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Introduction
Globally, chronic kidney disease (CKD) represents an important
non-communicable disease with significant morbidity and
mortality. An estimated 10% of the world’s population had
CKD in 2015 with approximately 1.2 million deaths in 2017
(1,2), and the burden is expected to rise at the rate of 6% per
annum (3,4). By 2030, more than 70% of patients suffering from
end-stage kidney disease (ESKD) worldwide will be in low and
lower middle income countries of the world including African
countries (5). Significant disparities in the burden of CKD exist
worldwide, where economically disadvantaged communities,
notably those on the African continent and those of the African
diaspora, continue to bear a disproportionate burden of the
disease (2,6). This disparity is fueled by a convergence of genetic
and environmental risk factors (7,8). A recent meta-analysis
showed an overall prevalence of CKD of 15.8% in the general
population in Africa, with up to 4.6% of adults having moderate
to severe kidney dysfunction (9). In Africa, more than 80% of
the continental burden of CKD is in sub-Saharan Africa (SSA),
with the highest prevalence in West Africa (8). The burden of
CKD among African Americans, who share substantial genetic
ancestry with West Africans (10), is similarly high; African
Americans represent 13% of the USA population, but account
for 35% of the patients on dialysis (11).

Genetic Susceptibility
It has long been noted that African Americans have an increased
risk of progressive CKD and ESKD relative to their non-African
counterparts, even after accounting for health disparities
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(12–14). A familial risk of chronic renal failure, often with
different underlying etiologies, was noted in African American
families (12,15). CKD has been observed to have higher incidence
and faster progression rates in African Americans compared to
Americans of European descent, consequently the risk of devel-
oping ESKD is 4-fold higher in African Americans (13,14,16–18).
This is independent of socioeconomic status or the presence of
traditional clinical risk factors.

These observations prompted a search for genetic risk for the
development of CKD in people of African descent. Employing
an admixture mapping approach to exploit the mixed African-
European ancestry of African Americans, focal segmental
glomerulosclerosis (FSGS) and HIV-associate nephropathy
(collapsing nephropathy) was linked to a region on chromosome
(chr) 22 and replicated for non-diabetic ESKD (19). A second
group identified the same chr 22 association with non-diabetic
ESKD, but notably, not with diabetic ESKD (20). Subsequently,
Genovese and colleagues identified two alleles, termed G1 and
G2 in the APOL1 gene, encoding apoliprotein L1, which were
responsible for the chr 22 admixture signal (21). Carriage of any
combination of the two APOL1 risk alleles accounts for about
70% of excess risk of development, progression and severity of
CKD in the African American population (22).

APOL1 Gene and Protein
APOL1 functions as part of the innate immune system and is reg-
ulated by antiviral pathways; notably, it is potently upregulated
by interferons (23,24). Of the 6 members of the APOL gene family,
only APOL1 has acquired a secretory signal peptide permitting
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cellular export of the APOL1 protein into the blood stream (25).
Intracellular APOL1 protein lacking a signal peptide is retained
within the cell; it is this protein isoform that leads to kidney
injury (26,27). Circulating APOL1 is largely produced by the liver
and is a minor component of high-density lipid particles that
are incorporated into trypanosome lytic factor (TFL), which, after
ingestion by African trypanosomes, lyses the parasite (28,29).
Unlike most common variants that tend to have small effect
sizes, APOL1 G1 and G2 variants have large effect sizes, which
is not atypical for mutations that have undergone balancing
selection by lethal pathogens (i.e. sickle cell and malaria) (30).
Among African primates, only the baboon, gorilla and humans
retain a functional APOL1 gene and the gene is absent in all
other mammals (31). In addition, one human completely lacks
both copies of a functional APOL1 gene but shows no evidence
of kidney disease, indicating that APOL1 protein is not essential
for life or for kidney homeostasis (32).

