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Abstract

Alzheimer’s disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial,
and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-{3, which is thought to
have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in
many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the
pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-
chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be
effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential
Alzheimer’s disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could

yield much-needed agents that slow neurodegeneration in AD.
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Introduction

Around 50 million people have dementia worldwide, with
nearly 10 million new cases each year. Dementia is one of
the leading causes of disability among older people and was
the fifth leading global cause of death in 2016. Alzheimer’s
disease (AD), the most common type of dementia, accounts
for about two thirds of cases [1].

Pathologically, AD is characterized by cerebral atrophy,
extracellular deposition of amyloid-f3 peptide in senile
plaques, intraneuronal accumulation of hyperphosphorylated
tau in neurofibrillary tangles, chronic inflammation, oxidative
stress, and loss of neurons and synapses [2]. The predominant
pathophysiological model for AD is the amyloid cascade hy-
pothesis, first proposed in 1992 [3]. This posits that the caus-
ative and initial pathological event in AD is deposition of
amyloid-[3, which forms senile plaques. The corollary of the
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amyloid cascade hypothesis is that anti-amyloid-3 therapies
should modify the course of AD.

Numerous anti-amyloid therapies, such as {3-secretase
converting enzyme inhibitors and anti-amyloid-{3 monoclonal
antibodies, lower amyloid in the brain and cerebrospinal fluid,
but none these drugs have been shown to delay disease pro-
gression [4]. To date, several dozen phase 3 trials have failed
to meet primary endpoints. Recently, studies of aducanumab,
a monoclonal antibody with promising initial data, were ter-
minated after a futility analysis only to be revived when fur-
ther data were analyzed in spite of controversy over these
results due to the potential of unblinding [5, 6]. Some argue
that the use of anti-amyloid-3 therapeutics in the symptomatic
stage of AD may be too late. This hypothesis is being tested in
ongoing trials in presymptomatic amyloid-positive individ-
uals at risk of sporadic AD [7] and in people with mutations
in genes associated with dominantly inherited AD [8], but the
multiple failures of prior amyloid-3-lowering agents does not
bode well for the outcome of these studies. Furthermore, it is
well-established that amyloid-f3 is often present in healthy
older brains [9]. These data shed mounting doubt on the va-
lidity of the amyloid cascade hypothesis and whether
amyloid-lowering therapeutics have any prospect of clinically
meaningful efficacy. New aspects of neurodegeneration in
AD need to be explored in order to pave the way to disease-
modifying therapeutics.
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Iron and Oxidative Stress in the Brain

Of particular interest is the potential role of ferroptosis, a form
of nonapoptotic programmed cell death characterized by iron-
dependent accumulation of lipid hydroperoxides to lethal
levels [10], which has been implicated in a number of neuro-
degenerative disorders [11, 12].

Iron is an essential cofactor for many physiological func-
tions [13]. The ability to easily gain or lose electrons makes it
well suited for metabolic processes, such as the transport and
activation of small molecules and electron transfer [13, 14].
The vast majority of the 5 g or so of iron in the body is found
in hemoglobin and myoglobin, as well as the storage proteins
ferritin and hemosiderin. Only a few hundred milligrams are
involved in critical enzymatic processes which capitalize on
iron’s variable coordination chemistry, permitting it to exist in
different oxidation states, including 0, + 2, + 3, + 4, and + 6.
Ferrous (Fe*) and ferric (Fe**) iron and are the most common
in biological systems [13].

The brain has a high demand for adenosine triphosphate
(ATP) to maintain membrane ion gradients, synaptic transmis-
sion, and axonal transport. Iron is part of cytochromes a, b,
and c, cytochrome oxidase, and the iron-sulfur complexes of
the oxidative chain, making it essential for ATP production
[15]. Tron is also involved in the synthesis of neurotransmit-
ters, as well as lipids and cholesterol, which are substrates for
myelin synthesis [14, 16-18]. Although iron is essential for
normal brain functioning, it is toxic in the case of overload or
dyshomeostasis, which can cause neurodegeneration by
disrupting mitochondrial function, depleting ATP, and induc-
ing oxidative damage and chronic inflammation, resulting in
damage to lipids, proteins, and DNA [14, 15, 19-22].
Cognition, motor function, dopamine-related functions, and
myelinogenesis are commonly affected in CNS iron dysregu-
lation [15].

