
1

OPEN

DATA

NonClasGP-Pred: robust and efficient prediction of non-
classically secreted proteins by integrating subset-specific 
optimal models of imbalanced data

Chao Wang1†, Jin Wu2†, Lei Xu3,* and Quan Zou1,4,*

METHOD
Wang et al., Microbial Genomics 2020;6

DOI 10.1099/mgen.0.000483

Received 14 July 2020; Accepted 06 November 2020; Published 27 November 2020
Author affiliations: 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China; 
2School of Management, Shenzhen Polytechnic, Shenzhen, PR China; 3School of Electronic and Communication Engineering, Shenzhen Polytechnic, 
Shenzhen, PR China; 4Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, PR China.
*Correspondence: Lei Xu, ​csleixu@​szpt.​edu.​cn; Quan Zou, ​zouquan@​nclab.​net
Keywords: feature selection; imbalanced dataset; machine learning; model ensemble; non-classically secreted proteins.
Abbreviations: AAC, amino acid composition; ACC, accuracy; CKSAAP, composition of k-spaced aminoacid pairs; CTDC, composition; CTDT, transition; 
CTriad, conjoint triad; DDE, dipeptidedeviation from expected mean; DPC, dipeptide composition; FPR, false positiverate; MCC, matthews correlation 
coefficient; NCSPs, nonclassically secreted proteins; NMBroto, normalized moreau-broto; PAAC, pseudoamino acid composition; QSOrder, quasi-
sequence-order; ROC, receiver operating characteristic curve; SFS, sequential forward search; SN, sensitivity; SP, specificity; SVM, support vector 
machine; TPR, true positive rate.
†These authors contributed equally to this work
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Four supplementary 
tables are available with the online version of this article.
000483 © 2020 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Abstract

Non-classically secreted proteins (NCSPs) are proteins that are located in the extracellular environment, although there is 
a lack of known signal peptides or secretion motifs. They usually perform different biological functions in intracellular and 
extracellular environments, and several of their biological functions are linked to bacterial virulence and cell defence. Accurate 
protein localization is essential for all living organisms, however, the performance of existing methods developed for NCSP 
identification has been unsatisfactory and in particular suffer from data deficiency and possible overfitting problems. Further 
improvement is desirable, especially to address the lack of informative features and mining subset-specific features in imbal-
anced datasets. In the present study, a new computational predictor was developed for NCSP prediction of gram-positive 
bacteria. First, to address the possible prediction bias caused by the data imbalance problem, ten balanced subdatasets were 
generated for ensemble model construction. Then, the F-score algorithm combined with sequential forward search was used 
to strengthen the feature representation ability for each of the training subdatasets. Third, the subset-specific optimal feature 
combination process was adopted to characterize the original data from different aspects, and all subdataset-based models 
were integrated into a unified model, NonClasGP-Pred, which achieved an excellent performance with an accuracy of 93.23 %, 
a sensitivity of 100 %, a specificity of 89.01 %, a Matthew’s correlation coefficient of 87.68 % and an area under the curve value 
of 0.9975 for ten-fold cross-validation. Based on assessment on the independent test dataset, the proposed model outper-
formed state-of-the-art available toolkits. For availability and implementation, see: http://​lab.​malab.​cn/~​wangchao/​softwares/​
NonClasGP/.

DATA SUMMARY
We confirm that all supporting data, code and protocols have 
been provided within the article or through Supplementary 
Material.

INTRODUCTION
Secreted proteins can produce a marked effect only when 
they are transported across the cell membrane to reach their 

function venue. Generally, secreted proteins are synthesized 
initially as precursors in the cytoplasm, and they are then 
targeted toward the translocation machinery and finally 
delivered into the extracellular space through a proteinaceous 
channel. The majority of secreted proteins depend on classical 
Sec- or Tat-dependent secretion pathways [1–3], where the 
known, predictable signal peptide or secretion motifs in the 
protein sequence are necessary for the two pathways.
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Nevertheless, proteins without any known signal peptides or 
secretion motifs can also be exported into the extracellular 
space. As their secretion pathway remains ill-defined, they 
are termed non-classically secreted proteins (NCSPs) [4–6]. 
Because NCSPs display different biological functions when 
they are in the cytoplasm and extracellular space, they were 
designated as so-called moonlighting proteins, meaning these 
proteins show functional variety in different pathways [7]. For 
example, glyceraldehyde 3-phosphate dehydrogenase is essen-
tial for the glycolytic pathway in cytoplasm, while it played an 
important role in plasminogen binding on the bacterial surface 
[8]. Previous studies have shown that NCSPs can adhere to host 
epithelia and components, affect cell viability, and modulate host 
immune responses [5] involving the function of bacterial viru-
lence and cell defence [9]. For heterologous protein production, 
many bottlenecks were encountered in the classical Sec- or Tat-
dependent secretion pathways. Most heterologously expressed 
proteins are unable to cross the cytoplasmic membrane and they 
easily form inclusion bodies that are difficult to renature. It is 
remarkable that NCSPs have been successfully used as export 
signals to assist in the secretion of specific proteins of interest 
in biotechnology [10, 11].

