
Spinocerebellar ataxias (SCAs) are a genetically diverse 
group of autosomal dominant disorders primarily character-
ized by degeneration of the cerebellum, brainstem, and spinal 
cord [1,2]. Although these disorders have different clinical 
features and disease-causing genes, SCAs all share a common 
underlying mutational mechanism: an expanded CAG repeat 
encoding a tract of glutamine amino acids (polyglutamine or 
polyQ tract). Visual system involvement is one of the clinical 
features of SCAs, and it may be the presenting sign for some 
types of SCAs. Specifically, the ocular motor features of 
SCAs include impaired saccadic velocity, impaired smooth 
pursuit gain, deficits in the vestibulo-ocular reflex, and 
nystagmus. Optic nerve atrophy and retinal degeneration have 
also been described in certain types of SCAs [3-5].

Spinocerebellar ataxia type 7 (SCA7; OMIM:164500) 
is caused by the expansion of a CAG triplet repeat that is 
translated into a polyglutamine tract in ataxin-7 (ATXN7, 
NM_000333, OMIM: 607640). SCA7 is clinically distin-
guished from other types of SCAs by the additional presence 
of retinal degeneration. The ophthalmic features of SCA7 are 
progressive visual disturbance mainly due to retinal degen-
eration and impaired ocular motility [6], which produces a 
specific diagnosis. Presenting visual symptoms may include 
photophobia, dyschromatopsia, decreased vision, and hemer-
alopia [7]. The appearance of the fundus in SCA7 is variable, 
and the reported phenotypes range from normal appearance 
to occult macular dystrophy (OMD), macular dystrophy, and 
cone-rod dystrophy (CORD) [1,8-11]. Ocular motor abnor-
malities may include slowed saccades, saccadic pursuits, 
saccadic dysmetria, and gaze-evoked nystagmus [7], which 
are relatively non-specific for olivopontocerebellar atrophies. 
Decreased corneal endothelial cell density and increased 
corneal thickness have also been reported [2].
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There have been several reports on the visual distur-
bances in AXTN7-associated retinopathy [1,8-11]. However, 
there are limited data on the ophthalmic clinical spectrum 
and genetics of SCA7 in the Chinese population. To comple-
ment and extend these investigations, we characterized the 
retinal function and structure in detail for patients from three 
families with SCA7.

METHODS

Patients: Eight patients from three families with SCA7 were 
included in this study (Figure 1). All participants were iden-
tified at the Ophthalmic Genetics Clinic at Peking Union 
Medical College Hospital (PUMCH), Beijing, China. The 

patient cohort included 6 male patients and 2 female patients. 
The age of the patients ranged from 4 to 57 years, and the 
median age was 32 years. Family members were identified as 
affected by family history or genetic testing or both. Written 
informed consent was obtained from either the participating 
individuals or their guardians. This study was approved by 
the Institutional Review Board of PUMCH (No. JS-2059) and 
adhered to the tenets of the Declaration of Helsinki, the Guid-
ance on Sample Collection of Human Genetic Diseases by the 
Ministry of Public Health of China, and the ARVO statement 
on human subjects.

Clinical evaluation: A complete medical history and family 
history of each participant were obtained. The clinical 

Figure 1. Pedigrees of families with variants in AXTN7. The circles represent females, and the squares represent males. The black symbols 
denote the individuals affected with SCA7. The arrow indicates the proband. The slashed symbols indicate deceased members.
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evaluation included measurements of the best-corrected 
decimal visual acuity (BCVA), ophthalmoscopy, fundus 
photography (Topcon, Tokyo, Japan, or HFC, Micro 
Clear Medical, Suzhou, China), imaging of fundus auto-
fluorescence (FAF), and 633-nm laser of a scanning laser 
ophthalmoscope (SLO; Heidelberg Engineering, Heidelberg, 
Germany), optical coherence tomography (OCT; Topcon, 
Tokyo, Japan, or Heidelberg Engineering), and visual field 
(VF) testing (Haag-Streit, Koeniz, Switzerland). Electroret-
inogram (ERG) was recorded according to the standards of 
the International Society for Clinical Electrophysiology of 
Vision (RetiPort ERG System; Roland Consult, Wiesbaden, 
Germany or The RETeval device; LKC, Gaithersburg, MD) 
[12]. Multifocal ERGs (VERIS, EDI Inc., Milpitas, CA) were 
also recorded when possible.

