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Abstract 

Background:  Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to fail-
ure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches 
that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sen-
sory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, 
and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used 
methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown.

Methods:  In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and 
sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in 
rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), 
tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide 
(CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area 
percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers 
in the immunofluorescence images.

Results:  Our results suggest the mean gray value method is the most reliable method. The mean gray value of 
immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher 
than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the 
mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles 
were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) 
(P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity 
and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001).

Conclusions:  A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
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Background
Peripheral nerve injury can lead to the loss of motor, sen-
sory and autonomic nerve function in the body’s gan-
glion segment, which seriously affects patients’ quality 
of life [1]. Mismatched nerve fascicle repair after periph-
eral nerve injury may result in partial or complete loss 
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of function [2]. Despite several decades of progress in 
research and surgical techniques, surgeons still rely on 
experience to estimate the characteristics of damaged 
motor or sensory nerve stumps and perform a differen-
tiated fascicular repair. Thus, a satisfactory recovery is 
often difficult to achieve [3]. We have shown a 3-dimen-
sional, printed scaffold repair technology promoting 
neural regeneration with bifurcating sensory and motor 
pathways after complex peripheral nerve injuries [4]. 
Therefore, the ability to identify and differentiate motor 
and sensory fascicles is greatly beneficial to the develop-
ment of new approaches to facilitate neural regeneration. 
In addition, the ability to identify motor and sensory fas-
cicles is crucial to the development of next generation 
nerve signal-controlled neuro-prosthetic limbs with sen-
sory feedback technology, which is connected to residual 
peripheral nerves through the neural interface via intra-
fascicular electrodes as we reported [5–7]. It’s particu-
larly important to reliably distinguish motor and sensory 
nerve fascicles to properly transmit signals via microelec-
trode as motor order or sensory feedback via the regener-
ated nerves [7].

Currently, there are four reported methods to distin-
guish sensory and motor nerve fascicles: anatomical, 
electrophysiological, infrared spectrum, and enzymohis-
tochemical staining [8–11]. The anatomical method has 
been widely used in the past decades, but surgeons can 
only rely on their own experience to estimate the type of 
nerve fascicle, and may cause partial or total loss of nerve 
function after nerve transplantation [12]. Therefore, 
the anatomical technique alone is difficult to effectively 
gauge the type of fascicle. Electrophysiological methods 
such as evoked potentials were used to distinguish sen-
sory from motor nerve fibers. While we have extensive 
experience with the electrophysiological study of nerve 
injury [5, 6, 13, 14], this method can only distinguish the 
main nerve branch; it is unable to show the composition 
of the nerve fiber. Moreover, there is a need for larger 
sample sizes to study the electrophysical technique due 
to the high variance of measurements seen in current 
studies [15]. Infrared spectrum identification requires a 
variety of equipment, complex calculations, and many 
interference factors, which limits its application to a great 
extent [10]. Enzymohistochemistry staining, including 
immunofluorescence staining and immunohistochemi-
cal staining, is currently one of the most frequently used 
methods. However, it is difficult to distinguish the results 
using immunohistochemistry after labeling with a multi 
substrate color system. In addition, the color of the sub-
strate and the thickness of the slice will affect the final 
result, and the chromogenic substrate is an enzymatic 
reaction that easily saturates the substrate, thus limit-
ing the semi quantitative analysis [16]. Compared with 

immunohistochemistry, immunofluorescence can carry 
out a reaction with multiple markers. Antibody-coupled 
fluorescence can also increase the resolution [16].