Accurate protein localization is essential for all living organ-
isms. In terms of gram-positive bacteria, bioinformatics tools 
that are available for NCSP prediction were mainly developed 
based on mammalian proteins. For instance, SecretomeP [12] 
is the first reported tool that can be used for NCSP identifi-
cation, but positive data were not composed of real NCSPs 
but simulated by mammalian classically secreted proteins 
whose signal part was removed. SecretP [13] was trained on 
a dataset of proteins in which non-classically secreted gram-
positive bacterial proteins were deficient; NClassG+ [14] and 
the latest PeNGaRoo [15] provided a more reasonable result 
when tested on an independent set. Although previous studies 
have greatly contributed to the discovery of NCSPs, further 
improvement is desirable, especially to address the lack of 
informative features and mining subset-specific features for 
imbalanced datasets.

The purpose of the present study was to develop a new 
computational predictor to further improve the performance 
of the NCSP prediction of gram-positive bacteria. First, to 
address the possible prediction bias caused by the data imbal-
ance problem, ten balanced subdatasets were generated for 
ensemble model construction. Second, ten feature descriptors 
were used to encode the protein sequences into numerical 
vectors, and the F-score algorithm combined with sequential 
forward search was applied to reinforce the feature repre-
sentation ability for each of the training subdatasets. Third, 
the subset-specific optimal feature combination process 
was adopted to characterize the original data from different 
aspects. Finally, all subdataset-based models were integrated 
to improve the generalizability of the model. When assessed 
based on the independent test, the proposed ensemble model 
achieved superior predictive performance and outperformed 
state-of-the-art available toolkits.

METHODS

Datasets
In this study, we adopted the benchmark datasets constructed by 
Zhang et al. [15] to specifically identify NCSPs of gram-positive 
bacteria. We used these datasets for the following reasons. 
First, the proteins of the positive dataset, NCSPs of gram-
positive bacterial proteins, were experimentally verified, and 
each protein was confirmed by at least three different research 
groups in at least three different bacterial species [5, 15]. Second, 
the sequence identity was reduced to 80 % to avoid potential 
redundancy. For the negative dataset, 1084 proteins that local-
ized in the cytoplasm [7, 15] were used in this work. Similar, the 
sequence identity was reduced to 80 % to avoid potential redun-
dancy. The final training dataset contained 141 positive and 446 
negative protein samples. To address this data imbalance issue, 
we generated ten balanced datasets, termed TD1, TD2, …, and 
TD10, each of which comprised all the 141 positive samples 
and an equal number of negative samples that were randomly 
chosen from the negative dataset.

An independent test dataset containing 34 positive samples 
and 34 negative samples was used for further performance 
evaluation and comparison. For more details regarding the 
benchmark datasets, see Zhang et al. [15].