Molecular analyses: Genomic DNA was isolated from 
peripheral leukocytes using a QIAamp DNA Blood Midi Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
protocol. A locus-specific FAM fluorescently labeled forward 
primer (5′-FAM-TGT TAC ATT GTA GGA GCG GAA-3′) 
was designed, and the reverse primer was the no-labeled 
sequence (5′-CAC GAC TGT CCC AGC ATC ACT T-3′). PCR 
was performed in 25 μl reaction volumes containing 20–100 
ng genomic DNA, 10 μM of each primer, the 2X KAPA HiFi 
HotStart PCR Kit (Kapa Biosystems, Cape Town, South 
Africa), and double-distilled water (ddH2O). Initial denatur-
ation was at 95 °C for 5 min, followed by amplification for 35 
cycles with denaturation at 95 °C for 45 s, annealing at 55 °C 
for 50 s, and extension at 72 °C for 60 s. A total of 1 μl of the 
reaction products was added to 12 μl of Hi-Di formamide and 
0.5 μl GeneScan 500 LIZ Size Standard (Applied Biosystems 
, Warrington, UK), denatured at 95 °C for 2 min, and imme-
diately placed on ice for a minimum of 3 min. The samples 
were injected in an ABI 3500xL Genetic Analyzer with a 
50 cm capillary containing POP7. The amplicon length was 
calculated in comparison with the GeneScan 500 LIZ with 
the GeneMarker V1.5 demo program.

To precisely assess the number of CAG repeats, one 
healthy control with two homozygous controls was Sanger-
sequenced. Sanger sequencing was performed using the 
BigDye Terminator Cycle Sequencing Ready Reaction Kit 
version 3.1 (Applied Biosystems, Thermo Fisher Scientific, 
Inc., Waltham, MA), and the sequence was analyzed with an 
ABI Prism 3130 automated sequencer. The sequencing results 
were compared against the reference genomic sequence 
obtained from the University of California, Santa Cruz 
(Santa Cruz, CA) Genome Browser (ATXN7, NM_000333). 
Twenty-five healthy controls were tested to calculate the 
allele frequencies in the Chinese population.

To determine the exact number of CAG repeats for each 
tested sample and obtain the standard profile of a homozy-
gous individual, one homozygous genotype was selected. 
The healthy homozygous control with Sanger sequencing and 
capillary electrophoresis fragment analysis contained 10 CAG 
repeats, and the corresponding length was 294 bp. Thus, the 
number of CAG repeats was [the length -(294–30)]/3.

Case reports:

Family 1:

Family 1 Case III:3—A 54-year-old woman noticed 
decreased visual acuity and mild photophobia at age 45. 
Gait disturbance and dysarthria occurred at age 51. Brain 
magnetic resonance imaging (MRI) demonstrated mild 
cerebellar atrophy. When she consulted us, her BCVA was 
0.1 OU with a refraction of +1.50 × 60 OD and +1.0 × 100 OS. 
Intraocular pressure was 11 mmHg in both eyes. Nystagmus 
was not detected. The slit-lamp biomicroscopic examination 
showed that the anterior segments were unremarkable. The 
fundus photography showed coarse granular depigmenta-
tion in the macular area (Figure 2A,B), which corresponded 
with a round hypofluorescence patch with a surrounding 
hyperfluorescent ring on FAF (Figure 3A,B). OCT revealed 
a disorganized retinal structure in the macula, thinning of 
the RPE, and the absence of an ellipsoid zone and an outer 
limiting membrane. Multiple hyperreflective dots above 
and beneath the retinal RPE layer were detected. A mild 
epiretinal membrane formed in the left eye (Figure 4A–D). 
A coarse granular appearance of the macula was observed 
with the SLO (Figure 5A,B). VF analysis showed a central 
scotoma in both eyes. The ERGs showed severely decreased 
cone responses and relatively normal rod function (Figure 6). 
Multifocal ERGs demonstrated a depression of the response 
amplitude in the macular area. The CAG repeat sequences in 
ATXN7 were extended to 45.

