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Low expression of CHRDL1 and SPARCL1 
predicts poor prognosis of lung 
adenocarcinoma based on comprehensive 
analysis and immunohistochemical validation
Huan Deng1,2,3,4†, Qingqing Hang2,3,4,5†, Dijian Shen2,3,4, Yibi Zhang6 and Ming Chen1,2,3,4*   

Abstract 

Purpose:  Exploring the molecular mechanisms of lung adenocarcinoma (LUAD) is beneficial for developing new 
therapeutic strategies and predicting prognosis. This study was performed to select core genes related to LUAD and 
to analyze their prognostic value.

Methods:  Microarray datasets from the GEO (GSE75037) and TCGA-LUAD datasets were analyzed to identify differen-
tially coexpressed genes in LUAD using weighted gene coexpression network analysis (WGCNA) and differential gene 
expression analysis. Functional enrichment analysis was conducted, and a protein–protein interaction (PPI) network 
was established. Subsequently, hub genes were identified using the CytoHubba plug-in. Overall survival (OS) analyses 
of hub genes were performed. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein 
Atlas (THPA) databases were used to validate our findings. Gene set enrichment analysis (GSEA) of survival-related hub 
genes were conducted. Immunohistochemistry (IHC) was carried out to validate our findings.

Results:  We identified 486 differentially coexpressed genes. Functional enrichment analysis suggested these genes 
were primarily enriched in the regulation of epithelial cell proliferation, collagen-containing extracellular matrix, trans-
forming growth factor beta binding, and signaling pathways regulating the pluripotency of stem cells. Ten hub genes 
were detected using the maximal clique centrality (MCC) algorithm, and four genes were closely associated with OS. 
The CPTAC and THPA databases revealed that CHRDL1 and SPARCL1 were downregulated at the mRNA and protein 
expression levels in LUAD, whereas SPP1 was upregulated. GSEA demonstrated that DNA-dependent DNA replica-
tion and catalytic activity acting on RNA were correlated with CHRDL1 and SPARCL1 expression, respectively. The IHC 
results suggested that CHRDL1 and SPARCL1 were significantly downregulated in LUAD.

Conclusions:  Our study revealed that survival-related hub genes closely correlated with the initiation and progres-
sion of LUAD. Furthermore, CHRDL1 and SPARCL1 are potential therapeutic and prognostic indicators of LUAD.

Keywords:  Lung adenocarcinoma, Weighted gene coexpression network analysis, Differential coexpression genes, 
Protein–protein interaction network, Survival analysis
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Introduction
As one of common cancers, lung carcinoma was esti-
mated to have caused disease in 235,760 patients 
and 131,880 deaths in 2021, resulting in a tremen-
dous burden to our society [1]. Patients with NSCLC 
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accounted for nearly 85% of all patients with lung 
cancer, and the most prevalent pathological pattern 
of NSCLC was lung adenocarcinoma (LUAD) [2]. In 
recent decades, many researchers have concentrated 
on studying the potential biological and molecular 
mechanisms of lung cancer, and the molecular mecha-
nisms are gradually being understood [3]. It was rec-
ognized that identifying key molecular abnormalities 
would promote the rapid development of precision 
medicine, and more effective strategies will be iden-
tified for the diagnosis, treatment and prognosis of 
LUAD in the near future [4]. Currently, it is essential 
for us to identify core genes associated with the car-
cinogenesis and development of LUAD.

With the rapid advancement of genomic tech-
nology, bioinformatics analyses have been widely 
used in the analysis of microarray datasets to fur-
ther study the potential molecular mechanisms of 
cancers and to identify tumor-specific indicators 
[5]. Weighed gene coexpression network analysis 
(WGCNA) is one of these significant algorithms that 
provides a better understanding of gene coexpres-
sion networks and gene functions [6]. WGCNA can 
detect modules of highly correlated genes among 
samples to relate modules to external sample traits, 
providing valuable insights into predicting possible 
functions of coexpressed genes [7]. Moreover, dif-
ferential gene expression analysis is usually used in 
transcriptomics datasets to study underlying biologi-
cal and molecular mechanisms and to identify quan-
titative differences in the expression level of the gene 
between different groups [8].