Feature extraction
To build an accurate and reliable bioinformatics tool, sufficient 
feature information should be incorporated into the model 
[16–19]. In this study, ten feature-encoding algorithms were 
used to represent the protein sequence, including amino acid 
composition (AAC), composition of k-spaced amino acid 
pairs (CKSAAP), dipeptide composition (DPC), dipeptide 
deviation from expected mean (DDE), composition (CTDC), 
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Non-classically secreted proteins (NCSPs) are proteins 
that are located in the extracellular environment, although 
there is a lack of known signal peptides or secretion 
motifs. NCSP identification remains challenging due to 
insufficient discernible features and the performance of 
existing methods has been unsatisfactory. We therefore 
developed a new computational predictor, NonClasGP-
Pred, for NCSP prediction of gram-positive bacteria. 
This achieved excellent performance with an accuracy 
of 93.23 %, a sensitivity of 100 %, a specificity of 89.01 %, 
a Matthew’s correlation coefficient of 87.68 % and an 
area under the curve value of 0.9975 for ten-fold cross-
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the proposed model outperformed state-of-the-art avail-
able toolkits. NonClasGP-Pred is a useful bioinformatics 
tool for analyses of NCSPs. It will help to determine the 
biological function of NCSPs related to bacterial viru-
lence and cell defence.
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transition (CTDT), conjoint triad (CTriad), quasi-sequence-
order (QSOrder), normalized Moreau-Broto (NMBroto) and 
pseudoamino acid composition (PAAC). They were catego-
rized into three groups, i.e. amino acid composition group, 
amino acid distribution group and sequence order group. The 
above feature-encoding algorithms are described in detail in 
the Supplementary methods, and a brief introduction of these 
algorithms is provided below.

Amino acid composition-based features
The AAC descriptor [20, 21] encodes the frequencies of all 20 
amino acids in a protein sequence. The CKSAAP descriptor 
[22] measures the frequency of any k residue-spaced amino 
acid pairs. The DPC and DDE [23] calculate the frequencies 
of all dipeptides.

Amino acid distribution-based features
The composition (CTDC) and transition (CTDT) features 
[24] characterize the amino acid distribution patterns or 
physicochemical properties in a protein. Twenty amino acids 
are categorized into three groups according to their physico-
chemical properties. The composition descriptor represents the 
percentage of each group of residues in the protein sequence. 
The transition descriptor characterizes the frequencies of three 
kinds of residue pairs. Thirteen types of physicochemical prop-
erty (Table S1, available in the online version of this article) are 
used to compute the features of CTDC and CTDT. CTriad [25] 
characterizes the properties of one amino acid and its neigh-
bours, where any three continuous amino acids are regarded 
as a single unit.

Sequence order-based features
The QSOrder features characterize the sequence order based 
on the Schneider–Wrede physicochemical distance matrix [26] 
and the Grantham chemical distance matrix [27]. The NMBroto 
descriptor [28] is used to characterize the distribution of amino 
acid properties along the sequence. In this paper, eight amino 
acid indices are selected from the AAindex database (Table S2). 
PAAC introduces a discrete model derived from the amino acid 
sequence to represent its sequence order or pattern information 
[29, 30].

Framework of NonClasGP-Pred
Fig. 1 illustrates the framework of NonClasGP-Pred, which 
involves four main steps: (i) feature encoding, (ii) feature 
selection, (iii) feature combination, and (iv) model ensemble 
and evaluation. The feature-encoding methods are presented 
in the feature extraction section above, and the remaining 
three procedures are described in detail below.

Parameter optimization for individual feature descriptor
The feature dimensions of four of the ten feature descriptors 
are determined by the parameter of the related algorithms 
(Table 1). To achieve the best performance on each individual 
descriptor, the four parameters were optimized, and the search 
range for each of them is listed in Table 1, where ten-fold cross 

validation was used to measure the performance of the model 
with different parameters.

Feature selection for individual features
To include sufficient information, we used all the feature 
encodings as described above. High-dimensional features 
are often redundant and noisy, which affects model gener-
alization, and they are computationally expensive [31, 32]. 
A feature selection procedure was performed to identify the 
most discriminative features by removing the redundant and 
irrelevant features. In this study, a two-step feature selec-
tion method was processed to choose the optimal subsets. 
First, the F-score method was applied to compute the feature 
importances and sort them in descending order, and the 
F-score value of the ith feature is calculated as below. After 
that, the optimal feature subsets were selected using the 
sequential forward search (SFS) method. In SFS, we added 
features from the sorted list one by one to train and evaluate 
the prediction model by ten-fold cross validation (for more 
details, see Model construction and evaluation below). Last, 
the feature subsets leading to the model with the highest 
accuracy (ACC) are extracted as the optimal features.
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k,i ‍ represent the ith 
feature of the kth positive and negative samples, respectively. 
A feature that has superior discrimination ability is correlated 
to a high F-score.

