 1.0 for 
metagenome-derived viruses, which are more likely to contain assembly errors and 
artifacts. CheckV also reports the confidence level of this estimate (low, medium 
or high), which is determined based on the length of the viral contig and the 
alignment score to the top reference genome (see Confidence levels for AAI-based 
completeness estimates for the method used to estimate confidence levels). Third, 
CheckV estimates the genome completeness of each viral contig, Ĉ, using the 
formula: Ĉ ¼ 100 ´ L=Ĝ

I
, where L is the length of the viral region for proviruses, or 

the contig length otherwise.

HMM-based estimation of genome completeness. An HMM-based approach 
was developed to estimate completeness for novel viruses that are too diverged 
from CheckV genomes to obtain an accurate AAI-based estimate. First, CheckV 
identifies viral genes on the contig based on comparison to the 8,773 viral HMMs 
(see ‘Identification of virus–host boundaries’ above). Each viral HMM is associated 
with one or more reference genomes and this information is stored in the database, 
as well as the coefficient of variation, which is a measure of the variability in 
reference genome length associated with each HMM. For each HMM on a viral 
contig, CheckV identifies the range of completeness values corresponding to the 
fifth and 95th percentiles of the distribution of reference genome length containing 
the same HMM (for example, 35–65% completeness). In theory, we expect the 
true completeness to be greater than the lower bound 95% of the time, below 
the upper bound 95% of the time and between both bounds 90% of the time. In 
practice, however, these outcomes are less frequent due to error in the underlying 
estimates. CheckV performs this step for each HMM, resulting in a distribution 
of completeness ranges for each contig (for example, 45–67, 35–55 and 42–49%). 
Finally, CheckV takes a weighted average of the ranges, where the weights are 
equal to the inverse of the coefficient of variation with a maximum value of 50. 
Therefore, HMMs with a low coefficient of variation (which are associated with 
genomes of consistent length) receive higher weight.

Confidence levels for AAI-based completeness estimates. We conducted a 
large-scale benchmarking experiment to derive confidence levels for AAI-based 
completeness estimation. First, we extracted a random fragment from each of 
CheckV’s reference genomes to simulate metagenomic contigs of varying length 
(200 and 500 bp and 1, 2, 5, 10, 20 and 50 kb). Next, we used CheckV to compute 
the alignment score between each contig and each complete genome in the 
reference database. We then compared the true genome length of each contig (that 
is, the length before fragmentation), L, to the estimated genome length based on 
each matched reference genome, L̂, and computed the relative unsigned error, 
as 100 ´ L� L̂

�� ��=L
I

. We then computed the median relative unsigned error after 
grouping the estimates based on their alignment score and contig length. Finally, 
we determined three confidence levels: high confidence (0–5% median unsigned 
error), medium confidence (5–10% median unsigned error) and low confidence 
(>10% median unsigned error). Using this information, CheckV reports a 
confidence level in the estimated completeness value for each input contig based 
on contig length and alignment score (that is, a combination of AAI and AF) to 
the top database hit. By default, only medium- and high-confidence estimates are 
included in the final report.

Database of complete viral genomes for AAI-based completeness estimation. 
We downloaded 30,903 genomes from NCBI GenBank on 1 June 2019, excluding 
1,937 that were indicated as ‘partial’, ‘chimeric’ or ‘contaminated’. Of the remaining 
28,966, 677 (2.3%) were labeled as ‘metagenomic’ or ‘environmental’, suggesting 
that the vast majority are derived from cultivated isolates.

Next, we used CheckV to systematically search for complete genomes 
of uncultivated viruses from publicly available and previously assembled 
metagenomes, metatranscriptomes and metaviromes. An assembled contig was 
considered complete if it was at least 2,000 bp in length and included a DTR 
of at least 20 bp (DTR contigs). We searched for DTR contigs in the following 
datasets: 19,483 metagenomes and metatranscriptomes from IMG/M (accessed 
September 2019)35, 11,752 metagenomes from MGnify (accessed 16 April 2019)36, 
9,428 metagenomes assembled by Pasolli et al.38, an expanded collection of 
4,763 metagenomes from the HGM dataset37, 1,831 viromes from HuVirDB39 and 
145 viromes from the Global Ocean Virome 2.0 dataset6.