Family 1 Case IV:5—A 32-year-old man, the nephew 
of Case III:3, complained of blurred vison and photophobia 
at age 26 and gait disturbance and dysarthria at age 30. 
Computed tomographic scans and magnetic resonance 
images showed atrophy in the cerebellar region. His BCVA 
was 0.4 OD and 0.32 OS. His eye movements were full 
without nystagmus. The slit-lamp biomicroscopic examina-
tion revealed that the anterior segment was normal in both 
eyes. The fundus showed macular atrophy with surrounding 
pigment changes (Figure 2C,D) similar to those of Case III:3. 
The ERGs demonstrated severely decreased cone responses 
and preserved rod function. The number of CAG repeats in 
ATXN7 was 50.
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Figure 2. Fundus photographs of 
patients with variants in AXTN7. 
A, B: Family 1 Case III:3 is a 
54-year-old woman. The fundus 
shows obvious macular atrophy. C, 
D: Family 1 Case IV:5 is a 32-year-
old man. The fundus also shows 
obvious macular atrophy. E, F: 
Family 2 Case II:1 is a 14-year-old 
girl. The fundus shows about two 
disc-sized atrophic lesions in a 
petal-like shape with surrounding 
pigment changes. G, H: Fundus 
photographs taken during the 
second visit of Family 2 Case I:1 
when he was 42 years old. The 
fundus shows a relatively normal 
appearance. I, J: Family 3 Case 
III:2 is a 32-year-old man. The 
fundus shows obvious macular 
atrophy.
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Other Family 1 affected members: Two other family members 
were affected, and they were confirmed with genetic testing 
without an ophthalmic examination. Case III:9, a 57-year-old 
man, noticed gait disturbance, dysarthria, and decreased 
visual acuity in his 40s. He was wheelchair-bound, and vision 
was hand motion in both eyes. He was deceased at the age of 
58. The CAG repeat sequences in ATXN7 were extended to 
43. Case IV:4, a 26-year-old man, had blurred vision in his 
teenage years and gait disturbance and dysarthria at age 18. 
He had been paralyzed and had no light perception in both 
eyes for about six years. He had the most severe symptoms 
in Family 1. The number of expanded CAG repeats was 56.

Family 2: A 14-year-old girl (Case II:1) presented with 
decreased visual acuity at age 12 and gait disturbance at age 
13. Brain MRI revealed a mild volume loss in the cerebellum. 
Her BCVA was 0.1 OD with a refraction of −1.0−1.0 × 
3 and 0.08 OS with a refraction of −1.75 at the first visit. 
The anterior segments were normal. The fundus showed 
about two disc-sized atrophic lesions in a petal-like shape 
with surrounding pigment changes (Figure 2E,F), and FAF 
showed a hypofluorescent macula and mottled fluorescence 
in the posterior pole (Figure 3C,D). OCT showed a preserved 
laminar retinal structure in the macula, thinning of the 
RPE, and absence of an ellipsoid zone and an outer limiting 

Figure 3. AF in patients with vari-
ants in AXTN7. A, B: Family 1 
Case III:3 is a 54-year-old woman. 
Autof luorescence (AF) shows a 
hypof luorescence patch in the 
macular area with a surrounding 
hyperf luorescent ring. C, D: AF 
was taken during the second visit 
of Family 2 Case II:1 when she 
was 18 years old. AF shows a dark 
macula and mottled fluorescence in 
the posterior pole. E, F. Family 3 
Case III:2 is a 32-year-old man. AF 
shows a hypofluorescence patch in 
the macular area with a surrounding 
hyperfluorescent ring.

http://www.molvis.org/molvis/v27/221


Molecular Vision 2021; 27:221-232 <http://www.molvis.org/molvis/v27/221> © 2021 Molecular Vision 

226

membrane. In addition, there were a few hyperreflective dots 
in the outer layers of the retina (Figure 4E–H). VF analysis 
indicated a central scotoma in both eyes. The ERGs revealed 
severely decreased cone responses with limited preserved rod 
function. The patient’s ERGs became non-recordable (Figure 
6), and her BCVA decreased to 0.04 (OD) and 0.03 (OS) 3 
years later during a follow-up visit. The CAG repeat sequence 
in ATXN7 was extended to 62.