Feature combination
To build a robust prediction model with good performance, 
we not only individually used the ten types of optimal 
feature subsets as described in the previous section but also 
any combination among the ten feature subsets using an 
exhaustive searching. We evaluated all possible 1023 models 
(﻿‍c110, c210, c310, · · ·, c1010 ‍) for each of the ten training datasets. We 
note that the results of Zhang et al. [15] might be overfitted 
as it resulted in an accuracy of 0.900 in the training dataset 
and an accuracy of 0.779 in the independent test data. Our 
preliminary experiment results (Table S3) also showed similar 
overfitting problems. On this basis, for each of the 1023 
models, the independent test data instead of the n-fold cross 
validation method was employed for best model selection. 
More specifically, taking the combination NMBroto, QSOrder, 
CTDT and CTriad in TD4 as an example, the four feature 
subsets were combined first, which resulting a 374-D vector. 
The model was trained on the combined training dataset, and 
then it was tested on the independent test dataset based on 
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the ACC metric. Note that the independent test dataset was 
not involved in any model construction process.

Model construction and evaluation
In this study, the powerful support vector machine (SVM) 
algorithm is employed to train our binary classification 
model, and this method has been extensively used in several 
bioinformatics fields [33–41], such as disease genes [42, 43] 
and non-coding RNAs [44, 45]. We implemented SVM with 
the Python package in scikit-learn (v 0.22.1). Two critical 
parameters, namely the kernel parameter γ and the penalty 
parameter C, were optimized by the grid search approach. The 
radial basis function (RBF) was used as the kernel function 
of SVM, and the search range for C and γ is [0.01, 0.05, 0.1, 
0, 1, 5, …, 90, 95, 100] and [0.0001, 0.0002, 0.0004, 0.0006, 
0.0008, …, 2, 4, 6, 8], respectively.

To improve the performance of the NonClasGP model, an 
ensemble learning model was built in this study, which used 
majority voting to integrate the prediction results of the above 
ten individual models, each of which was built on the optimal 
feature combinations. The performance of the ensemble 
model NonClasGP-Pred was evaluated by five commonly 
used metrics [15, 40, 46–59]: ACC, specificity (SP), sensitivity 
(SN), Matthews correlation coefficient (MCC) and AUC. They 
are calculated as follows:

	﻿‍ ACC = TP+TN
TP+TN+FP+FN ‍� (1)

	﻿‍ SN = TP
TP+FP‍� (2)

	﻿‍ SP = TN
TN+FP‍� (3)

	﻿‍ MCC = TP×TN−FP×FN√
(FP+TP)(FN+TP)(FP+TN)(FN+TN)‍� (4)

Fig. 1. Framework of NonClasGP-Pred.



5

Wang et al., Microbial Genomics 2020;6

	﻿‍ TPR = TP
TP+FN ‍� (5)

	﻿‍ FPR = FP
TN+FP‍� (6)

The metric AUC represents the area under the receiver 
operating characteristic (ROC) curve, which is calculated by 
the false positive rate (FPR) and the true positive rate (TPR) 

under various thresholds; the TPR and the FPR are calculated 
as Equation (5) and (6), respectively.

where TP=true positive, FP=false positive, TN=true negative 
and FN=false negative.

Of the five metrics, SN and SP are used to evaluate the model 
performance with respect to the positive samples and nega-
tive samples, respectively, and the remaining three metrics 
are global prediction performance indicators. Moreover, 
ten-fold cross validation was used for evaluation of model 
performance.

RESULTS AND DISCUSSION
Descriptor parameter optimization
As shown in Table 1, the feature vector dimensions of four 
descriptors, including PAAC, CKSAAP, NMBroto and 
QSOrder, depended on the parameter value of the algorithm. 
To make each of the descriptors as informative as possible, 
the parameters were preoptimized before the feature selec-
tion procedure. Note that for computational convenience 
and to adequately represent the balanced training dataset, the 
parameter optimization process was only subjected to TD1 
whose optimal parameters were applied to other 9 datasets. 
The ROC curves around the highest parameters are shown 
in Fig. 2. The PAAC achieved the best performance when the 
value of parameter λ was 11 (Fig. 2a); CKSAAP resulted in 

Fig. 2. ROC curve of four feature descriptors with different algorithm parameters.