Although immunofluorescence is widely used, the effi-
cacy/accuracy of popular immunofluorescence mark-
ers for motor and sensory nerve fibers remains unclear. 
In addition, the results of quantitative processing meth-
ods for fluorescent images are different without a proper 
comparison. Although almost all peripheral nerves are 
a mixture of motor and sensory nerves, the facial nerve 
is mainly composed of motor nerve fibers and the sural 
nerve is mainly composed of sensory nerve fibers [17, 
18]. We hypothesize that preferable markers will be eval-
uated and/or an optimal combination will be selected to 
identify and differentiate the motor and sensory axons 
using immunofluorescence staining in this side by side 
comparison in the facial and sural nerve. In this study, 
we selected the relatively pure facial and sural nerves as 
either the motor or sensory fascicles for staining, and 
examined the expressions of available and commonly 
used motor markers [choline acetyltransferase (ChAT), 
tyrosine kinase receptor A (TrkA)] and sensory mark-
ers [neurofilament protein 200 kDa (NF-200), calcitonin 
gene-related peptide (CGRP) and Transient receptor 
potential vanillic acid subtype1 (TRPV1)] using immuno-
fluorescence staining aiming to evaluate the best differ-
entiative approach. These markers have been widely used 
to label motor or sensory nerve fascicles experimentally 
[19, 20], however their quantified preferential staining in 
peripheral nerves after peripheral nerve injury have not 
been studied.

Materials and methods
Experimental procedures
From 5 fresh euthanized nude rats, weighing 200 g to 250 
g, we obtained healthy facial nerve and sural nerve speci-
mens. To expose the facial nerve trunk and its branches, 
a 1 cm skin incision on a horizontal plane was performed 
from the inferior margin of the auricular, extending ante-
riorly. Facial nerve specimens were obtained by transect-
ing at the stylomastoid foramen and 5 mm distal to the 
skin incision, thus extracting a 10 mm nerve segment. A 
1-cm long sural nerve segment was dissected from the 
sciatic nerve. We obtained both sides (10 facial nerve 
specimens and 10 sural nerve specimens) in all rats, and 
randomly selected one side of each nerve type for the fol-
lowing studies. Differentially expressed proteins could 
be observed in proximal and distal nerve segments due 
to different cells and extracellular matrix of proximal and 
distal nerve segments [21]. In our study, all the nerve sec-
tions were collected from the similar position of nerves. 
Experimental protocols were approved by the IACUC of 
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University of Maryland School of Medicine Animal Care 
and Use Committee.

The nerve specimens were immersion-fixed in the 4% 
Paraformaldehyde (PFA) fixative for 24 h and then placed 
into 30% sucrose 0.1-M phosphate-buffered saline (PBS) 
for at least 48 h. The sural and facial nerves were frozen, 
and then 10 µm thick transverse serial sections were 
obtained using a freezing microtome (Leica, Germany) at 
− 20 °C. All sections were stored at − 20 °C. Three slides 
were randomly selected from each specimen for quanti-
tative immunofluorescence staining in five samples total.

Immunofluorescence analysis
Standard Immunofluorescence procedures were followed 
[22]. The facial nerve and sural nerve sections were incu-
bated with the primary antibody against ChAT (rabbit, 
diluted 1: 100; Millipore), NF-200 (rabbit, diluted 1: 200; 
Sigma), CGRP (mouse, diluted 1: 200; Abcam), TRKA 
(rabbit, diluted 1: 200; Abcam), TRPV1 (mouse, diluted 1: 
200; Abcam) followed by 24 h at 4 °C. Following incuba-
tion with the primary antibody, the specimens were then 
washed again three times (5 min/wash) in PBS and incu-
bated in the secondary antiserum solution. Antigens of 
facial nerve sections were observed by using Invitrogen 
Alexa Fluor-594 donkey anti-rabbit secondary antibody, 
Invitrogen Alexa Fluor 488-conjugated goat anti-rabbit 
and Abcam Alexa Fluor 488-conjugated goat anti-mouse 
(diluted 1: 500; USA) 2 h at 37 °C. Autofluorescence (neg-
ative control) that incubated with secondary antibody 
only were used during each staining.