Her father (I:1) did not have a vision complaint and 
showed a normal OCT structure (Figure 4I,J) when he first 
visited us at age 38 to accompany his daughter. His ERGs 
were normal in the dark- and light-adapted responses (Figure 
6). One year later, he began to notice gradually decreasing 
visual acuity. He was genetically confirmed by the expanded 
45 CAG repeats. He consulted us again at age 42 with a 
BCVA of 0.1 OU with a refraction of −0.75 × 80 OD and 

Figure 4. Optical coherence 
tomography (OCT) of patients with 
variants in AXTN7. Family 1 Case 
III:3 (a 54-year-old woman; A–D), 
Family 2 Case II:1 (an 18-year-old 
girl during the second visit; E–H), 
and Family 3 Case III:2 (a 32-year-
old man; 4 K-4N) have a similar 
appearance. Optical coherence 
tomography (OCT) shows thinning 
of the macula, with the outer layers 
and retinal pigment epithelium 
(RPE) affected more severely. 
The ellipsoid zone disappears 
in the fovea area, indicating the 
appearance of cone-rod dystrophy 
(CORD). There are many intra-
retinal hyperreflective dots, which 
are indicated by the yellow arrows. 
Panels C and D are enlargements of 
panels A and B, panels G and H are 
enlargements of panels E and F, and 
panels M and N are enlargements of 
panels K and L. Family 2 Case I:I (I 
and J) showed a normal OCT when 
he first consulted us at age 38.
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−0.5−1.0 × 85 OS. No specific abnormality was found on the 
fundus examination (Figure 2G,H). However, OCT showed 
mild thinning of the macula and atrophic changes in the RPE 
and the ellipsoid zone. A reduction of central responses was 
demonstrated on multifocal ERGs.

Family 3: A 32-year-old man (Case III:2) reported decreased 
visual acuity, hemeralopia, and photophobia at age 28 and 
gait disturbance at age 30. Computed tomographic scans and 
magnetic resonance images showed cerebellar atrophy. His 
BCVA was 0.1 OU with a refraction of −0.5−0.5 × 15 OD 
and −0.5 OS. The anterior segment examination was normal. 

Figure 5. Photograph from the 
633-nm laser of a scanning laser 
ophthalmoscope of patients with 
variants in AXTN7. A coarse gran-
ular appearance was observed in 
Family 1 Case III:3 (a 54-year-old 
woman, right eye; A) and Family 3 
Case III:2 (a 32-year-old man, right 
eye; C). A coarse granular appear-
ance was observed in both patients. 
Panels B and D are enlargements of 
panels A and C.

Figure 6. Standard ERGs in patients 
with variants in AXTN7. Represen-
tative rod, mixed cone-rod, and 
cone electroretinograms (ERGs) 
from the patients compared with a 
healthy subject.
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The fundus examination revealed pigmentary changes in 
the macular area (Figure 2I,J), which corresponded to the 
AF hypofluorescence patch in a rounded square shape with 
a surrounding hyperfluorescent ring (Figure 3E,F). OCT 
showed macular atrophy, extreme thinning of the fovea, 
and many hyperreflective dots (Figure 4K−N). VF analysis 
confirmed a central scotoma in both eyes. The ERGs 
presented severely decreased cone-rod responses (Figure 6). 
The pathological allele carried 48 CAG repeats. His son (IV:1) 
was a 4-year-old boy who began to be unable to walk and 
pursue objects at age 2. He was bedridden with respiratory 
failure and lost light perception at age 4. He was confirmed 
with gene testing, with CAG repeats of 113.

The results of the clinical characterization and genetic 
tests of all patients are summarized in Table 1. The CAG 
repeat numbers of the 30 healthy controls were (CAG) 7 (6/60, 
10.0%), (CAG) 10 (41/60, 68.3%), (CAG) 11 (2/60, 3.3%), and 
(CAG) 12 (11/60, 18.3%).