Table 1. Descriptor feature dimensions and parameter search range

Feature 
descriptor

Parameter Feature 
dimension

Search range Optimal 
value

PAAC λ λ+20 [1, 2, 3, …, 50] 11

CKSAAP K (K+1)*400 [0,1, 2, 3, 
…, 9]

9

NMBroto nlag nlag*8 [1, 2, 3, …, 50] 19

QSOrder nlag nlag*2+40 [1, 2, 3, …, 50] 4

AAC – 20 – –

CTDC – 39 – –

CTDT – 39 – –

CTriad – 343 – –

DDE – 400 – –

DPC – 400 – –
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the highest AUC value of 0.951 when the parameter k was 9 
(Fig. 2b); the maximum AUC value of NMBroto and QSOrder 
was obtained when the parameter nlag was set to 19 and 4, 
respectively (Fig. 2c, d). The feature vector dimensions of the 
four optimized descriptors and the other size-fixed descrip-
tors are presented in Table 1.

Feature selection for individual features
As described in the Methods, the F-score and SFS were 
used for feature selection. We performed this procedure on 
the ten balanced training datasets, TD1, TD2, …, TD10, 
independently. The results of feature selection are illustrated 
in Fig. 3. The dimensions for the majority of features were 

reduced, especially for those with higher dimensionality, 
as they tend to contain more redundant information, such 
as features in CKSAAP, DDE and DPC. For a specific 
descriptor, the dimensions of the optimal feature subset 
among different training datasets were also different. For 
instance, the optimized dimension of AAC feature ranged 
from 14 to 31, and that of the DPC varied from 77 to 243. 
This indicates that the information embodied in different 
TDs is inconsistent to some extent. Furthermore, the 
performance of the model trained on the optimal feature 
subset was improved in terms of the metric ACC, demon-
strating that the feature selection strategy is beneficial for 
improving the feature representation ability and contributes 
to improving model performance.

Fig. 3. Feature dimension and model performance (ACC) before and after feature selection. Dim-BFS: feature dimension before feature 
selection, Dim-AFS: feature dimension after feature selection, ACC-BFS: ACC of model before feature selection, and ACC-AFS: ACC of 
model after feature selection.
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Combination of various features to optimize the 
prediction model
To construct the optimal prediction model, we investigated all 
possible combinations of the ten feature subsets obtained in 
the above section. For each training dataset, 1023 models were 
constructed in total, and these models were then evaluated on 
independent test data to avoid the overfitting problem based 
on the ACC metric. Fig. 4 shows the best feature combina-
tions for each of the ten training datasets. As shown in Fig. 4, 
the best feature combinations of the ten training datasets are 
different from each other. For instance, the optimal models of 
TD1 and TD9 are built only on AAC, and the best models for 
TD8 and TD6 are based on two features, while that of TD5 is 
constructed based on five features (NMBroto, QSOrder, ACC, 
CTriad and CTDC/CTDT).

With regard to the versatility of feature encodings, AAC is 
the most commonly used, as it is adopted by seven of the 
ten best models. CTDT, CTDC and QSOrder are included 
in five of the ten best models. Two feature representation 
strategies, CTriad and NMBroto, are informative for two 
of the ten models, indicating that these feature descriptors 
are more predictive and discriminative than the others. 
Additionally, some feature encodings are specific for certain 
training data. For example, three of the encodings, DPC, 
DDE and CKSAAP, are only used by one of the ten models, 
demonstrating that these features can probably capture 
some specific characteristics. However, although PAAC 

achieved a high AUC score in the training data (Fig. 2a), 
it was absent from all ten optimal models when evalu-
ated on the independent dataset, suggesting that PAAC-
encoded features lack generalization ability. In terms of 
model performances, the ACC value of the model trained 
on different training data is also not the same, where the 
maximum ACC value (86.76 %) was achieved on TD6, and 
the minimum ACC value (79.41 %) was obtained on TD3.

As described above, it can be concluded that each training 
subset represents only a part of the information from the 
complete dataset. Therefore, integrating the optimal models 
above would be helpful to improve the performance of the 
predictive models.

Improving model performance by ensemble 
learning
To improve the performance of the NonClasGP-Pred model, 
an ensemble learning model was built to integrate all the 
subset-specific optimal models as mentioned above. To 
intuitively exhibit the effectiveness of the ensemble strategy, 
we plotted the ten-fold cross validation results (Table S4) of 
the ten individual models and the ensemble NonClasGP-Pred 
model in Fig. 5. It can be clearly seen that the ensemble model 
achieved better performance than the individual models in 
ACC, SN, MCC and AUC. Specifically, the NonClasGP-Pred 
model achieved the best ACC of 93.23 % (Fig. 5a), which 
resulted in an average improvement of 6.45 % compared with 
the remaining individual models. Similar results can also 
be seen for SN and MCC, whereas the average values were 
increased by 12.12 and 13.41 % (Fig. 5b, d), respectively. The 
SP value achieved by the ensemble model is the fourth best 
(89.01 %), which is slightly lower than that of TD9 (90.00 %), 
TD1 (89.38 %) and TD2 (89.28 %) (Fig.  5c). Notably, the 
ensemble model enhances the AUC by 3.15–8.64 % (Fig. 5e), 
indicating that the ensemble strategy is capable of effectively 
improving the model performance.