After being washed, all sections were covered and 
mounted with ProLong™ Gold Antifade Mountant with 
DAPI (4′,6-diamino-2-phenylindole, blue, Invitrogen, 
USA). Micrographs were obtained by using a Leica DMi8 
microscope camera equipment (Leica Microsystems). All 
fluorescent images were analyzed in Image J (National 
Institutes of Health, USA), as we previously described 
[23, 24]. Each data point is from five experimental ani-
mals. Three tissue sections from selected nerves were 
collected from each animal in a blinded fashion. Quantifi-
cation was conducted by counting the axons with immu-
noreactivity in 3 randomized microscopic fields in each 
section. For the immunofluorescence analysis, area per-
centage and mean gray value were analyzed using Image 
J software (v1.8.0, NIH, USA). After converting the image 
to black and white with 8-bit type, the threshold of the 
image was adjusted to best cover the axon area (Image-
Adjust-Threshold-Apply); then the area of the axon was 
measured and recorded (Analyze-Measure) after ran-
domly selecting three fixed areas (50 μm * 50 μm) on each 
image. The area percentage, mean gray value, and axon 
count were automatically calculated using image J.

Statistics
An independent t-test was employed to determine sta-
tistical differences of quantified immunofluorescence 
area and mean gray value between two groups using 
SPSS version 22.0 (IBM Corp., Armonk, NY, USA). 
Image J software was used to determine the immuno-
fluorescence area and mean gray value (Version 1.8.0). 
A receiver operating characteristic (ROC) curve was 
constructed to determine the cut-points of the mean 
gray value of ChAT and CGRP and the ChAT/CGRP 
ratio, with optimal sensitivity and specificity to identify 
motor and sensory fascicles. All values were expressed 
as a mean ± SEM. Statistical significance was set at 
P < 0.05.

Results
The expressions of motor markers in motor and sensory 
fascicles
ChAT is an enzyme synthesized within motor axons, 
and ChAT immunofluorescence is dominantly 
expressed in motor fascicles [25]. Our study showed 
that the area percentage of ChAT-labeled axons (red 
staining) in the facial nerve (7.9 ± 0.36%, Fig.  1a) was 
significantly higher than the sural nerve (6.3 ± 0.62%, 
Fig. 1b, P < 0.001). The mean gray value and axon count 
of ChAT was also significantly higher in the facial nerve 
(63.0 ± 0.76%, 20.47 ± 0.4%), compared to the sural 
nerve (49.2 ± 0.72%, 10.47 ± 0.4, P < 0.001) (Fig. 1c, d).

TrkA was reported to detect the function of extraoc-
ular motoneurons and spinal motor neurons after 
axotomy or in neurodegenerative diseases [26]. Our 
results showed that TrkA is mainly expressed on the 
cell membrane and strongly expressed in the facial 
nerve (Fig.  2a). The average immunofluorescence area 
was 21.6 ± 0.84%, significantly higher than that in sural 
nerve (7.6 ± 0.72%, P < 0.001) (Fig.  2b). The results 
were also confirmed with mean gray values of TrkA 
(47.6 ± 0.43% vs. 29.1 ± 0.85%, P < 0.001, Fig. 2c) in the 
facial nerve and sural nerve.

The expressions of sensory markers in motor and sensory 
fascicles
CGRP is mainly expressed in primary afferent neu-
rons and plays an important role in the repair of axonal 
injury [27]. From Fig.  3a we observed more positive 
expression of CGRP in the sural nerve than in the 
facial nerve. The area percentage was nearly 2 times 
higher when comparing the fluorescence staining in 
the sural nerve with the facial nerve (26.7 ± 2.68% vs. 
14.2 ± 2.85%, P < 0.001, Fig.  3b). The mean gray value 
also indicated higher CGRP expression in the sural 
nerve (54.3 ± 1.04%) than in facial nerve (37.7 ± 1.22%, 
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P < 0.001, Fig.  3c). The axon count was significantly 
higher in sural nerve compared with that of the facial 
nerve (21.53 ± 0.6 vs. 12.13 ± 0.4, P < 0.001, Fig. 3d).