APOL1 Protein and African Trypanosomiasis
Although APOL1 protein protects humans from infection by T.b.
brucei, humans are susceptible to infection and disease by T.b.
rhodensiense and T.b. gambiense, the pathogens causing acute
and chronic human African trypansomiasis (HAT), respectively,
affecting millions of Africans (33). T.b. rhodensiense and T.b. gambi-
ense have evolved different mechanisms to escape APOL1 lysis.
T.b. rhodesiense expresses a serum resistance associated (SRA)
protein that binds and inactivates APOL1 protein, while T.b. gam-
biense resist lysis by a hydrophobic β-sheet of the T.b. gambiense-
specific glycoprotein (TgsGP) (21,34–36). The APOL1 G2 variant,
located within the serum resistant associated (SRA) binding site,
restores partial ability of the APOL1 protein to lyse T.b. rhodesiense
through its low affinity for SRA, conferring a selective advantage
against acute trypanosomiasis (21,36,37). The G1 variant protein
does not prevent infection by T.b. gambiense or T.b. rhodensiense,
but the G1 allele is associated with asymptomatic T.b. gambiense
infection and undetectable parasitemia in individuals from West
Africa (38). The APOL1 G1 allele and, to a lesser extent the G2
allele, underwent a selective sweep in west Africa within the last
10 000 years and are prevalent in populations throughout sub-
Saharan Africa and the African diaspora (21,39,40). These find-
ings support the prevailing hypothesis that G1 and G2 variants
have been subject to balance selecting in West Africa, with het-
erozygous advantage against trypanosomiasis and homozygous
disadvantage in susceptibility to CKD.

Distribution Of APOL1 Variants
The APOL1 renal risk variants are found exclusively on African-
derived chromosomes and are not present on European or Asian
chromosomes (39,41). The G1 and G2 variants arose indepen-
dently in separate events on two different haplotypes of chro-
mosome 22 and have not undergone a recombination event;
hence, G1 and G2 are not observed on the same haplotype (21).
As shown in Figure 1, the highest prevalence of the APOL1 high-
risk variants was found in West African populations notably in
Ghana and Nigeria where a prevalence is as high as 40% among
the Yoruba and Igbo people of southwestern Nigeria (39,42). East
African populations appear to have lowest prevalence of the
high-risk alleles in Africa (21,39,43). It is important to note that
even within a country, the frequencies of the G1 and G2 variants
may vary considerably among ethnic groups (39).

APOL1 G1 and G2 risk variants are found throughout the
African diaspora in individuals with recent African ancestry (40).

During the 16th to 19th century, ∼ 12 million Africans from West
Africa were brought to enslavement in the Caribbean and the
Americas during the trans-Atlantic slave trade, driving gene flow
from Africans to Americans. As a result of this relocation, admix-
ture with European populations and Native Americans caused
a mixed genomic profile of the population now referred to as
African American (44). Approximately 50% of African Americans
carry at least one APOL1 risk allele and ∼ 13% of African Ameri-
cans carry two APOL1 risk alleles (45). In African Americans, the
frequency for G1 is 20–42% and 13–15% for G2 (46). The high G1
and G2 frequencies from African individuals from the Atlantic
coast of Africa are reflected in African Americans, in African
and Hispanic Caribbeans and in South Americans, particularly
in Brazil (47,48). Hispanics who migrated from the Caribbean
to New York also carry the G1 and G2 variants, but at lower
frequencies (41).

APOL1 Associations with CKD in the USA
and SSA
In spite of the high frequencies of APOL1 G1 and G2 risk variants
in the African population, there are limited data on APOL1-
associated diseases in Africans residing on the African conti-
nent. Hence, most current knowledge about the role of APOL1
genetic variants on diseases are extrapolations from studies on
Africans in the African diaspora, mainly African Americans in
the USA.

Although most individuals with APOL1 high-risk genotypes
do not develop disease, the lifetime risk of CKD for carriers is
estimated to be approximately 20%. APOL1 is associated with a
spectrum of progressive chronic kidney disease ranging in sever-
ity from arterionephrosclerosis to the most severe form of focal
segmental glomerulosclerosis (FSGS), collapsing glomerulopa-
thy, which is often fulminate, frequently irreversible and rapidly
progressive (Fig. 2) (49). The APOL1 renal risk variants are most
strongly associated with FSGS and HIV-associated nephropathy
(HIVAN) with odds ratios (OR) of 17 and 29, respectively (46).
Approximately 70% of African Americans with FSGS and HIVAN
carry high-risk genotypes in contrast to 13% in the general
US black population (46). Both conditions are characterized by
podocyte effacement and detachment, which suggests APOL1-
mediated injury to the kidney podocyte, a key component of
the tripartite renal filtration barrier (50–52). African American
patients with systemic lupus erythematosus (SLE) have a 5.4-fold
greater odds of developing a collapsing glomerulopathy (53,54).
In addition to untreated HIV infection, other viral infections,
including cytomegalovirus and BK polyoma virus infection in
recipients of kidney allografts from APOL1 high-risk donors, have
been associated with de novo collapsing glomerulopathy (55).
Treatment with therapeutic interferon-gamma has also been
associated with collapsing nephropathy in those with APOL1
high-risk genotypes, which remits upon cessation of the drug
(23). These findings suggest that ‘second hits’ that potently acti-
vate interferon pathways or high levels of exogenous interferon
trigger collapsing glomerulopathy, likely by upregulating APOL1
levels in the kidney to a critical threshold (23).