To improve the discriminating ability of highly 
related genes, the two methods mentioned above 
were applied in our study. First, mRNA expression 
datasets of LUAD were obtained from Gene Expres-
sion Omnibus (GEO) and The Cancer Genome Atlas 
database (TCGA). Second, WGCNA and differential 
gene expression analysis were used to identify com-
mon differential coexpression genes. Then, we carried 
out functional enrichment analysis, protein–protein 
interaction (PPI) analysis, and overall survival analy-
sis to identify potential biomarkers correlated with 
the occurrence and progression of LUAD. Next, the 
expression patterns of hub genes at the mRNA and 
protein levels were verified through GSE19188 from 
GEO, Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) and the Human Protein Atlas (HPA). 
Furthermore, we conducted gene set enrichment 
analyses (GSEA) of survival-related hub genes using 
the TCGA-LUAD dataset. Ultimately, we carried out 

immunohistochemistry (IHC) analysis of survival-
related hub genes for further validation.

Materials
Figure  1 reveals the detailed processes of data down-
load, hub gene identification and external validation. 
Every step is illustrated in the following subsection.

Datasets from GEO and TCGA​
The mRNA expression datasets of LUAD were acquired 
from the GEO and TCGA databases. First, one micro-
array dataset (GSE75037) was selected from GEO, 
and this dataset included 83 LUAD tissues and 83 
matched nonmalignant adjacent tissues from LUAD 
patients. GSE75037 was based on the GPL6884 Illu-
mina HumanWG-6 v3.0 expression beadchip. Based 
on the manufacturer-provided annotation file, probes 
would be transformed to corresponding gene symbol, 
probe sets without gene symbol would be removed, and 
duplicated probes for the same gene would be averaged. 
Consequently, a total of 25,428 genes were acquired for 
the next analysis. Second, the mRNA expression data 
and corresponding clinical information of LUAD were 
acquired from TCGA. 594 LUAD samples were down-
loaded, consisting of 535 LUAD and 59 normal lung tis-
sues, and RNAseq data about fragments per kilobase 
per million (FPKM) on 19,145 genes were obtained. 
Then, FPKM data were transformed to transcript per 
million (TPM) data for the next analysis. Based on the 
Illumina HiSeq 2000 platform, all the data were gen-
erated and annotated to a reference transcript set of 
Human hg38 gene standard tracks. The edgeR package 
tutorial showed that genes with low read counts were 
probably meaningless for the next analysis [9]. There-
fore, genes with TPM < 1 were removed from our study. 
As a result, 15,142 genes were obtained for the subse-
quent analysis.

Identification of core coexpression modules 
through WGCNA
We constructed gene coexpression networks of the 
GSE75037 and mRNA expression profiles of the 
TCGA-LUAD dataset through the WGCNA package. 
WGCNA was used to identify highly related genes 
and aggregate these genes into the same genetic mod-
ule related to external sample traits. To construct a 
scale-free network, soft powers β = 14 (Fig. 2b) and 6 
(Fig. 3b) were used for GSE75037 and mRNA expres-
sion profiles of TCGA-LUAD, respectively. Then, the 



Page 3 of 19Deng et al. Cancer Cell Int          (2021) 21:259 	

adjacency matrix was generated using the following 
formula: aij =|Sij|β (aij: adjacency matrix between 
gene i and gene j, Sij: similarity matrix, which is 
determined by Pearson correlation of all gene pairs, 
and β: softpower value); then, the matrix was con-
verted to a topological overlap matrix (TOM) and the 

corresponding dissimilarity (1-TOM). Subsequently, 
we established a hierarchical clustering dendrogram 
of the 1-TOM matrix to aggregate genes with simi-
lar expression into a coexpression module. The mod-
ule-trait relations between modules and clinical trait 
information were explored for further identification 

Fig. 1  Study design and workflow of our study
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of functional modules in the coexpression network. 
Thus, the module with the highest correlation coeffi-
cient was selected as the candidate module related to 
clinical traits, which was used for our next analysis.