From this initial search, we identified a total of 751,567 DTR contigs. 
To minimize false positives and other artifacts, we removed the following: 
(1) 45,448 contigs with low-complexity repeats (for example, AAAAA…), 
as determined by dustmasker from the BLAST+ package v.2.9.0 (ref. 56); (2) 
11,359 contigs classified as proviral by CheckV; (3) 5,737 contigs with repeats 

Nature Biotechnology | www.nature.com/naturebiotechnology

http://vogdb.org
https://github.com/ekzhu/SetSimilaritySearch
https://github.com/ekzhu/SetSimilaritySearch
http://www.nature.com/naturebiotechnology


ArticlesNature Biotechnology

occurring more than five times per contig, which could represent repetitive 
genetic elements such as clustered regularly interspaced short palindromic 
repeat (CRISPR) arrays; (4) 6,543 contigs that contained a large duplicated 
region spanning ≥20% of the contig length, resulting from rare instances where 
assemblers concatenate multiple copies of the same genome; and (5) 1,293 contigs 
containing ≥1% ambiguous base calls. After application of these filters, 
686,030 contigs remained (91.3% of the total).

Next, we used a combination of CheckV marker genes and VirFinder9 to 
classify 116,666 DTR contigs as viral. First, the DTR contigs were used as input 
to VirFinder v.1.1 with default parameters, and to CheckV to identify viral and 
microbial marker genes. We additionally searched for genes related to plasmids 
and other nonviral mobile genetic elements using a database of 141 HMMs from 
recent publications57–59. A contig was classified as viral if the number of viral genes 
exceeded that of microbial and plasmid genes (n = 99,345), or VirFinder reported a 
P < 0.01 with no plasmid genes and no more than one identified microbial  
gene (n = 36,084).

Taxonomic annotation of CheckV reference genomes. Annotations 
were determined based on HMM searches against a custom database of 
1,000 taxonomically informative HMMs from the VOG database (http://vogdb.
org/). These HMMs were selected for major bacterial and archaeal viral groups 
with consistent genome length and at least ten representative genomes, including: 
Caudovirales, CRESS-DNA and Parvoviridae, Autolykiviridae, Fusello- and 
Guttaviridae, Inoviridae, Ligamenvirales Ampulla- Bicauda- and Turriviridae, 
Microviridae and Riboviria. For each group, VOGs found in ≥10% of the group 
members and never detected outside of this group were considered as marker 
genes. All CheckV reference genomes were annotated based on the clade with the 
most HMM hits. Overall, 96.4% of HMM hits were to a single viral taxon.

Validating the completeness of CheckV reference genomes. Next, we validated 
the completeness for all GenBank genomes and DTR contigs. First, we used 
CheckV to estimate the completeness for all sequences after excludsion of 
self-matches. This was performed using a database of GenBank sequences only and 
another of DTR contigs only. Any sequence with <90% estimated completeness 
using either database was excluded (medium- and high-confidence estimates only). 
Second, we compared genome length to the known distribution of genome length 
for the annotated viral taxon (for example, Microviridae). Any genome considered 
an outlier or shorter than the shortest reference genome for the annotated clade 
was excluded. After application of these exclusion filters, we then selected genomes 
for inclusion with ≥90% estimated completeness using either database (medium- 
and high-confidence estimates only) or >30 kb without a completeness estimate. 
These selection criteria were chosen to minimize the number of false positives 
(that is, genome fragments wrongly considered complete genomes) at the cost of 
some false negatives (that is, removal of truly complete genomes). This resulted in 
24,834 GenBank genomes and 76,262 DTR contigs that were used to form the final 
CheckV genome database.

Generating a nonredundant set of CheckV reference genomes. Average 
nucleotide identity (ANI) and alignment fraction (AF) were computed between 
the 24,834 GenBank genomes and 76,262 DTR contigs using a custom script. 
Specifically, we used blastn from the BLAST+ package v.2.9.0 (option: perc_
identity=90 max_target_seqs=10000) to generate local alignments between all 
pairs of genomes. Based on this, we estimated ANI as the average DNA identity 
across alignments after weighting the alignments by length. The AF was computed 
by taking the total length of merged alignment coordinates and dividing this 
by the length of each genome. Clustering was then performed using a greedy, 
centroid-based algorithm in which (1) genomes were sorted by length, (2) the 
longest genome was designated as the centroid of a new cluster, (3) all genomes 
within 95% ANI and 85% AF were assigned to that cluster and (4) steps 2 and 
3 were repeated until all genomes had been assigned to a cluster, resulting in 
52,141 nonredundant genomes.