The ability of iron to undergo oxidation—reduction allows it
to convert hydrogen peroxide to toxic free radicals, leading to
oxidative stress and cell death via the Fenton reaction, first
described in 1894 [14, 23, 24]. When free iron donates an
electron to hydrogen peroxide, a hydroxyl radical is produced,
which is one of the most reactive free radical species known:
Fe?* + H,0, — Fe’™ + OH + OH [14, 24]. Iron-induced
oxidative stress causes a positive-feedback loop of additional
iron release from ferritin, heme proteins, and iron-sulfur
clusters [14]. Free iron is more likely to exchange elec-
trons with nearby molecules than when protein-bound,
leading to further free radical production [14]. When
free radicals are generated near membrane phospho-
lipids, they initiate peroxidation of polyunsaturated fatty
acids, leading to production of lipid hydroperoxides
which break down to form lipid-derived «,3-unsaturated
4-hydroxyaldehydes [25, 26]. Free radical-induced mod-
ifications to proteins leads to the addition of reactive

carbonyl functional groups, generated from lipid perox-
idation, glycation, and amino acid oxidation [27, 28].

Although most models of iron-mediated neuronal injury
involve Fenton-mediated hydroxyl radicals, an alternative
model posits that depletion of reduced glutathione decreases
activity of monothiol glutaredoxins and decreased incorpora-
tion of iron into target metalloproteins. This leads to an in-
crease in available iron in the cell, which is diverted to the
chaperone poly(rC)-binding protein 1 and hypoxia-inducible
factor prolyl hydroxylases (HIF PHDs) in the cytoplasm and
nucleus. Increased HIF PHD1 activity results in enhanced
transcription of activating transcription factor 4-dependent
pro-death genes and induction of ferroptotic death [29].

It is unsurprising that free iron levels are tightly regulated.
Iron is generally bound to chaperone proteins in order to con-
trol its reactivity, restricting it to specific locations where it
cycles between reduced (Fe®*) and oxidized (Fe’*) states as
part of physiological processes [30, 31]. In the plasma, iron
exists primarily as Fe** bound to transferrin [14]. The main
protective strategy to prevent iron overload in the brain is
selective transport systems on the blood-brain barrier [32].
Iron-transferrin complexes circulating in the blood cross the
blood-brain barrier via endocytosis mediated by the transfer-
rin receptor (TfR) on the surface of capillary endothelial cells
[32]. Tron is then transported from the basolateral membrane
of endothelial cells to the cerebral compartment, where it is
available to neurons and glia [14]. Nontransferrin-bound iron
can enter via lactoferrin receptors [33]. Intracellular free iron
exists in the reduced form Fe**, which acts as a cofactor for
iron-dependent enzymes in the cytosol, mitochondria, and nu-
cleus [32]. Intracellular iron levels are controlled by iron-
regulatory proteins that bind iron-responsive elements in
mRNA [23]. Anti-oxidant defenses inhibit damage caused
by free radicals, via the enzymes superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx)
[13, 14], as well as nonenzymatic anti-oxidant substances
such as ascorbic acid (vitamin C), alpha-tocopherol (vitamin
E), carotenoids, and flavonoids [14].

Brain Iron Is Elevated in Alzheimer’s Disease

Accumulating evidence suggests that iron excess and
dyshomeostasis contribute to neurodegeneration in AD [12,
32]. Several of the biological abnormalities seen in AD are
consistent with free radical damage from impaired iron ho-
meostasis [34].

Iron elevation was first shown in the brains of people with
AD in 1953 [35]. Elevated brain iron in AD has been con-
firmed in numerous subsequent studies both post mortem
[3642] and in vivo [36, 38, 42-53]. Tron rises in the brain
with aging and may be pathological because it is associated
with cognitive decline prior to disease [54, 55]. Increased iron
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occurs as early as the mild cognitive impairment stage of AD
and contributes to longitudinal outcomes [56, 57]. Iron and
ferritin are found within plaques, NFTs, and blood vessels in
AD [42]. Although an increase in brain iron levels may con-
tribute to AD pathologys, it is excessive iron in specific intra-
cellular compartments or regions of the brain, i.e., regional
siderosis, that appears to drive neurotoxicity, particularly in
the cortex and hippocampus [14, 36, 42, 58, 59].

Several MRI modalities can be used to image iron levels.
T2* MRI allows semiquantitative measurement of brain iron,
though the results are influenced by differences in crystal
structure, unequal clustering of ferritin, and the size of the
magnetic particle [60]. Severity of AD pathology correlates
with iron accumulation on postmortem T2*-weighted MRI
[61]. Quantitative susceptibility mapping (QSM) is more spe-
cific than other MRI modalities as a measure of tissue mag-
netic susceptibility and correlates well with brain iron levels
[62]. QSM imaging demonstrated increased brain iron levels
in multiple regions of interest in people with AD compared to
controls [63]. QSM also correlates with clinical measures.
Higher hippocampal QSM levels predicted accelerated de-
cline in episodic memory, and temporal and frontal QSM
levels predicted deteriorating performance on a language task
[64]. Magnetic susceptibility in the left caudate also correlated
with declining scores on the Mini-Mental State Examination
and Montreal Cognitive Assessment in mild and moderate AD
[62]. A recent Australian Imaging Biomarker and Lifestyle
prospective study found that when brain iron load measured
by MRI was compared in normal elderly and mild cognitive
impairment (MCI) and AD subjects, brain iron loading was
exaggerated in a manner that correlated with cognitive impair-
ment [65].