Selection of differential coexpression genes
The limma and edgeR packages were applied to per-
form differential expression analysis of microarray 
and RNA-Sequencing datasets, respectively [9, 10]. To 
select differentially expressed genes (DEGs) between 
LUAD tissues and nonmalignant tissues, we respec-
tively used the limma and edgeR packages in the selec-
tion of DEGs from the GSE75037 and TCGA-LUAD 
datasets. To reduce the false discovery rate (FDR), 
the p-value was adjusted using the Benjamini–Hoch-
berg method. The selection criteria for DEGs were set 
as |logFC| > 1 and adj. P < 0.05. To better discriminate 
highly related genes, we determined the intersection of 
genes among two lists of DEGs and two lists of coex-
pressed genes from the two coexpression networks, 
which were applied to identify candidate prognostic 
indicators of LUAD.

Functional enrichment analysis
To analyze the biological functions of differentially 
coexpressed genes, GO and KEGG pathway analysis 
was conducted with the clusterProfiler [11] and GOp-
lot packages. GO and KEGG are essential bioinfor-
matics tools, which annotates gene and analyzes the 
biological process of genes [12]. P < 0.05 was consid-
ered statistically significant.

PPI network construction and hub gene selection
The PPI network of differentially coexpressed genes 
was established with the Search Tool for the Retrieval 
of Interacting Genes (STRING) [13]. Cytoscape 

Fig. 2  Identification of modules correlated with the clinical traits 
in GSE75037. a Sample dendrogram and trait heatmap. b Scale 
independence and Mean connectivity. c The Cluster dendrogram 
of co-expression network modules is ordered by a hierarchical 
clustering of genes based on the 1-TOM matrix. Different colors 
represent different modules. d Module-trait relationships. Each row 
represents a color module and every column represents a clinical trait 
(normal and tumor). Each cell contains the corresponding correlation 
and P-value

▸
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(version 3.7.2) was used to build a visual network of 
molecular interactions with a combined score > 0.6 
[14]. The Molecular Complex Detection (MCODE) 
plugin in Cytoscape was used to detect highly cor-
related modules in PPI network [15]. The most sig-
nificant gene module was visualized and graphically 
displayed using the MCODE plug-in. The criteria of 
selection were as follows: MCODE score > 5, node 
score cutoff = 0.2, degree cutoff = 2, k-score = 2, and 
max depth = 100. Additionally, the maximal clique 
centrality (MCC) algorithm was recognized to be the 
most useful approach to detect hub nodes from the 
PPI network [16]. We calculated the MCC score of 
every gene in the PPI network using the CytoHubba 
plug-in. Differentially co-expressed genes with the 
top ten highest MCC scores were believed to be hub 
genes. These hub genes were also visualized using the 
CytoHubba plug-in.

Prognostic roles and relationship with pathological stages 
of hub genes
To explore the prognostic values of hub genes in 
LUAD, Kaplan–Meier univariate survival analysis 
was conducted through the survival package. Only 
patients with complete follow-up information were 
included for overall survival (OS) analysis, and we 
classified these patients into two cohorts in accord-
ance with the median expression level of hub genes. 
Log-rank p < 0.05 was considered statistically sig-
nificant. Additionally, we explored the relationship 
between their expression patterns and pathological 
stages among LUAD.

Fig. 3  Identification of modules correlated with the clinical traits 
in TCGA-LUAD dataset. a Sample dendrogram and trait heatmap. 
b Scale independence and mean connectivity. c The Cluster 
dendrogram of co-expression network modules is ordered by a 
hierarchical clustering of genes based on the 1-TOM matrix. Different 
colors represent different modules. d Module-trait relationships. 
Each row represents a color module and every column represents a 
clinical trait (normal and tumor). Each cell contains the corresponding 
correlation and P-value

▸
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External validation of GEO, CPTAC and THPA databases
To improve the reliability of our analysis, the GEO, 
CPTAC and THPA databases were used to validate 
the expression patterns of survival-related hub genes 
between LUAD and nonmalignant samples. To sys-
tematically analyze the mRNA expression patterns 
of survival-related hub genes between LUAD and 
nonmalignant samples, meta-analyses were carried 
out using relevant data from GEO. The search strat-
egy and selection criteria for the included datasets 
in the GEO database are shown (Additional file  3: 
Table  S1). Additionally, their protein expression pat-
terns between LUAD and nonmalignant samples were 
explored using IHC outcomes from HPA [17] and 
quantitative comparison from CPTAC database [18].