Benchmarking estimation of genome completeness. To benchmark genome 
completeness estimates, we used 2,000 uncultivated, complete viral genomes from 
IMG/VR (>20-bp DTR). We used IMG/VR genomes, because these are derived 
from diverse habitats and represent highly novel sequences. After removal of 
terminal repeats, a single genome fragment was randomly extracted from each 
IMG/VR genome (1–100% completeness). These sequences were used as input to 
CheckV, VIBRANT v.1.2.0 (ref. 11) and viralComplete22. For CheckV we used the 
flag ‘--max_aai 95’ to exclude closely related genomes in the CheckV database. For 
VIBRANT, we used the flag ‘--virome’ to increase sensitivity. For viralComplete, 
completeness was determined based on the ratio of contig length to that of the 
corresponding genome from NCBI RefSeq. Completeness estimates >100% were 
set to 100%. Additionally, we benchmarked CheckV using genome fragments 
derived from NCBI Genbank genomes and used the flag ‘--max_aai 95’ to exclude 
closely related genomes in the CheckV database.

Benchmarking detection of host regions on proviruses. To benchmark CheckV’s 
detection of host regions, we constructed a mock dataset of proviruses: 382 viral 

genomes were downloaded from NCBI GenBank (after 1 June 2019) and paired 
with 76 GTDB genomes (71 bacterial, 5 archaeal). None of the 382 genomes were 
used to train CheckV (that is, selection of HMMs and bit-score thresholds). 
The pairing was performed at the genus level based on the annotated names of 
virus and host (for example, Escherichia phage paired with Escherichia bacterial 
genome). When multiple GTDB genomes were available for a given bacterial 
genus, we chose that with the highest CheckM quality score and selected a 
maximum of ten GenBank genomes per bacterial genus to reduce the influence of 
a few over-represented groups. Any GenBank or GTDB genome that was used at 
any stage for training CheckV was excluded. Proviruses were simulated at varying 
contig lengths (5, 10, 20, 50 and 100 kb) with varying levels of host contamination 
(10, 20 and 50%; defined as the percentage of contig length derived from the 
microbial genome). Microbial genome fragments were appended to either the 5' 
or 3' end of the viral fragment at random. As a negative control, we also simulated 
contigs that were entirely viral (that is, no flanking microbial region) at the same 
contig lengths.

Mock proviruses were used as input to CheckV using default parameters. 
For comparison, we also ran VIBRANT v.1.2.0 (ref. 11), VirSorter v.1.0.5 (ref. 10), 
PhiSpy v.3.7.8 (ref. 23) and Phigaro v.2.2.5 (ref. 24). All tools were run with default 
options with the exception of VIBRANT and VirSorter, which were run with the 
flag ‘--virome’ to increase sensitivity. Nucleotide sequences were used as input to all 
tools, except PhiSpy, for which we first ran Prokka v.1.14.5 (ref. 60) to generate the 
required input file. A contig was classified as a provirus if it contained a predicted 
viral region covering <95% of its length. Each prediction was then classified as a 
true positive (provirus classified as provirus), false positive (viral contig classified 
as provirus), true negative (viral contig not classified as provirus) or false negative 
(provirus classified as provirus). For the true positives, we also compared the true 
and predicted lengths of the host region.

Application of CheckV to diverse viral genome collections. We downloaded 
735,106 contigs >5 kb from IMG/VR 2.0 (ref. 25), after exclusion of viral genomes 
from cultivated isolates and proviruses identified from microbial genomes. We 
also downloaded 488,131 contigs >5 kb or circular from the GOV 2.0 dataset6 
(datacommons.cyverse.org/browse/iplant/home/shared/iVirus/GOV2.0). These 
were used as input to CheckV to estimate the completeness, identify host–virus 
boundaries and predict closed genomes. When running the completeness module, 
we excluded perfect matches (100% AAI and 100% AF) to prevent any DTR contig 
from matching itself in the database (since IMG/VR 2.0 and GOV 2.0 were used as 
data sources to form the CheckV database). A Circos plot61 was used to link IMG/
VR contigs to their top matches in the CheckV database. Protein-coding genes 
were predicted from proviruses using Prodigal and compared to HMMs from 
KEGG Orthology (release 2 October 2019)45 using hmmsearch from the HMMER 
package v.3.1b2 (≤1 × 10–5 and score ≥30). Pfam domains with the keyword 
‘integrase’ and ‘recombinase’ were also identified across all proviruses.