TRPV1 is sensitized in the process of inflammation 
and injury and expressed in peptidergic and nonpepti-
dergic nociceptors [28, 29]. We found positive expres-
sion of TRPV1in both the sural and the facial nerve 
fibers (Fig.  4a). There was no significant difference in 
the average area percentage between the two groups 
(11.0 ± 1.05% vs. 8.8 ± 1.26%, P > 0.05, Fig.  4b). Both 
TRPV1 mean gray values (51.5 ± 0.83% and 71.9 ± 2.32%, 

P < 0.001, Fig.  4c) and axon count (11.27 ± 0.6 and 
18.73 ± 0.6 for the facial nerve and sural nerve, P < 0.001, 
Fig. 4d) were significantly higher in the sural nerve than 
in the facial nerve fibers.

NF-200 is an axon-specific intermediate filament found 
in peripheral nerves and is used as a marker for sensory 
myelinated fibers in previous studies [30, 31]. Our results 
showed NF-200 was positive in both sural and facial 
nerve fibers (Fig. 5a). The area percentage results showed 
that NF-200 had a significantly higher positive rate in 
sural nerve fibers (18.9 ± 1.08%) compared to facial nerve 

Fig. 1  ChAT immunofluorescence staining of the facial nerve and sural nerve. a representative image of staining with ChAT (red) and DAPI (blue). 
Scale bar is 25 μm. Quantification of b area percentage; c mean gray value; and d axon count of positive ChAT staining
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fibers. NF 200 was expressed in facial nerve fibers with 
the rate of 10.1 ± 0.90% (Fig. 5b). Furthermore, the mean 
gray value analysis showed the rate is 69.3 ± 0.46% in the 
sural nerve and 61.5 ± 0.62% in the facial nerve (Fig. 5c). 
Similarly, a higher stained axon count was observed in 
the sural nerve (30.20 ± 0.7) than that observed in the 
facial nerve (21.53 ± 0.5, P < 0.001) (Fig. 5d).

The optimal combination of target markers to differentiate 
motor and sensory fascicles
Based on the above results, we selected ChAT and CGRP 
as the optimal combination of target markers to distin-
guish motor and sensory nerve fibers and performed 
double immunofluorescence staining (Fig. 6a). The quan-
tified mean gray value based on the positive ChAT in 
facial nerve was 57.0 ± 1.48%, which was significantly 
higher than CGRP in facial nerve 52.4 ± 0.76% (P < 0.001) 
(Fig. 6b). Furthermore, the mean gray value of CGRP in 
the sural nerve (43.1 ± 0.77%) was significantly higher 
than that of ChAT in the sural nerve (58.6 ± 0.65%, 
P < 0.001) (Fig.  6c). There is a significant difference 
(P < 0.001) by the mean gray value comparison between 
ChAT and CGRP, which showed the ratio of 1.1 ± 0.03% 

and 0.7 ± 0.02% for the facial nerve and sural nerve, 
respectively (Fig. 6d).

Accurate cut-points of the mean gray values were deter-
mined using ROC curve methodology. A cut-point of 
50.5 for CHAT had 86.7% sensitivity and 100% specificity 
identifying motor nerve fascicles with an area under the 
ROC curve of 0.982 (P < 0.001) (Fig. 6e), and a cut-point 
of 54.5 for CGRP had 100% sensitivity and 80% specificity 
identifying sensory nerve fascicles with an area under the 
ROC curve of 0.940 (P < 0.001) (Fig. 6f ). The most accu-
rate cut-point occurred using CHAT/CRCP ratio, where 
a value of 0.855 had 100% sensitivity and 100% specificity 
to identify motor and sensory nerve with an area under 
the ROC curve of 1.000 (P < 0.001) (Fig.  6g). All results 
indicated that ChAT was highly expressed in motor facial 
nerve fibers, while CGRP is more dominant in sensory 
sural nerve fibers, and a combination of ChAT and CGRP 
is an optimal combination to distinguish motor and sen-
sory nerve fibers.