GSEA of survival‑related hub genes
We divided these samples into two cohorts according 
to the median expression values of hub genes asso-
ciated with OS. The effect of the expression of hub 
genes on multiple gene sets was analyzed for related 
GO enrichment analysis using c5.all.v7.2.symbols.
gmt [gene ontology] [19]. The permutation of each 
analysis was set to 1000 times. |Normalized enrich-
ment score (NES)| > 1, NOM p-value < 0.05 and FDR 
q-value < 0.25 were considered significant differences.

Immunohistochemical verification
Twenty pairs of LUAD and normal tissues had been 
collected in Zhejiang Cancer Hospital (Zhejiang, 
China) from 2017 to 2021 (Additional file 4: Table S2). 
IHC was approved by the Medical Ethics Committee 
of Zhejiang Cancer Hospital (IRB-2020-817). These 
tissue samples were frozen in liquid nitrogen for next 
analysis. After epitope retrieval, hydrogen peroxide 
treatment and nonspecific antigen blocking, we incu-
bated the sections of these tissues via deparaffiniza-
tion and dehydration using anti-CHRDL1 (dilution: 
1:500, PA5-78591, Thermo, USA) and anti-SPARCL1 
antibodies (dilution: 1:1000, ab255597, Abcam, UK) 
overnight at 4 °C. Afterward, we incubated these sec-
tions using secondary antibodies (dilution: 1:200, 

ab150115, Abcam, UK). All sections were covered 
with Fluoroshield containing 4′,6-diamidino-2-phe-
nylindole (DAPI, Abcam) for 10  min to identify 
nuclei, and we detected the signal using the DAB 
staining kit (Vector Laboratories, USA). The inten-
sity was denoted as 0 (negative), 1+ (weakly positive), 
2+ (moderately positive), and 3+ (strongly positive). 
H-score values (range 0–300) were calculated accord-
ing to the following formula: [(% cells with an intensity 
of 1+) + 2 × (% cells with an intensity of 2+) + 3 × (% 
cells with an intensity of 3+)]. Two pathologists inde-
pendently estimated scores of all sections, and mean 
scores were calculated as H-score values. IHC was 
independently repeated in triplicate, and student’s 
t-test was applied for comparisons between LUAD 
and normal lung tissue groups.

Results
Identification of core coexpression modules 
through WGCNA
To detect the functional modules in LUAD, we estab-
lished two gene coexpression networks using the 
GSE75037 and TCGA-LUAD datasets through the 
WGCNA package in R software. We found eight mod-
ules (Fig. 2c) and 17 modules (Fig. 3c) in the GSE75037 
and TCGA-LUAD datasets, respectively (one color 
represents one module). Next, the heatmaps explored 
the relationship between modules and two clinical 
traits (normal and LUAD) in the GSE75037 (Fig.  2d) 
and TCGA-LUAD datasets (Fig.  3d), suggesting that 
the blue module in GSE75037 and the blue module 
TCGA-LUAD dataset were closely associated with 
normal tissues (blue module in GSE75037: r = 0.97, 
p = 9e−99; blue module in TCGA-LUAD dataset: 
r = 0.84, p = 1e−157).

The intersection of DEGs and coexpression genes
The heatmaps showed the expression patterns of 
50 upregulated and 50 downregulated genes in 
the GSE75037 (Fig.  4a) and TCGA-LUAD datasets 
(Fig. 4b). The volcano plots illustrated that 2861 DEGs 
in GSE75037 (Fig. 4c) and 3585 DEGs in TCGA-LUAD 
dataset (Fig.  4d) were significantly dysregulated. 