The largest DTR contig we identified from IMG/VR was further annotated 
to illustrate the type of virus and genome organization represented (IMG ID: 
3300025697_____Ga0208769_1000001). Coding sequence prediction and 
functional annotations were obtained from IMG35. Annotation for virus hallmark 
genes including a terminase large subunit (TerL) and major capsid protein were 
confirmed via HHPred v.3.2.0 (ref. 62) (databases included PDB 70_8, SCOPe70 
2.07, Pfam-A 32.0 and CDD 3.18, score >98). A circular genome map was drawn 
with CGView63. To place this contig in an evolutionary context, we built a TerL 
phylogeny including the most closely related sequences from a global search for 
large phages42. The TerL amino acid sequence from the DTR contig was compared 
to all TerL sequences from the ‘huge phage’ dataset via blastp (≤1 × 10–5, score 
≥50) to identify the 30 most similar sequences (sorted based on blastp bit-score). 
These reference sequences and DTR contigs were aligned with MAFFT v.7.407 
(ref. 64) using default parameters, the alignment automatically cleaned with trimAL 
v.1.4.rev15 with the option ‘--gappyout’65 and a phylogeny built with IQ-Tree 
v.1.5.5, with default model selection (optimal model suggested: LG+R4)66. The 
resulting tree was visualized with iToL67.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The complete CheckV database, including HMMs, GenBank genomes and DTR 
contigs, is available at https://portal.nersc.gov/CheckV/.

Code availability
CheckV is written in Python and is freely available as open source software at 
https://bitbucket.org/berkeleylab/CheckV under a BSD license.
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Extended Data Fig. 1 | CheckV database of viral- and microbial-specific HMMs. a) Non-redundant viral and microbial HMMs were selected from seven 
reference databases. b) The distribution of the number of hits to viral and microbial proteins for the selected HMMs shown in panel A.
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Extended Data Fig. 2 | Variation in genome size between viruses. The relatedness between all CheckV reference genomes was estimated based on their 
average amino acid identity (AAI) and alignment fraction (AF). For box plots, the middle line denotes the median, the box denotes the interquartile range 
(IQR), and the whiskers denote 1.5× the IQR. a) The relative difference in genome length for viruses with varying degrees of relatedness. b) Scatterplots 
showing genome sizes between related viruses. The right panel shows genome sizes on a log10 scale.
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Extended Data Fig. 3 | Identification of DTR viral contigs. a) Publicly available metagenomes were systematically mined for 76,262 DTR viral contigs, 
resulting in 39,117 non-redundant contigs after de-replication at 95% ANI over 85% the length of both sequences. b–e) Summary statistics across the 
751,567 DTR contigs before filtering. b) Distribution of the length of direct terminal repeats (DTRs). A considerable number of DTRs occur at specific 
lengths (for example 55, 77, 99 bp). These odd-numbered lengths likely correspond with k-mer lengths utilized by various metagenomic assembly tools. 
When faced with assembling reads from a circular template, they appear to break the contig in a random location and leave behind a repeated sequence 
at the start and end of the contig equal to the k-mer length. c) The length (log scale) of all DTR contigs. d) A small number of contigs are likely false 
positives due to a low complexity repeat (for example AAAAAA…) or e) a highly repetitive repeat (that is occurring not just at termini). f) After removing 
potentially spurious complete genomes, the DTR contigs were screened for viral signatures, revealing 116,666 viral contigs. These were identified using a 
combination of CheckV’s marker genes, plasmid genes from recent publications, and VirFinder.
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Extended Data Fig. 4 | Evaluation of CheckV completeness estimates for giant virus metagenome assembled genomes (GVMAGs) and 
nucleocytoplasmic large DNA virus (NCLDV) isolate genomes. a) Correlation between CheckV completeness (medium and high confidence 
AAI-based estimates) versus low-copy number NCVOG completeness estimates for 2,074 GVMAGs. Points in the scatter plot indicate GVMAGs 
that had a high (yellow) or medium (brown) confidence CheckV completeness estimate. Histograms indicate the total number of GVMAGs across 
different completeness intervals for both approaches. GVMAGs with undetermined or low-confidence CheckV estimates were excluded from the 
analysis (n = 379). Completeness estimates above 100% were set to 100%. P values were calculated using a two-sided Pearson regression. b) CheckV 
completeness estimates for 182 NCLDV isolate genomes after excluding closely related CheckV reference genomes. The maximum amino acid identity 
between CheckV references and NCLDV isolate genomes is indicated by the plot labels. Center lines of box plots represent the median, bounds of boxes 
the lower and upper quartile, whiskers extend to points that lie within 1.5 interquartile range of the lower and upper quartile. Each data point represents 
the completeness estimate for a NCLDV reference genome, where the color indicates the CheckV confidence level. Completeness estimates above 100% 
were set to 100%.
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Extended Data Fig. 5 | Genome map and phylogeny of the largest complete genome from IMG/VR. a) Genome map of 528,258 bp putative circular 
metagenomic contig (IMG identifier: Ga0222679_1000001), sampled from Ace Lake in Antarctica. Annotations were obtained from IMG and manual 
annotation of phage proteins (terminase and major capsid protein) via HHPred. b) TerL phylogeny of the circular metagenomic contig with the most 
closely related sequences from a global search for large phages.
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Extended Data Fig. 6 | Evaluating metagenomic signatures of complete viral genomes. Putative complete viral genomes were identified from the IMG/
VR database based on either A) DTRs (N = 15,211), B) proviruses with flanking host regions (N = 451), or C) ITRs (N = 624). In parallel, the completeness 
of IMG/VR contigs was estimated using the AAI-based approach, using only high- and medium-confidence level estimates. The histograms above show 
the distribution of completeness for each signature of complete genomes (high- and medium- confidence estimates only), as well as the distribution of 
completeness across all other IMG/VR contigs. The text indicates the percent of IMG/VR contigs in each category that are classified as high-quality (that 
is >90% estimated completeness).
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Extended Data Fig. 7 | Association between IMG/VR contigs and CheckV reference genomes. IMG/VR contigs (left) are classified by the biome of their 
original metagenomes and connected to their top hit in the CheckV database based on amino acid identity (right). Cases in which IMG/VR contigs and 
CheckV references are derived from the same habitat (for example marine IMG/VR contig and marine CheckV reference) are colored by biome, while 
other cases are colored in grey.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles Nature Biotechnology