Discussion
Identification of motor and sensory fibers is important 
not only to develop new approaches to facilitate neu-
ral regeneration, but also crucial to develop the future 

Fig. 2  TRKA immunofluorescence staining of the facial nerve and sural nerve. a representative image of staining with TRKA (green) and DAPI (blue). 
Scale bar is 25 μm. Quantification of b area percentage and c mean gray value
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generation of nerve signal-controlled neuro-prosthetic 
limbs with close-loop sensory feedback. The use of neu-
roprostheses to fully replace amputated limbs or recover 
their function after injury is still challenging [32, 33]. 
To achieve a natural control of the limb movement, the 
selective function of motor and sensory nerves and their 
fascicles should be properly selected for the neuropro-
sthesis [34]. Such selectivity is an unsolved challenge. 
Nerve mapping in amputees or in peripheral nerve inju-
ries is not possible using intraoperative neuromonitoring 
techniques [35]. Thus, the surgeon must exclusively rely 
on the nerve topography for the implantation. Here our 
results showed the simple and useful immunofluores-
cent approach to distinguish motor and sensory nerves, 
by which micro-suture marked nerve stumps could be 
identified and prepared for interfacing at second stage. It 
is a simple tool to identify the motor and sensory nerves 
after trauma and provides useful information for the next 
step of the operation. Thus, it can be a complementary 

approach, which might help in the planning of the inter-
facing procedure and move the field one step closer to 
a comprehensive solution for the application of neuro-
prosthetic limbs in a clinical setting.

We selected five commonly used biomarkers that have 
been used for identification of either motor or sensory 
axons and evaluated immunofluorescent staining in 
side-by-side comparisons, controlling for time and other 
conditions. Our study shows that nerve fibers can be dis-
tinguished effectively by using ChAT for motor nerve 
fibers and CGRP for sensory nerve fibers, and ChAT 
and CGRP were the optimal combination of markers for 
motor and sensory fascicles, respectively. We used three 
methods, including the average area percentage, the 
mean gray value, and the axon count, to quantify the pos-
itive expression of nerve markers in the immunofluores-
cence images, and showed the mean gray value method 
is a more stable method. Since other, available solutions 
are scarce, this method will provide a convenient, fast, 

Fig. 3  CGRP immunofluorescence staining of the facial nerve and sural nerve. a representative image of staining with CGRP (green) and DAPI 
(blue). Scale bar is 25 μm. Quantification of b area percentage; c mean gray value; and d axon count of positive CGRP staining
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and reliable methodology to distinguish primarily motor 
fascicles from primarily sensory fascicles after peripheral 
nerve injury and will have a great translational value in 
the clinic. This technique enables a differentiated fascicle 
repair that will greatly improve the success rate of nerve 
repair and functional recovery after surgery. It will also 
be a very important addition for future neural prostheses, 
which makes neural motor signal control and sensory 
signal feedback technology feasible.

We have screened nearly all popular immunofluores-
cence markers in the literature and examined a panel 
of the five most effective ones including motor markers 
(ChAT and TRKA) and sensory markers (CGRP, TRPV1, 
and NF-200) in the sural nerve (primarily sensory nerve 
fibers) and the facial nerve (primarily motor nerve fib-
ers). Although these markers have been suggested to be 
preferably used in either motor or sensory axons, the 
side-by-side comparison has never been assessed before. 
Since there is no available tool to identify the fascicles 
correctly as motor or sensory, the sensitivity and specific-
ity of these markers in motor or sensory fascicles cannot 

be calculated. Thus, in our study we define it as efficacy 
of preferential staining, which refers to whether the anti-
body can show a positive result in the desired tissue, and 
how much the expression of the positive result is the anti-
body. In this respect, all the antibodies we selected were 
expressed to varying degrees on both nerve fibers, but 
not specifically enough. With the strong positive antibod-
ies that were expressed, the maximum positive area was 
about 30% when the average area percentage was used 
for data analysis. The axon count is up to 10–30% of the 
positively stained area in the whole selected microscopic 
fields, which is still high, as the space outside the axon 
contains a large amount of myelin sheath that cannot be 
shown in immunofluorescence without properly special-
ized antibodies. Using mean gray value, the positive rate 
reaches 60–80%, thus the mean gray value methodology 
has a higher efficacy of preferential staining and is a more 
stable method.