Brain iron load also impacts longitudinal AD outcomes
[66]. Elevated cerebrospinal fluid (CSF) ferritin, a reporter
of brain iron burden [67, 68], independently predicted conver-
sion to AD and was associated with poorer cognition and
hippocampal atrophy [69]. CSF ferritin levels are associated
with disease progression in prodromal people with high
amyloid-3 pathology determined by CSF t-tau/A(342 ratio
[70]. High CSF ferritin levels are also associated with accel-
erated depreciation of CSF A{31-42, from threshold preclini-
cal levels to the average level of Alzheimer’s subjects, sug-
gesting that iron may facilitate amyloid-{3 deposition, acceler-
ating the process of AD [71]. Plasma ferritin levels are elevat-
ed in cognitively normal amyloid PET-positive older subjects
compared to controls with low neocortical amyloid load [72],
suggesting that impaired iron mobilization is an early event in
AD pathogenesis [72]. The magnitude of impact of CSF fer-
ritin on AD outcomes is commensurate with the tau/A 342
ratio, previously one of the best CSF diagnostic biomarkers
for AD [73]. CSF ferritin thus appears to be a complementary
prognostic biomarker to the t-tau/A(342 ratio that predicts
near-term disease progression risk [64].
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In addition to ferritin, other proteins involved in iron trans-
port correlate with AD symptoms. CSF levels of
melanotransferrin, a transferrin homolog that binds iron, are
associated with conversion of MCI to AD [74]. Hepcidin is a
regulatory protein present in the brain which binds to the iron
channel ferroportin, leading to decreased export of cellular
iron [75-77]. Serum hepcidin levels are raised in AD and
correlate, albeit weakly, with the Clinical Dementia Rating
Scale [75]. Although it is possible that the finding of raised
serum hepcidin could have been the result of inflammation-
based induction of hepatic hepcidin production, values did not
correlate with C-reactive protein levels in this cohort, though
subjects with levels greater than 5 mg/l were excluded [75]. In
the healthy brain, hepcidin and ferroportin are widely distrib-
uted and colocalize in neurons and astrocytes, suggesting a
role for these proteins in regulating neuronal iron release. In
AD brains, hepcidin expression is reduced and anatomical
distribution is restricted to neuropil, blood vessels, and dam-
aged neurons [76]. Brain ferroportin levels are also reduced in
AD, potentially secondary to ischemia, inflammation, neuro-
nal loss, and senile plaque formation [76]. The reason for
reduced hepcidin levels in AD brain are less certain, but re-
duced passage across damaged vascular endothelium is one
possibility [29].

Some potential sources of increased brain iron deposits
include bleeding, iron-containing macrophages crossing the
blood—brain barrier, and dysregulated blood-brain barrier iron
transport [78]. Phagocytic cells containing iron are often pres-
ent in areas of neurodegenerative changes. These cells may
have migrated to these regions in order to phagocytose iron, or
iron-containing phagocytic cells may enter the central nervous
system as part of an inflammatory response [78]. Lysosomal
dysfunction may also be a source of increased CNS iron up-
take [78].

Amyloid Precursor Protein in Iron Transport
and Oxidative Stress

There is a complex interplay between amyloid-f3, tau, and iron
in both physiological and pathological states, which can be
used to integrate the role of iron into a modified version of
the amyloid cascade hypothesis.

Amyloid-f3 is generated from amyloid precursor protein
(APP) [79], a single-pass transmembrane protein with high
levels of expression in the brain [80]. APP helps protect cells
from iron-catalyzed oxidative stress by loading Fe** onto
transferrin and stabilizing the iron export channel ferroportin
[36]. APP knockout mice have decreased ferroportin levels
and increased levels of age-related iron accumulation with
concomitant oxidative stress in cortical neurons [36]. APP
may thus act to oppose brain iron elevation during normal
aging [81]. APP levels are modulated by an iron-responsive
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element (IRE) in the 5’ untranslated region of the APP tran-
script [82, 83]. In conditions of high iron, such as Alzheimer’s
disease, APP translation is increased [84]. Iron regulation of
APP mRNA suggests that this could be a target for iron che-
lators [82]. Intracellular iron chelation increased binding of
iron-responsive element-binding protein 1 to the APP IRE,
decreasing APP expression [82, 83].