APOL1 risk alleles are strongly associated (OR ∼ 2–7) with end-
stage kidney disease attributed to hypertension (OR 2–7), but not
with diabetic ESKD (19–21,56,57). The predilection of African
Americans with hypertension-attributed CKD to progress to
ESKD likely results from APOL1-mediated arterionephrosclerosis
and global glomerulosclerosis (58,59). APOL1 high-risk genotypes
are associated with higher rates of progression to ESKD and
steeper decline in estimated glomerular filtration rate (eGFR)
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Figure 1. Distribution of human African trypansomiasis (T.b. gambiense and T.b. rhodesiense) and APOL1 G1 and G2 allele frequencies in Africa. The distribution of G1,

G2 and GO frequencies are represented by pie charts and overlap the distribution of T.b. gambiense (blue), T.b. rhodesiense (green) and both (red) as presented in Franco

et al. 2020 (97). Supplementary Material, Table S1 lists the haplotype frequencies and location of the sampled populations. For countries where T.b. gambiense and T.b.

rhodesiense cases have not been reported recently, the frequency of infections has been set to 0.5%. These include Benin, Mali, Nigeria and Togo for T.b. gambiense, and

Mozambique, Ethiopia and Kenya for T.b. rhodesiense (97).

in African Americans with established chronic kidney disease,
regardless of diabetes status (60). The finding of a more rapid rate
of progression in patients with CKD secondary to diabetes may
be due to undetected APOL1-associated arterionephrosclerosis
or FSGS in diabetic patients, since renal biopsies were not
performed (60). Renal biopsies of patients with APOL1 high-
risk genotypes and progressive or late-stage CKD may resolve
the role of APOL1 in patients with diabetic nephropathy. APOL1
variants are also associated with earlier onset of proteinuria
in both pediatric and adult sickle cell populations (61,62).
In African Americans with CKD attributed to hypertension,
those with APOL1 high-risk genotypes were 80% more likely
to develop proteinuria and once proteinuria is established,
it is the dominant risk factor for decline in eGFR regardless
of APOL1 risk status (63). Similarly, in young to middle-aged
adults with preserved kidney function, there is no significant
difference in eGFR decline by APOL1 risk status; however, APOL1
high-risk status is associated with earlier onset of proteinuria,
followed by a downward eGFR trajectory (64). It is important to

note that among both those with preserved kidney function
and in those with reduced kidney function, in the absence
of proteinuria, eGFR slopes are similar between carriers of
APOL1 high-risk and low-risk genotypes (64). These studies
support accumulating evidence that the first manifestation
of APOL1-mediated kidney injury is proteinuria resulting from
podocyte injury.

Surprisingly few case–control studies and no longitudinal
studies for APOL1 associations with kidney disease have been
reported in sub-Saharan Africa (see Table 1). A small study of
adults in the DRC comprising 83 controls and 79 cases with
hypertension-attributed CKD reported that 12.7% of cases car-
ried high-risk genotypes compared to only 2.4% of the con-
trols (OR 7.7) (65). A recent study of 412 healthy children from
the general population and 401 HIV-positive children living in
Kinshasa, Democratic Republic of Congo (DRC), reported that
children from the general population with APOL1 high-risk geno-
types had lower eGFR (91 vs 97 mL/min/1.73m2); however, chil-
dren with HIV had much higher prevalence of albuminuria and