Fig. 4  Identification of differentially expressed genes (DEGs) among GSE75037 TCGA-LUAD dataset with the cut-off criteria of |logFC| > 1 and 
adj.P < 0.05. a Heatmap of 50 upregulated and 50 downregulated DEGs of GSE75037. b Heatmap of 50 upregulated and 50 downregulated DEGs of 
TCGA-LUAD dataset. c Volcano plot of DEGs in GSE75037. d Volcano plot of DEGs in TCGA-LUAD dataset. e The Venn diagram of genes among the 
two DEG lists and the two lists of co-expression genes. In total, 486 overlapping differential co-expression genes are found

(See figure on next page.)
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Fig. 5  Functional enrichment analysis of differential co-expression genes using the clusterProfiler package. a Gene ontology (GO) enrichment 
analysis of differential co-expression genes. b Kyoto encyclopedia of genes and genomes pathway (KEGG) of differential co-expression genes
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Fig. 6  Visualization of the protein–protein interaction (PPI) network, the most significant module and hub genes. a PPI network of differential 
co-expression genes. b The most significant module from PPI network. c Selection of hub genes from PPI network through maximal clique 
centrality (MCC) algorithm. The turquoise nodes represent the genes. Edges suggest the protein–protein relations. The red nodes represent genes 
with high MCC values, while the yellow nodes represent genes with low MCC values
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Figure 4e clearly demonstrates that the intersection of 
two lists of DEGs (Additional file  5: Table  S3; Addi-
tional file  6: Table  S4) and two lists of coexpressed 
genes (Additional file  7: Table  S5; Additional file  8: 
Table  S6) contained 486 genes, which were used for 
the subsequent analysis (Additional file 9: Table S7).

Functional enrichment analysis of differentially 
coexpressed genes
The outcomes of BP analysis of these genes showed 
that the regulation of epithelial cell proliferation and 
vasculogenesis were significantly enriched. CC analy-
sis revealed that collagen-containing extracellular 
matrix and microvilli were associated with 486 genes. 
According to the outcomes of the MF analysis, trans-
forming growth factor beta binding and DNA-bind-
ing transcription activator activity, RNA polymerase 
II-specific genes were primarily enriched (Fig.  5a). 
Furthermore, KEGG pathway results illustrated that 
signaling pathways regulating the pluripotency of 
stem cells, breast cancer and antifolate resistance 
were mainly enriched (Fig. 5b).

PPI network construction and hub genes selection
The PPI network of differentially coexpressed genes 
was displayed in Fig.  6a, which included 283 nodes 
and 632 edges. The most significant module was found 
using the MCODE plug-in, which contained 11 nodes 
and 55 edges (Fig.  6b). Then, hub genes were identi-
fied according to the rank of MCC values. The top 10 
genes (PENK, GAS6, IL6, SPP1, GPC3, CHRDL1, CP, 
CYR61, WFS1 and SPARCL1) were recognized as hub 
genes. These hub genes selected from the PPI network 
are clearly illustrated in Fig.  6c, and the shade of the 
color represents the magnitude of the MCC scores.

Prognostic roles of hub genes and relation 
with pathological stages
To explore the prognostic roles of the top 10 hub 
genes in LUAD, survival analysis was performed using 
the survival information of the TCGA-LUAD dataset. 
Lower expression of CHRDL1, SPARCL1 and PENK 
correlated with the poor prognosis among LUAD 
patients, while higher expression of SPP1 was cor-
related with poor prognosis (Fig. 7a). In addition, we 

also explored the relationship between the expression 
levels of hub genes and pathological stages (Fig. 7b–e).

External validation of public databases
To increase the reliability of our findings, three 
external databases were used in our study. First, 
nine datasets satisfying the selection criteria were 
included for the comparisons of mRNA patterns of 
OS-related genes (Table  1). Comprehensive meta-
analyses of the nine datasets indicated that CHRDL1 
(Fig. 8a), SPARCL1 (Fig. 8b) and PENK (Fig. 8d) were 
downregulated in LUAD tissues, whereas SPP1 was 
upregulated (Fig.  8c). Second, we still compared the 
protein expression levels of survival-related genes in 
the CPTAC (Fig.  8e–g) and HPA (Additional file  1: 
Figure S1; Additional file  2: Figure S2) databases. 
Table 2 shows the detailed results of the IHC analysis 
of these genes based on the HPA database. Although 
the expression level of PENK was missing in the 
CPTAC database, the protein expression patterns of 
CHRDL1, SPARCL1, and SPP1 were consistent with 
their mRNA expression patterns.  