DISCUSSION

SCA7 is a form of SCA with a proportion of 2.00%–26.6% 
in different regions worldwide [13-18], with a prevalence of 
around 1/500,000 [19]. SCA7 is the most common autosomal 
dominant ataxia in Sweden, Norway, Denmark, and Finland 
as a result of the founder effect [17]. In the Chinese popula-
tion, SCA3 has been reported as the most common subtype 
of SCAs (54.6%), and SCA7 accounts for only 4.80% of SCAs 
[18]. In patients with SCA7, the unstable expanded trinucleo-
tide repeats of CAG induce a cytotoxic gain of function of 
ataxin-7. It localizes to the nucleus or the cytoplasm or both 
depending on the cell population and is widely expressed 
in human tissues [20,21]. In the retina, ataxin-7 is present 
in all neurons located in the nuclei and inner segments of 
photoreceptors and absent in their outer segments [2]. The 
expression of polyQ-ataxin-7 in AXTN7 has been known to 
cause the cellular loss of specific neuronal cells, including 
retinal photoreceptors, through a toxic effect that causes 
downregulation of the genes involved in phototransduc-
tion, development, and differentiation of photoreceptors 
[22]. Moreover, it was reported that cytoplasmic ATXN7 is 
associated with microtubules (MTs) [23]. Although the polyQ 
sequence in ATXN7 is not essential for the interaction with 
MTs, polyQ-expanded ATXN7 in the inner segments could 
engage in inappropriate with cofactors whose dysregula-
tion might affect intracellular protein trafficking, organelle 
delivery, or axonal transport pathways.

The size of the pathogenic CAG repeats in ATXN7 is 
inversely correlated with the age of onset of symptoms and 
the rate of disease progression [1,2,19,24]. Patients with 

SCA7 have been reported to have 37–460 CAG repeats 
compared with the four to 35 CAG repeats in the normal 
allele [1,18,25,26], with the earliest onset during infancy [27]. 
The number of pathological CAG repeats in the study patients 
was 43−113, and ten CAG repeats was the most common in 
the Chinese population. In this cohort, patients with 43–45 
CAG repeats were in their 40s at the age of onset, patients 
with 48–50 repeats were their 20s at the age of onset, and 
for patients with 56–62 CAG repeats, symptoms began 
during their teenage years. If the number of CAG repeats 
reached more than 100, symptoms began in childhood and 
worsened rapidly, thus making them life-threatening. With 
relatively fewer CAG repeats, patients could be asymptom-
atic. For example, Family 2 Case II:1 (45 CAG repeats) had 
no complaints when he was 38, and clinical examination 
revealed no obvious abnormality in the retina. During the 
4-year follow-up, we noticed gradually progressing cone 
dysfunction, which did not affect his normal life. Park et al. 
[10] reported a case of a 52-year-old woman who presented 
with a lower number (38) of CAG repeats in ATXN7 and a 
mild form of retinal degeneration, which was similar to the 
classic type of OMD. However, in this case, the follow-up 
period lasted only 8 months. It is possible that this case would 
develop to cone-rod dystrophy over the next few years. OMD 
is a certain stage for these patients with a lower number of 
CAG repeats. Conversely, the phenotype in patients with 
more than 100 CAG repeats could be severe. For example, 
the youngest patient in the present study, Family 3 Case IV:1, 
with 113 CAG repeats exhibited severe vision loss and dyski-
nesia, and he deteriorated rapidly within 2 years. The present 
findings are consistent with those in the literature in that 
long expansion associated with infantile-onset SCA7 occurs 
exclusively in paternal transmission [11]. This phenomenon 
underscores the exceptional instability of AXTN7 CAGs in 
male meiosis. Such instability was confirmed by genotyping 
the individual sperm of SCA7 males carrying 46 or 53 CAGs 
[28].