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab024#supplementary-data


R132 Human Molecular Genetics, 2021, Vol. 30, No. 2

Figure 2. Shown are conditions and diseases and their point ORs and relative hazards (RHs) associated with APOL1 high-risk genotypes across the life course. Peak

years of onset are from adolescence to middle age, after which risk of CKD decreases (46). Risk of preeclampsia is determined predominately by carriage of APOL1

high-risk genotypes of the fetus, although maternal genotype may also contribute to risk (88–90).

levels of albuminuria were higher with incomplete suppression
of viral load (66). A large, cross-sectional study representing
multiple ethnic groups from the Atlantic coastal region of Nige-
ria reported that over 70% of participants carried APOL1 high-
risk genotypes; however, APOL1 high-risk genotypes were only
associated with CKD in the setting of HIV infection (OR 2.5)
(67). In the absence of HIV infection, there was no reported
association between CKD and APOL1 high-risk genotypes (67).
However, since this study only reported the associations for G1 or
G2 alleles and not carriage of 2 risk alleles in the compound het-
erozygous state, effect sizes are likely underestimated. Kasem-
beli et al. reported that among HIV-infected adults living in
South Africa, 79% of participants with biopsy confirmed HIVAN
carried high-risk APOL1 genotypes compared to only 3.3% of the
HIV-positive control group (OR 89) (68). In contrast, in African
Americans, the OR for biopsy-confirmed HIVAN is 29 (46). The
difference in effect sizes may represent differences in genetic
background, circulating HIV strains or viral burden or other envi-
ronmental influences. The striking association of APOL1 high-
risk genotype and kidney disease in children and adults with
HIV infection provides additional support that HIV infection is
a strong ‘second hit’ promoting podocyte injury and glomeru-
losclerosis. Further sufficiently powered case–control studies
for renal phenotypes and longitudinal cohort studies across
different ethnic groups, risk groups and geographical regions of
Africa are warranted to quantify APOL1 effect sizes and rates
of progression to clinical endpoints. Performing these studies in
multiple ethnic groups and geographical regions should identify
genetic and environmental factors that attenuate or exacerbate
APOL1 penetrance.

APOL1 and Kidney Transplantation
Studies have shown that donor APOL1 high-risk allele status
significantly affects kidney allograft survival in the recipient,
with shorter survival in kidneys from donors with two high-
risk alleles compared to those with one or no risk allele (27).
In contrast, the APOL1 risk status of the kidney recipient has
no influence on allograft survival (69). APOL1 high-risk status
may also have consequences for the kidney donor. Studies have
shown that living kidney donors with high-risk genotypes have
lower eGFR at donation and lower eGFR rebound following kid-
ney donation, experience more hypertension than APOL1 low-
risk kidney donors and may be at increased risk for ESKD post-
donation (70,71). The APOL1 long-term Kidney Transplant Out-
comes Network (APOLLO) study is designed to assess the effects
of APOL1 renal risk variants on outcomes for living donors and
for recipients of kidneys, following deceased and living kidney
transplantation (72,73).

APOL1 and Other Disease Associations
The association of APOL1 risk alleles with cardiovascular disease
(CVD) is conflicting; the earliest studies showed that the APOL1
high-risk genotype is associated with a range of CVD conditions
including incident myocardial infarction, stroke, heart failure,
cardiac revascularization and cardiovascular death (74,75). How-
ever, others have not observed statistically significant associa-
tions between APOL1 high-risk genotypes and increased risk of
CVD in cohort studies of African Americans or in a two-stage
meta-analysis of 23 305 individuals (76–78).
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Table 1. Case–control studies showing ORs for APOL1 high-risk genotypes associated with kidney disease in the Americas and sub-Saharan
Africa for kidney disease

Phenotype Country Setting No. of cases No. of controls OR Ref.

Non-diabetic ESKD USA Adults on dialysis 1002 923 7.3 (21)
ESKD Brazil Adults on dialysis 106 106 10.95 (48)
Stage 5 CKD SA Adults, mean eGFR 8 (4–12) 70 58 0.85a (98)
CKD DRC Adults, hypertensive CKD 79 83 7.7 (65)
CKD Nigeria Adults 44 43 4.8 (42)
FSGS USA Adults 192 176 10.5 (21)
FSGS USA Mostly adults 217 383 17 (46)
FSGS SA Adults 22 108 2.1a (68)
HIVAN USA Adults, HIV+ 54 237 29 (46)
HIVAN SA Adults, HIV+ 78 108 89 (68)
Albuminuria USA Young to middle-aged adults 2.9 2.9 (64)
Albuminuria DRC Pediatric population 2.1 40 412 (66)
Albuminuria DRC Pediatric population, HIV+ 22.0 72 329 (66)

aNot statistically significant. SA, South Africa; USA, United States of America; DRC, Democratic Republic of the Congo.