Dysregulation of iron homeostasis is a common effect of
mutations in the genes involved in early-onset familial
Alzheimer’s disease, PSENI, PSEN2, and APP. PSEN and
APP may be involved in regulation of iron homeostasis
throughout the aging process [85].

Iron Binds Amyloid and Tau, Promoting
Toxicity

Iron binds amyloid in vitro [86] with an affinity eight times
higher than that in transferrin [87] and is elevated in senile
plaques [14, 35]. X-ray microscopy techniques at submicron
resolution in the APP/PS1 mouse model of AD showed a
direct correlation of amyloid plaque morphology with iron
as well as evidence for the formation of an iron—amyloid com-
plex [88]. Magnetite iron species was shown in plaques, sug-
gesting aberrant iron redox chemistry [88]. Quantitative sus-
ceptibility mapping compared with flutemetamol positron
emission tomography (PET) showed local correlation be-
tween 3-amyloid plaque and iron deposition in healthy older
adults without dementia [89].

Tau, the main component of neurofibrillary tangles, helps
mediate iron efflux from cells [90]. High levels of iron colo-
calize with tau in neurofibrillary tangles [90, 91]. Iron pro-
motes tau hyperphosphorylation by inducing kinases and pos-
sibly also by impacting protein phosphatase 2A activity [90,
92]. Iron also causes aggregation of hyperphosphorylated tau
[93-95] via an iron-binding motif in the tau protein [90].

Amyloid-p Plaques Are a Site of Redox
Activity, Facilitated by Iron

Iron causes amyloid-[3 aggregation in vitro [96-98] and pro-
motes A3 aggregate toxicity [99—101]. The affinity of
amyloid-f for iron increases following aggregation, and fur-
ther iron binding leads to additional neuronal cytotoxicity [97,
99-104]. Protein carbonyl groups, markers of oxidative dam-
age to DNA and proteins, are seen in preclinical and
established Alzheimer’s disease [105, 106].

Amyloid-f3 plaques and neurofibrillary tangles are major
sites of redox reactivity, which is catalyzed by iron binding
[30, 34, 42, 87, 98]. In vitro studies show that amyloid-[3
captures and reduces Fe** from the ferritin core, leading to
intraneuronal Fe** elevation [36, 107] and production of

hydrogen peroxide. Hydroxyl radicals may then contribute
to oxidative damage on both the amyloid-f3 peptide and sur-
rounding molecules including proteins, lipids, and nucleic
acids, with concomitant disruption of membrane integrity
[30]. Oxidation also impairs amyloid-{3 clearance by the
low-density lipoprotein receptor-related protein (LRP1) [30].
Elevated levels of A31-40 and A31-42 are associated with
increased levels of oxidation products in the AD hippocampus
and cortex [108]. Given that iron appears to contribute to
amyloid-f3-mediated toxicity, it is possible that iron-
modifying therapies may have benefit where other modalities
of anti-amyloid-f3 therapeutics have failed.

Iron Overload Impairs Microglia, Increasing
Reactive Oxygen Species Production

Iron overload causes microglia to take on a senescent pheno-
type with reduced motility and altered surveillance. When
confronted with injury, they produce a more sustained inflam-
matory response with increased reactive oxygen species
(ROS) production. It is possible that microglia are pushed to
a more pro-inflammatory phenotype by age-related changes
[109]. Stimulation of cultured microglia with amyloid-f3 in-
duces an inflammatory phenotype, causing these cells to retain
iron, and reduces their phagocytic and chemotactic function-
ing [110]. Microglia extracted from APP/PS1 mice also have
an iron-retentive phenotype with reduced amyloid-f3 phago-
cytotic ability [110].

Ferroptosis in AD

Ferroptosis, first described in 2012, is biochemically and mor-
phologically distinct from other forms of cell death such as
apoptosis and necrosis and is characterized by iron-dependent
accumulation of lipid peroxides [10, 11]. Ferroptosis is in-
duced by the small molecule erastin, which inhibits cysteine
import via the cystine-glutamate antiporter system Xc-, lead-
ing to depletion of glutathione, a tripeptide formed from cys-
teine, glutamate, and glycine [10]. Glutathione is a substrate
for the selenoenzyme glutathione peroxidase 4 (GPX4), which
converts potentially toxic lipid hydroperoxides to nontoxic
lipid alcohols [111-113]. Morphological features of
ferroptosis include small mitochondria with condensed mito-
chondrial membrane densities, reduction or vanishing of mi-
tochondrial crista, outer mitochondrial membrane rupture, and
electron lucent nuclei [114, 115].