Clinically, visual disturbances may precede other symp-
toms in SCA7. Multimodal imaging may facilitate the obser-
vation of retinal change and is beneficial for detecting early 
lesions of ATXN7-related retinopathy. The retinal phenotype 
in the study patients indicating cone-rod dystrophy generally 
agrees with that in previous reports [1,8-11]. In the present 
cohort, all the patients complained of progressive bilateral 
visual loss, and most cases reported visual disturbance earlier 
than dyskinesia or dysarthria. The severity of retinopathy 
can vary from a normal retina appearance to severe cone-
rod dystrophy, and it is correlated with the number of CAG 
repeats and age. The thinning of the macular tissue on OCT 
and the dark macular area on AF demonstrated the severity 
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and the area of macular dystrophy, including diffuse or local 
photoreceptor degeneration and disruption of the RPE. The 
thinning of the RPE on OCT might be attributable to photo-
receptor damage and RPE loss caused by metabolic burden. 
Compared with Stargardt macular dystrophy, the shape of the 
hypofluorescent area in the macula could be round, petal-like, 
and a rounded square, while it is a horizontal oval in Star-
gardt macular dystrophy [29]. In some patients, we observed 
a hyperfluorescent ring around a dark macula on AF, indi-
cating the expansion of the macular atrophy. Abnormalities 
in the ERGs tend to be more prominent in cone-mediated 
responses or in cone and rod signals, which are the features of 
an evolving cone-rod dystrophy depending on the stage of the 
disease and the number of CAG repeats. We also noticed that 
in Family 2 Case II:1, the ERGs evolved from residual weak 
rod responses to extinguished within the 4-year follow-up.

We observed a common sign of OCT in the patients in 
the advanced stage, that is, hyperreflective dots in the outer 
retinal layers, the number of which decreases in the late stage. 
We reviewed an OCT scan in a patient with SCA7 reported 
previously and found that the hyperreflective dots could 
also be easily identified [19], indicating that this appearance 
could be an OCT feature for patients with SCA7. The hyper-
reflective dots seemed to correspond to the coarse granular 
appearance on the 633-nm laser SLO, but they were not 
visible on the fundus photograph or AF. The hyperreflec-
tive dots were not seen in patients at the early stage (Family 
2 Case II:1), and patients at the late stage had fewer dots 
(Family 2 Case I:1), indicating a lesion at a certain stage of 
the disease. Furthermore, the dots tended to accumulate at the 
border of a dystrophic retina and a relatively normal retina. 
Polyglutamine expansion in ATXN7 causes its misfolding 
and prominent intranuclear accumulation, disrupting a 
wide range of cellular processes and finally, leading to the 
death of photoreceptors [30]. The hyperreflective dots were 
likely the degenerative photoreceptors or macrophages that 
have ingested degenerative photoreceptors, reflecting the 
phagocytosis of photoreceptor outer segments. The dense 
hyperreflective dots in the choroidal vessel layers are also 
observed in other retinal diseases, such as Stargardt disease 
[31] and central serous chorioretinopathy [32]. The present 
study clearly demonstrates that the hyperreflective dots are 
more prevalent in the choroidal layers, specifically in the 
Bruch membrane/RPE complex and choriocapillaris. The 
reason for the presence of hyperreflective foci in the choroid 
is uncertain. The cause of the retinal and neuronal dysfunc-
tion and how it is related to the polyglutamine repeat is not 
yet fully understood.

In this study, we also improved the molecular diagnostic 
method for testing patients with SCA7. We used simultaneous 
Sanger sequencing for homozygous individuals to calibrate 
the CAG expansions of the fluorescence PCR. Fluorescence 
PCR and capillary electrophoresis for the detection of 
dynamic mutations, such as ATXN7, have the advantages of 
being simple, fast, and cost-effective. However, this method 
should be used to guard against false-negative results, and it 
should be used with other methods, such as Southern blotting.

In summary, we provided a detailed retinal study on 
patients with SCA7, which could be considered cone-rod 
dystrophy. We also noted an important feature, that is, 
hyperreflective dots, on OCT and improved the molecular 
diagnostic method of SCA7. The case series illustrates that 
multimodal imaging of the retina is beneficial for detecting 
early lesions of cone-rod dystrophy related to SCA7, and that 
this type of imaging could help ophthalmologists produce a 
specific diagnosis.
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