To select the best analysis methods to distinguish 
between the motor and sensory fibers of injured nerves, 
we evaluated the efficacy through different analysis 

Fig. 4  TRPV1 immunofluorescence staining of the facial nerve and sural nerve. a representative image of staining with TRPV1 (green) and DAPI 
(blue). Scale bar is 25 μm. Quantification of b area percentage; c mean gray value; and d axon count of positive TRPV1 staining
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methods including fluorescence area percentage, mean 
gray value, and axon count, which have never been sys-
temically assessed in peripheral nerves yet. When using 
the average area percentage, the image J software ran-
domly selects areas and calculates highly expressed 
axons, but ignores low grayscale and weakly expressed 
nerve fibers. The results show that the percentage 
obtained by the average area percentage is significantly 
lower than the mean gray value. Compared with the 
abovementioned methods, the axons with weak fluores-
cence can also be detected when the mean gray value 
is applied. Using axon counting is a generally accepted 
method, which can be popularly used in the slides of 
100× under an optical microscope. However, it should be 
noted that when using a 40× magnified image, an axon 
with a smaller diameter may not be found. That reduces 
the resolution of some axons, making the accuracy of all 
axon counting unstable [36]. In addition, the method is 
based on the number of circular axons, which ignores 

compressed or oblique sub-areas in the nerve tissue sec-
tions that can easily lead to inaccurate axon count [37]. 
Therefore, we recommend using the mean gray value to 
quantitatively detect the immunofluorescence results, 
because of its high efficacy of preferential staining and 
relative stability.

ChAT, as a primary motor fascicles marker, is widely 
reported to be highly expressed in human facial motor 
neurons and rat facial motor neurons [38, 39], with high 
concentrations in motor neurons in both the central 
nervous system (CNS) and peripheral nerve axons [40, 
41]. A key feature of motor neuron development and 
function is the expression of the acetylcholine biosyn-
thetic enzyme, ChAT [42, 43]. Yuan et al. used ChAT as 
an enzymatic marker in immunohistochemistry staining 
to detect motor axons and used NF200 to detect sensory 
axons and showed that the sciatic nerve contains both 
motor and sensory axons [44]. Castaneda and Wang et al. 
showed the same in their studies [45, 46]. However, these 

Fig. 5  NF-200 immunofluorescence staining of the facial nerve and sural nerve. a representative image of staining with NF-200 (green) and DAPI 
(blue). Scale bar is 25 μm. Quantification of b area percentage; c mean gray value; and d axon count of positive NF-200 staining
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studies only show that ChAT and NF200 can be expressed 
positively in motor nerve fibers and sensory nerve fibers, 
without quantitative elaboration on the accuracy and effi-
cacy of preferential staining of this method. The other 
marker, TrKA is mainly expressed on the cell membrane 
and strongly in the facial nerve in our study. Carrizosa 
et al. chose TrkA positive expression to detect the func-
tion of spinal motor neurons and extraocular motoneu-
rons [26]. In the CNS, within the striatal motor neurons 
and the septal/diagonal band complex, TrkA neurons 
(> 99 and > 95%, respectively) co-expressed ChAT [47]. 
Recently, Han et. al showed that TrkA was expressed in 
primary sensory fibers mainly concentrated in Dorsal 
root ganglion (DRG) [48]. TrkA’s expression in peripheral 

sensory nerve fascicles is unknown. Our study showed 
TrkA is not obviously expressed in the sural nerve. ChAT 
is a protease that is scattered in the cells and the differ-
ent branches of the facial nerve may have variable com-
positions. Therefore, although our results show that the 
average overall density is not very high, it is reasonable 
and sufficient to distinguish between two different types 
of nerve fibers by using this method. Thus, comparing all 
other markers evaluated, we recommend using ChAT to 
detect motor nerve fibers because they have the highest 
efficacy of preferential staining and accuracy.