Ferritinophagy may play a critical role in the regulation of
ferroptosis [116]. When ferroptosis is induced via cysteine
depletion, nuclear receptor coactivator 4 mediates the autoph-
agic degradation of ferritin (ferritinophagy), leading to release
intracellular free iron [116]. HER2C, a modulator of
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ferritinophagy [116], regulates turnover of FBXLS5, which is
part of a complex that targets iron regulatory protein 2 for
proteasomal degradation and thus appears to play a role in
iron metabolism [117]. HERC2 deficiency could induce neu-
rodegeneration by impairing response to increased iron levels,
leading to ferritinophagy, release of free iron, and neuronal
damage [116].

Erythroid 2-related factor 2 (Nrf2) is a transcription factor
that regulates genes involved in the metabolism of glutathi-
one, iron and lipids, and mitochondrial function [118]. Nrf2
may help protect against ferroptosis, and enhancing Nrf2 sig-
nalling may hence be neuroprotective [118].

Emerging work suggests that ferroptosis may play a role in
AD pathology. Lipid peroxidation levels are elevated in the
brain in AD [119, 120]. Mice with a conditional deletion of
GPX4 display cognitive impairment and hippocampal degen-
eration similar to that of AD with neurodegenerative features
of ferroptosis (including lipid peroxidation, extracellular
signal-related kinase (ERK) activation, and neuroinflamma-
tion), which is ameliorated by a ferroptosis inhibitor [121].
Ferroptosis may exacerbate AD by targeting the hypoxia-
inducible factor 1 x and heme oxygenase-1 pathways [116].

Ferroptosis is modulated by pharmacological perturbation
of lipid repair systems involving glutathione and GPX4 [11].
Cell death caused by ferroptosis can be suppressed by iron
chelators, lipophilic anti-oxidants, inhibitors of lipid peroxi-
dation, and depletion of polyunsaturated fatty acids [11].
Some ferroptosis inhibitors appear in Table 1 [11].

Studies of therapeutics with potential anti-ferroptosis activ-
ity show promise, though there are few data from human
studies. Trials of vitamin E supplementation to prevent cog-
nitive decline or treat AD have produced conflicting results
[122]. Donepezil-butylated hydroxytoluene hybrids have
been designed as potential anti-AD therapies [123]. Studies
of idebenone have shown cognitive improvement in AD, but
conclusive evidence for a benefit of sufficient magnitude to be
clinically significant is lacking [124—126]. In rat models of
AD, vildagliptin modulated AD-associated biochemical
changes [127], reduced tau phosphorylation, increased the
expression of proteins associated with synaptic plasticity in
the hippocampus [128], attenuated amyloid-f3, and improved
memory [129]. Linagliptin mitigated cognitive deficits, as
well as attenuating amyloid-f3, tau phosphorylation, and neu-
roinflammation in a 3xTg-AD mouse model [130]. In cultured
human neuronal cells, linagliptin alleviated amyloid-[3-
induced mitochondrial dysfunction and intracellular ROS
generation [131]. Studies of deferoxamine and deferiprone
in AD are discussed below. Baicalein improved cognition
decreased amyloid-f3 and prevented tau phosphorylation in
AD mouse models [132, 133]. PD-146176 preserved memo-
ry, lowered amyloid-f3, decreased tau pathology, and reduced
autophagy in a 3xTg mouse model of AD [134, 135]. Zileuton
improved memory and reduced amyloid-3 and tau pathology
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Table 1 Ferroptosis inhibitors

Lipid peroxidation inhibitors

* Vitamin E

¢ Deuterated polyunsaturated fatty acids
* Butylated hydroxytoluene

* Butylated hydroxyanisole

* Ferrostatins

* Liproxstatins

* Coenzyme Q10

* Idebenone

* Gliptins (vidagliptin, alogliptin, linagliptin)
Iron depleters

* Deferoxamine

* Cyclipirox

* Deferiprone

Lipoxygenase-induced lipid peroxidation inhibitors

* CDC (cinnamyl-3,4-dihydroxy-o-cyanocinnamate)
* Baicalein

* PD-146176

* AA-861

* Zileuton

System Xc- inhibitor blockers

* Cycloheximide
* 2-Mercaptoethanol

Blocker of GPX4 degradation
* Dopamine

Increased selenoproteins

* Selenium

Modified from Stockwell et al. [11]

in 3xTg AD mice [136, 137]. A small randomized controlled
pilot trial of supra-nutritional sodium selenate in AD showed
that subjects whose CSF selenium concentrations raised with
treatment had reduced deterioration on the Mini-Mental Status
Examination (MMSE) [138].