Preeclampsia is a common complication of pregnancy
characterized by systemic hypertension, albuminuria and
maternal endothelial dysfunction in pregnancy, which results
from placentation defects with imbalance in angiogenic factors
(79–81). The overall model-based incidence rate of preeclampsia
is 4.6%, with the highest incidence in African countries (5.6%)
(82). Preeclampsia accounts for 16% of maternal deaths; in sub-
Saharan African, prevalence rates as high as 26% have been
reported (83,84). Mothers of African descent in Africa and the
Africa diaspora have higher rates of pregnancies complicated
by preeclampsia (84). Globally, preeclampsia accounts for
900 000 infant deaths per year, with the largest burden being
in sub-Saharan Africa (83). A role for APOL1 in preeclampsia
is supported by several lines of evidence: 1) APOL1 mRNA and
protein is highly expressed in the placenta (85); 2) circulating
autoantibodies against APOL1 protein are present in the blood
of women experiencing preeclampsia (86); and 3) dams of
transgenic mice pups constitutively expressing reference or
variant APOL1 develop a preeclampsia-like phenotype with
smaller than expected litter sizes (87). Two recent studies found
that carriage of APOL1 risk variants by the fetus, but not the
mother, increases the odds of maternal preeclampsia by 50–90%
(88,89). The first study reported a recessive inheritance in two
independent cohorts of African American mother–baby pairs,
while the second study reported associations for additive and
recessive modes of inheritance (88,89). A third study from South
Africa that had DNA from mothers, but not babies, reported that
carriage of one APOL1 risk allele by the mother was associated
with increased risk of preeclampsia (90), whereas two previous
studies found no significant association with maternal carriage
of 1 or 2 risk alleles for preeclampsia. This finding is not in
conflict with the previous studies, since the mothers are obligate
carriers of at least one APOL1 risk allele for fetuses carrying
2 risk alleles (88,91). Given that preeclampsia is a significant
cause of infant and maternal mortality and may therefore affect
reproductive fitness, it is interesting to speculate that modifying
genes may attenuate APOL1 penetrance for preeclampsia in West
African populations with high prevalence of APOL1 risk alleles.

Summary
APOL1 renal risk alleles have profound influence on a spectrum
of kidney disease in individuals of recent African descent over
the life course. APOL1 risk variants require ‘second hits’ (e.g. viral

infection, auto-immune diseases, sickle cell anemia, glomerular
hyperfiltration) for renal disease to manifest; upregulation of
APOL1 by interferons is a potent second hit. However, beyond
exposure to therapeutic interferon and certain viral infections,
it is still unclear why most individuals with APOL1 high-risk
status never develop kidney disease. Africa comprises 1000s of
ethnolinguistic groups with extensive genetic diversity living on
a continent undergoing epidemiological transition. The study
of APOL1 associations in case–control studies and longitudinal
studies in SSA may shed new light on genetic and environmental
exposures that initiate CKD and/or modify CKD progression. In
addition, knowledge of APOL1 prevalence and disease associ-
ations may inform public health policies and resource alloca-
tion. Recent advances in understanding the pathophysiological
mechanisms of APOL1-associated CKD may lead to new thera-
peutic options (92,93). An APOL1 antisense drug targeting APOL1
has been shown to ameliorate proteinuria in animal models (94).
If particular drug therapies (e.g. blood pressure lowering drugs
that block the renin angiotensin aldosterone system) are proven
effective in clinical trials, knowledge of at-risk populations sus-
ceptible to APOL1-related kidney disease may justify screening
for APOL1 or for biomarkers of APOL1-mediated renal injury
(95). APOL1 risk variants provide fertile soil for the development
of severe glomerulopathies and progressive kidney disease and
warrant further study in sub-Saharan Africa and in the African
diaspora (96).
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Supplementary Material is available at HMG online.
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