Comparison of NonClasGP-Pred with existing 
predictors
To examine the performance of the NonClasGP-Pred 
predictor, we evaluated and compared it with two other 
state-of-the-art available predictors, namely PeNGaRoo and 
SecretomeP, which have been developed for predicting NCSPs 
of gram-positive bacteria. The independent test data were 
built on an independent dataset after removing the overlap 
sequence in the training dataset, thereby generating a more 
rigorous result and providing a fair comparison with existing 
tools. The results are presented in Fig. 6, where it can be seen 
that the NonClasGP-Pred clearly outperforms PeNGaRoo and 
SecretomeP in all five evaluation metrics on the independent 
test data, resulting in an ACC of 86.76 %, SN of 86.76 %, 
SP of 85.29 % and MCC of 73.56 % (Fig. 6a). In particular, 
the NonClasGP-Pred achieved an AUC of 0.9019 (Fig. 6b), 
which is 4.98 and 22.20 % higher than that of PeNGaRoo and 
SecretomeP, respectively. These results demonstrate that our 
ensemble predictor is significantly better than the existing 
prediction algorithms in the prediction of NCSPs.

Fig. 4. Subdataset-specific optimal feature combination. The black 
squares represent the composition of the best feature combination 
for a specific training subdataset based on the metric ACC, and the 
grey squares represents the alternative feature of the best model. 
For instance, QSOrder and AAC are alternatives for each other for 
the optimal feature subset of TD4; in other words, the combination of 
NMBroto + QSOrder + CTDT + CTriad achieved an ACC value equal to that 
of the combination of NMBroto + AAC + CTDT + CTriad.
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Webserver implementation
For convenience, we have established a publicly accessible 
webserver that implements our predictor, which can be freely 
accessed via http://​lab.​malab.​cn/~​wangchao/​softwares/-​
NonClasGP/. Users will need to submit the query protein 
sequences in FASTA format. Then, by clicking on the Submit 
button, the predicted results will be presented on the screen 
and can be downloaded to a local computer.

CONCLUSION
In this study, a new computational predictor, NonClasGP-
Pred, was presented for NCSP prediction of gram-positive 
bacteria. First, ten balanced subdatasets were generated 
from the original imbalanced dataset, and ten sequence-
based feature encodings were used to generate the feature 
space. Then, the feature representation ability was enhanced 
by SSF and subset-specific optimal feature combination 
strategies. Finally, an ensemble learning model was built to 
integrate all the subset-specific optimal models. Assessment 

of the independent test indicated that the proposed model 
outperformed state-of-the-art available toolkits. Through 
a series of analyses, we assumed that the improved perfor-
mance by our predictor mainly contributed to feature 
selection, subset-specific model merging and ensemble 
strategies. A user-friendly web server that implements 
NonClasGP-Pred has been made available to maximize 
user convenience. NonClasGP-Pred is anticipated to be 
a useful bioinformatics tool for predicting the NCSPs of 
gram-positive bacteria and facilitating their functional 
understanding.

However, model performance resulting from only sequence-
based features is limited to a certain degree. In future work, 
integrating sequence-based features with other evolutionary 
algorithms might be helpful for further performance improve-
ment. Moreover, exploring more powerful machine learning 
algorithms, such as deep learning [48, 60–64] and unsuper-
vised learning [65–67] is expected to effectively improve the 
predictive performance as well.

Fig. 5. Performance comparison between the models built on individual training subsets and the ensemble model by ten-fold cross 
validation.

Fig. 6. Performance comparison between PeNGaRoo, SecretomeP and NonClasGP-Pred on independent test data.

http://lab.malab.cn/~wangchao/softwares/-NonClasGP/
http://lab.malab.cn/~wangchao/softwares/-NonClasGP/
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