Ideal Aspects of Chelators

There are a number of factors that potentially affect the effi-
cacy and tolerability of iron chelators for AD and other neu-
rodegenerative disorders.

The efficiency with which a chelator binds iron and its
transmembrane transport properties appear to be major factors
in efficacy [139]. A chelator for AD obviously needs to pen-
etrate the blood—brain barrier. Chelators can remove iron from
the site of accumulation directly, or transfer it to other
molecules.

Use of nonselective chelators may affect the homeostasis of
iron-dependent processes, such as depleting transferrin-bound
iron in the plasma, leading to side effects [ 140, 141]. Moderate
affinity chelators may be less likely than high-affinity chela-
tors to remove metals from physiological processes [142].
Another strategy is utilizing site- or process-specific chelators,
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such as pro-chelators, which have little affinity for metal ions
until they undergo a chemical conversion in response to a
specific stimulus [141]. Agents that target disease-specific
pathophysiology, such as anti-ferroptotics, may also achieve
the aim of modulating a disease process without affecting
normal physiology. Given that iron may drive cell death by
activating iron-sensing hypoxia-inducible factor prolyl hy-
droxylases, these could be a target of protection from
ferroptosis via iron chelation [29].

Iron Chelators Currently Available

Iron chelators are currently used clinically for transfusion-
dependent patients with iron overload and beta thalassemia
major, sickle cell anemia, myelodysplasia, and aplastic ane-
mia [143]. They are also used rarely in people with hemochro-
matosis who are unsuitable for phlebotomy due to severe car-
diac involvement and unstable hemodynamics and in people
with acute iron poisoning [143]. There are three iron chelators
in widespread clinical use: deferoxamine, deferasirox, and
deferiprone (Table 2) [143].

Deferoxamine is a siderophore obtained from Streptomyces
pilosus which has been in clinical use since the 1970s [141,
144]. Tt is hydrophilic and large, with subsequent poor oral
bioavailability, and poor blood-brain barrier permeability
[144]. It also has a short half-life. Deferoxamine appears to
act on extracellular iron [145]. It inhibits the iron redox cycle
and modulates gene expression of hypoxia-inducing factor,
iron regulatory protein-1, and APP, potentially blocking pro-
duction of reactive oxygen species [146]. Deferoxamine binds
in a 1:1 ratio with iron and is subsequently excreted in the
urine and feces [147].

In APP/PS1 double transgenic mice, intranasal deferox-
amine inhibited APP processing, induced activation of M2
microglia with amyloid-3 phagocytic activity while inhibiting
M1 proinflammatory microglia, and improved cognitive func-
tion [146, 148]. Deferoxamine also reduced amyloid [149]
and tau [150] pathology in animal AD models.

In 1991, a placebo-controlled phase II clinical trial reported
that 125 mg intramuscular deferoxamine dosed twice daily
five times a week slowed cognitive decline in subjects with
AD by 50% over a 24-month period [151]. This remains one
of the few clinical trials for a potentially disease-modifying

Table 2 Iron chelators in current clinical use

Agent Oral bioavailability Blood-brain barrier passage
Deferoxamine No Poor

Deferasirox Yes Limited

Deferiprone Yes Good

drug in AD that his shown cognitive benefit. At the time, the
results were attributed to binding of brain aluminum [151].
The evidence for environmental exposure to aluminum
playing a role in AD subsequently weakened [152], and the
trial was never followed up to our knowledge.
Deferoxamine’s affinity for Fe**, however, is six times greater
than for AI**, and iron is 1000-fold more abundant in the brain
than aluminum, which suggests the positive results were due
to iron chelation, rather than an effect on aluminum.

Deferasirox is an orally bioavailable high-affinity iron che-
lator which is capable of intracellular iron chelation. In rats,
deferasirox prevented age-related accumulation of iron, re-
duced ferritin and transferrin receptor expression, and re-
versed altered amyloid-3 metabolism [153]. Blood—brain bar-
rier passage is limited, but improves when conjugated with
lactoferrin [154]. Deferasirox binds at a 2:1 ratio to iron and
is excreted in the feces [147]. Lactoferrin-deferasirox conju-
gates attenuated learning deficits induced by amyloid injection
in a rat model of AD [154].

Deferiprone is an orally bioavailable siderophore with
moderate iron-binding affinity [142, 144], which has been in
clinical use since the 1980s [141]. It readily crosses the blood—
brain barrier and chelates intracellular iron [145]. It is less
aggressive than deferoxamine, which readily depletes the
body of iron. Deferiprone penetrates cellular membranes,
forms a complex with iron, exits cells, and can redistribute
iron to transferrin for reuse [155, 156]. It binds iron with a
3:1 chelator/iron ratio and is primarily excreted via the kid-
neys [147].