Extended Data Fig. 8 | Comparison between AAI and HMM-based completeness estimates. The analysis above was based on 568,096 IMG/VR contigs 
with both AAI- and HMM-based completeness estimates. Note that the AAI-based approach results in a point estimate whereas the HMM-based 
approach results in a range representing the estimated 90% confidence interval based on the empirical distribution of reference genome lengths sharing 
the same HMMs. A random subset of points shown for each plot. a) Comparison between AAI-based estimates and the lower end of the HMM-based 
range. As expected, most AAI-based estimates fall above the lower end of the HMM-based range. This percentage is lower than 95% (the target value) 
likely due to error in AAI- and HMM-based estimates. Each point is a single contig. b) Comparison between AAI-based estimates and the upper  
end of the HMM-based range. Each point is a single contig. c) Comparison between AAI-based estimates and the midpoint of the HMM-based range. 
Each line is a single contig. For all figures, the line of identity is indicated in red while the line of best fit is indicated in blue. The Pearson correlation 
coefficient is shown in blue.
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Extended Data Fig. 9 | Identification of contigs with concatenated genomes in public databases. CheckV was used to quantify the average k-mer 
frequency for viral contigs in IMG/VR and the GOV. A contig that contains exactly one genome copy should have a k-mer frequency close to 1.0 (all kmers 
are unique). Contigs that contain the same repeated genome (for example concatemers) will have k-mer frequencies above 1.0. a) The number of viral 
contigs at different cutoff points for the k-mer frequency statistic. b) Top 100 contigs with the highest k-mer frequencies. c) An example of a 279,201 bp 
contig in IMG/VR with the same sequence repeated more than 7x.
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Extended Data Fig. 10 | Application of CheckV to the IMG/VR 2.0 and the Global Ocean Virome 2.0 datasets. a) Quality tiers across viral contigs from 
IMG/VR 2.0 and b) the GOV 2.0 dataset. The bar plots indicate the % of completeness estimates made with the AAI- or HMM-based approaches. c) 
Distribution of AAI-based completeness across contigs from each dataset. d) Percent of contigs classified as a provirus for IMG/VR 2.0 and e) for GOV 
2.0. f) Distribution of host contamination (that is percent of length derived from host regions on proviruses) across datasets. For box plots, the middle line 
denotes the median, the box denotes the interquartile range (IQR), and the whiskers denote 1.5× the IQR.
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