GSEA of survival‑related hub genes
GSEA showed that DNA-dependent DNA replication, 
mitotic metaphase plate congression, and mitotic 
sister chromatid segregation were associated with 
CHRDL1 (Fig.  9a). In addition, GSEA suggested that 
catalytic activity acting on RNA, DNA packing and 
mesenchymal morphogenesis were correlated with 
SPARCL1 (Fig. 9b). Their detailed outcomes of GSEA 
are displayed in Table  3. Glucose catabolic process 
and antigen procession and presentation were cor-
related with SPP1 (Fig. 9c), while mitotic sister chro-
matid segregation and mitotic nuclear division were 
associated with CHRDL1 (Fig. 9d). And their detailed 
results of GSEA are demonstrated in Additional 
file 10: Table S8.

Immunohistochemical verification
To increase the reliability of our findings, we inves-
tigated the distribution and expression of CHRDL1 
and SPARCL1 proteins in five pairs of randomly 
selected tissues. Representative IHC images revealed 
that CHRDL1 and SPARCL1 proteins were primarily 

(See figure on next page.)
Fig. 7  Prognostic roles of 10 hub genes and relation with pathological stages in patients of TCGA-LUAD dataset. Survival analysis for a CHRDL1, 
SPARCL1, SPP1, PENK, CYR61, CP, GAS6, GPC3, IL6 and WFS1 in LUAD. The LUAD patients are divided into high expression cohort (red) and low 
expression cohort (blue) according to the median expression of hub genes. Log-rank P < 0.05 is believed a statistical difference. b The relations of b 
CHRDL1, c SPARCL1, d SPP1 and e PENK with pathological stages among patients from TCGA-LUAD dataset
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distributed in the cytoplasm, partially on the cell 
membrane (Fig. 10a, b). Furthermore, both were obvi-
ously downregulated in LUAD tissues (Fig.  10c, d), 
which were consistent with our previous results.

Discussion
As a prevalent cancer associated with high mortality, 
lung cancer has resulted in substantial socioeconomic 
burdens to lung cancer patients and countries. Progress 
in LUAD therapy has been made in recent years, but the 
diagnosis and prognosis of LUAD remain poor because 
of the lack of precise molecular biomarkers. Thus, bet-
ter indicators for the specific prognosis and progres-
sion of patients with LUAD are urgently required. In our 
analysis, a list of 486 differentially coexpressed genes was 
selected using the GSE75037 and TCGA-LUAD datasets 
through comprehensive bioinformatics analysis. These 
genes were significantly enriched in the regulation of epi-
thelial cell proliferation, collagen-containing extracellu-
lar matrix, transforming growth factor beta binding and 
signaling pathways regulating pluripotency of stem cells. 
According to the rank of MCC scores, the top ten genes 
were identified as hub genes related to LUAD. Then, we 
found that 4 hub genes (namely, CHRDL1, SPARCL1, 
PENK and SPP1) of the top 10 genes were closely corre-
lated with OS among patients with LUAD, and CHRDL1, 
SPARCL1 and PENK were positively correlated with the 
survival of LUAD, while SPP1 was negatively correlated 
with the prognosis. Based on external validation of the 

GEO, CPTAC, and THPA databases, we observed that 
the mRNA and protein expression levels of CHRDL1, 
SPARCL1 and PENK were lower in LUAD, while SPP1 
was upregulated. GSEA showed that DNA-dependent 
DNA replication and catalytic activity acting on RNA 
were associated with the expression of CHRDL1 and 
SPARCL1, respectively. Finally, the IHC outcomes vali-
dated the expression status of CHRDL1 and SPARCL1 in 
LUAD.