Deferiprone is neuroprotective in neuronal culture models
of' amyloid-[3 toxicity [157, 158], protecting against hydrogen
peroxide and A[31-40-induced neuronal death [158]. It atten-
uates amyloid burden and tau phosphorylation in a rabbit
model of AD [159].

Clinical trials of deferiprone have taken place in a number
of neurodegenerative disorders. A pilot study in Friedreich’s
ataxia, followed by a 6-month randomized controlled trial,
showed that deferiprone can safely reverse pathological brain
iron accumulation [155, 160]. A 12-month trial in neurode-
generation with brain accumulation followed, demonstrating
that deferiprone was well tolerated over longer time frames
[161]. FAIR-PARK 1, a phase II trial in Parkinson’s disease,
also showed that deferiprone was well-tolerated and did not
lead to iron depletion [67]. Motor symptoms improved and
R2* MRI showed a reduction in iron deposition in the
substantia nigra [67]. FAIR-PARK 2, a phase III trial of
deferiprone in Parkinson’s disease, is nearing completion,
with results expected in mid-2020.

A clinical of deferiprone in Alzheimer’s disease is currently
underway, the Deferiprone to Delay Dementia (3D Study;
ClincalTrials.gov Identifier NCT03234686). This is a phase
IT randomized controlled study investigating the safety and
efficacy of deferiprone in subjects with prodromal and mild
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AD. The primary outcome is performance on a
neuropsychological test battery. Secondary outcomes include
brain iron levels as measured by MRI (T2*, QSM).

Clioquinol is an 8-hydroxyquinoline analogue. It is a
copper/zinc ionophore and a moderate iron chelator [162]. It
was withdrawn from clinical use due to a purported associa-
tion with subacute myelo-optico-neuropathy, though whether
an association exists is not clear [163]. Complications with
large-scale manufacturing prevented further developments
[162]. Clioquinol dissociates metals from binding sites in
A3, decreases iron-associated A(342 aggregation [164], and
stimulates amyloid degradation pathways via metal-
dependent signalling. In a placebo-controlled phase II trial of
32 patients, clioquinol prevented cognitive deterioration and
lowered plasma A(3-42 levels [165].

Iron Chelators Under Development
with Potential in Alzheimer’s Disease

A number of compounds with iron-chelating activity have
shown potential in in vivo AD models. There are also numer-
ous novel compounds which have recently been developed
(Table 3), some of which are described below.

Monoamine oxidase B leads to an increase in hydrogen
peroxide and free radicals. A series of compounds combining
MAUO inhibition with iron chelation activity have been devel-
oped [166—168]. One of these, M30, is an orally bioavailable
iron chelator which crosses the blood—brain barrier has shown
promise in cell line and animal models. It combines mono-
amine oxidase A and B inhibitory activities with the anti-
oxidant chelator moiety of VK28, an 8-hydroxyquinoline de-
rivative [169]. M30 reduced APP expression and Af3

generation in vitro and reduced amyloid-f3 plaques in aged
mice [169]. In APP/PS1 mice, it attenuated cognitive impair-
ments, reduced cerebral iron accumulation, decreased cerebral
APP levels, and reduced amyloid-[3 and tau levels [170]. This
drug has not yet been tested in humans with AD to our
knowledge.

There are several other iron chelators with in vitro evidence
in support of a potential benefit in AD. A novel class of 2-
amido-3-hydroxypyridin-4-one iron chelators shows neuro-
protective properties in cell cultures against (3-amyloid-
induced toxicity [171]. Hydroxylated chalcones have recently
been designed as dual-function inhibitors, with action against
amyloid-3 peptide aggregation and ferroptosis [172]. These
have been shown in cell lines to provide protection against
A1-42 aggregation-induced toxicity and against ferroptosis
[172]. HLA20A is a selective acetylcholinesterase inhibitor
with site-activated chelating activity. It is activated following
inhibition of acetylcholinesterase to liberate an active chelator,
HLA20, which has neuroprotective activities. It has been
shown to lower APP expression and amyloid-3 generation
and to reduce iron-induced aggregation [173].