NF-200 was used as a marker for sensory myeli-
nated fibers and the regeneration of sensory nerve 
axons [30]. However, NF-200, an intermediate filament 

Fig. 6  Double immunofluorescence staining results of ChAT and CGRP in facial and sural nerve. a representative image of staining with ChAT (red), 
CGRP (green), and DAPI (blue). Scale bar is 25 μm. Quantification of b area percentage; c mean gray value; and d axon count of positive ChAT/CGRP 
staining. Mean gray value cut-points of e CHAT to identify motor nerve fascicles and f CGRP to identify sensory nerve fascicles were determined 
using ROC curve methodology with sensitivity and specificity. g The most accurate cut-point occurred using CHAT/CRCP: a cutpoint of 0.855 
yielded 100% sensitivity and 100% specificity identifying motor and sensory nerve fascicles with an area under the ROC curve of 1.000 (P < 0.001)
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protein, is a cytoskeletal structure that can be found in 
any mature axon [49]. NF200 was not only expressed 
in the majority of myelinated DRG neurons and 
peripheral nerves [50], but also is used to identify large 
sensory neurofilaments [29, 51]. TRPV1 is widely dis-
tributed in nociceptors and receives external stimu-
lus signals [52]. It covers a large spectrum of pain 
qualities, from chemical to thermal, as a peripheral 
pain-modulating target [53]. This ion channel that is 
abundantly expressed in the peripheral sensory sys-
tem [53]. It is worth noting that the concentration of 
NGF in surrounding tissues might affect the activity 
of TRPV1 and up-regulate its expression [54]. TRPV1 
is a mechanosensitive receptor that is commonly 
found throughout sensory C fibers; when activated, 
it releases the neurotransmitter CGRP [55]. Typically 
used as a marker for peptidergic sensory nerves, CGRP 
plays a pivotal role in trigeminal system, pain and tem-
perature sensation [56]. Furthermore, it is expressed in 
other sensory neurons as a marker of neurons essen-
tial for heat responses in peripheral nerves [57, 58]. 
CGRP is preferably expressed on sensory nerve fibers, 
and its role is to maintain the release of neurotrophic 
factors, activation of protein kinases, opening of cat-
ion channels, and amplify pain signals [55]. CGRP may 
be expressed more during nerve regeneration after 
peripheral nerve injury, however it has not been stud-
ied due to lack of proper control. Our study showed 
for the first time that CGRP is more reliable to distin-
guish the sensory nerve fascicles from the motor nerve 
fascicles.

Although the activity of the ChAT enzyme is 
affected by different tissues and time points, it has 
been reported that the activity of ChAT is highest fol-
lowing axotomy and gradually declines over time [59]. 
We experimented with ChAT within 1 day after nerve 
harvest, in hopes of maximally retaining the enzymatic 
activity. Sensory neurons are considerably more “plas-
tic” with respect to specification than motor neurons 
[60]. Studies suggest that sensory neurons are intrinsi-
cally specified with respect to their peripheral targets 
[61] and subclasses of sensory neurons show different 
integrin expression [60]. Thus, we chose three differ-
ent sensory markers for comparison and selected the 
best one. While these markers may be expressed dif-
ferently in CNS or other organs, this study examines 
only its efficacy of preferential staining after periph-
eral nerve injury. Overall, this work offers a mean-
ingful view of the development of immunostaining 
which satisfies the criteria of rapidity, simplicity, cost-
effectiveness, high efficacy of preferential staining and 
reproducibility for the identification of nerve fascicles.

Conclusion
In this study, immunofluorescence staining was used to 
identify motor nerve fibers and sensory nerve fibers with 
five popular markers, and to evaluate their efficacy by dif-
ferent analysis methods. It is suggested that ChAT and 
CGRP are the optimal combination to differentiate the 
motor and sensory nerve fascicles by using the mean gray 
value method. This technique provides a more conveni-
ent and reliable method to enable a differentiated nerve 
fascicle repair that will greatly improve the functional 
recovery after nerve repair and promote neural regenera-
tion. It helps determine the effectiveness of nerve regen-
eration achieved by, for example, motor or sensory path 
specific growth factor guided regeneration and motor 
or sensory path specific rehabilitation using electrical 
stimulation. It will also benefit the development of future 
neural signal-controlled prosthesis with sensory signal 
feedback technology.
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