A number of other dual-function therapeutics have been
developed with iron-chelating and acetylcholinesterase-
inhibiting properties. Tacrine-(hydroxybenzoyl-pyridone)
hybrids, combining acetylcholineserase inhibition and
iron-chelating capacity have been developed [174].
There are also tacrine-deferiprone hybrids [175]. Novel
dihydropyrimidinone-derived selenoesters have been synthe-
sized with anti-oxidant activity via lipid peroxidation inhibi-
tion and iron chelation activity as well as acetylcholinesterase
inhibition [176]. Quinazoline and pyrido(3,2-d)pyrimidine,
and 3-hydroxy-4-pyridinone)-benzorufan-based compounds
have also been synthesized, with dual cholinesterase

Table 3 Some iron chelators and

related compounds under Agent Mechanism of action

development with potential in AD
M30 MAO-I +IC
2-Amido-3-hydroxypyridin-4-one compounds 1IC
Hydroxylated chalcones Anti-A 3 aggregation + anti-ferroptotic
HLA20A ACh-I+IC
Tacrine-(hydroxybenzoyl-pyridone) hybrids ACh-1+1IC
Tacrine-deferiprone ACh-1+1IC
Dihydropyrimidinone-derived selenoesters ACh-I + IC + anti-oxidant
Quinazoline-pyrido-benzorufan-based compounds ACh-1+1IC

3.,4-HP-based compounds
Benzothiazone-based compounds

Coumarin-quinoline hybrids

1-Phenyl-3-hydroxyl-4-pyridinone derivatives

CuH(atsm)
PBPT

Anti-Af aggregation + ACh-I + IC
Anti-A{3 aggregation + ACh-1 + IC
ACh-I1+1C

Anti-Af3 aggregation + IC + anti-oxidant
Anti-ferroptotic

ACh-T+CI

MAO-I = monoamine oxidase inhibitor; IC = iron chelator; ACh-I = acetylcholinesterase inhibitor
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inhibition and iron-chelating properties [177, 178]. Similarly,
multifunctional iron chelators with anti-A(3-aggregating and
acetylcholinesterase-inhibiting activity have been developed
from 3-hydroxyl-4-pyridinone (3,4-HP) and benzothiazole
molecular moieties [179].

Circumin has been proposed as an AD therapeutic in light
of its iron-binding capability [180]. A number of derivatives
have been developed, including coumarin-quinoline hybrids
with acetylcholinesterase and iron chelation activity [181] and
hybrids of hydroxypyridinone and coumarin, which amelio-
rated cognitive dysfunction in scopolamine-induced AD mice
[182].

Novel 1-phenyl-3-hydroxyl-4-pyridinone derivatives with
iron-binding capabilities have been synthesized as potential
AD therapeutics by incorporating the 3-hydroxy-4-
pyridinone moiety from deferiprone into the scaffold of H3
receptor antagonists. Some of these combine iron chelating,
amyloid-f3 aggregation inhibition, metal chelating, and free
radical scavenging actions [183].

Chelators based on Schiff bases, particularly hydrazones
and thiosemicarbazones, also have potential in neurodegener-
ative diseases based on their ability to suppress oxidative
stress caused by redox-active metals and metal-induced
aggregation of amyloid beta [139]. Cholyl hydrazones
have been shown to can reduce amyloid-3 toxicity and
oxidative stress in cell lines [139]. Diacetyl-bis(4-methyl-3-
thiosemicarbazonato)copper'' (Cu''(atsm)) is a
bisthiosemicarbazone that protects against lipid peroxidation
and ferroptotic lethality in vitro [184]. Cu(atsm) is orally
bioavailable and crosses the blood—brain barrier [184]. Phase
I trials in Parkinson’s and motor neuron diseases have recently
been completed with promising results [185, 186]. Cu""GTSM
lowered A3 levels and phosphorylated tau levels in cell cul-
ture and APP/PS1 transgenic mice [187].

Multifunctional hybrids based on hydrazones and
thiosemicarbazones are in development. This includes novel
adamantine-based semicarbazones and hydrazones [188] and
hybrid molecules containing a metal binding unit, a
thiosemicarbazone, and acetylcholinesterase inhibitor
such as PBPT (pyridoxal 4-N-(1-benzylpiperidin-4-
yl)thiosemicarbazone) [189].

Very few iron chelators have made it to clinical trials in
humans in spite of the development of the above and other
compounds. A search of clinicaltrials.gov using the terms
“iron” and “Alzheimer’s” on 24 June 2020 only yielded the
3D study discussed above.

Conclusion

An extensive body of data in support of a role of iron in the
pathophysiology of Alzheimer’s disease is emerging. This
work ties in with the pathology of amyloid-3 and tau at many

levels. Cell line and animal studies of iron chelators for AD
show encouraging results. In spite of this, there has been very
little work on iron-lowering strategies in humans with AD,
likely due to an overemphasis on amyloid-lowering strategies
which have been overwhelmingly disappointing to date.
Given the growing number of iron-chelating compounds with
potential disease-modifying efficacy, and the availability of
MRI and CSF biomarkers of iron load, there is considerable
scope to explore this therapeutic class in AD.
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