CHRDL1, namely, Chordin Like 1, is a specific antago-
nist of bone morphogenetic protein (BMP), and BMP 
signaling participates in many responses, including cell 
proliferation, migration and invasion in various cancers 
[20]. CHRDL1 was observed to be notably downregu-
lated in many cancers [21]. Pei et  al. observed that the 
CHRDL1 promoter was hypermethylated in gastric can-
cer, which may explain the downregulation of CHRDL1 in 
gastric cancer. Additionally, low expression of CHRDL1 
was associated with worse survival among 100 patients 
with gastric cancer. In addition, these authors reported 
that the knockdown of CHRDL1 induced cell prolif-
eration and metastasis via the activation of Akt and Erk, 
suggesting that CHRDL1 plays a tumor suppressor role 
in gastric cancer [22]. Wang et al. suggested that miRNA 
hsa‐mir‐204 contributed to cell proliferation, migration 
and invasion through the downregulation of CHRDL1 
in gastric cancer [23]. Moreover, CHRDL1 could inhibit 
cell migration and invasion by suppressing BMP signal-
ing in breast cancer [24]. CHRDL1 was found to be less 

Table 1  Characteristics of the included datasets from GEO

GEO Gene Expression Omnibus, LUAD lung adenocarcinoma

GEO datasets Publication year Country RNA-Seq platforms Normal LUAD Sum

GSE10072 2008 USA GPL96 49 58 107

GSE116959 2019 France GPL17077 11 57 68

GSE19188 2010 Netherlands GPL570 65 45 110

GSE30219 2013 France GPL570 14 85 99

GSE31210 2011 Japan GPL570 20 226 246

GSE32863 2012 USA GPL6884 58 58 116

GSE33532 2014 Germany GPL570 20 40 60

GSE40791 2013 USA GPL570 100 94 194

GSE75037 2016 USA GPL6884 83 83 166

Fig. 8  External validation of the expression patterns of survival-related hub genes based on GSE19188 and Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) database. The mRNA (a) and protein (b) expression patterns of CHRDL1 are compared between LUAD and normal lung tissues. 
The mRNA (c) and protein (d) expression patterns of SPARCL1 are compared between LUAD and normal lung tissues. The mRNA (e) and protein (f) 
expression patterns of SPP1 are compared between LUAD and normal lung tissues. The mRNA (e) expression pattern of PENK is compared between 
LUAD and normal lung tissues

(See figure on next page.)
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expressed in thyroid cancer using the IHC method, and 
CHRDL1 was closely correlated with disease-free sur-
vival (DFS) of patients with thyroid cancer [25]. How-
ever, the role of CHRDL1 in LUAD has not been reported 
before our study, so additional studies exploring the role 
of CHRDL1 in LUAD are needed to further confirm our 
findings.

The secreted protein acidic rich in cysteine-like 1 
(SPARCL1) is a matricellular protein that belongs to the 
SPARC-related protein family. SPARCL1 inhibited the 

progression of tumor cells from the G1 phase to the S 
phase and participated in the negative regulation of cell 
proliferation [26]. Many studies have revealed the down-
regulated status and role of SPARCL1 in various cancers 
[27]. For example, SPARCL1 inhibited cell proliferation 
and invasion by inhibiting the mitogen-activated pro-
tein kinase kinase (MEK) and extracellular signal-related 
kinase (ERK) pathways in ovarian cancer [28]. Moreo-
ver, miR-539-3p was found to promote cell invasion by 
targeting SPARCL1 in epithelial ovarian cancer [29]. 

Fig. 9  Enrichment plots by gene set enrichment analysis (GSEA). Relative pathways associated with the expression of CHRDL1 (a), SPARCL1 (b), 
SPP1 (c), and PENK (d) are illustrated
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SPARCL1 was downregulated in gastrointestinal stromal 
tumors, which contributed to cell migration and inva-
sion, and SPARCL1 can predict the prognosis of gastroin-
testinal stromal tumors (P = 0.008) [30]. Similarly, higher 
expression of SPARCL1 was correlated with better cell 
differentiation and less distant metastasis in colorectal 
cancers than those with lower expression of SPARCL1, 
and SPARCL1 was positively correlated with the prog-
nosis of colorectal cancers (P < 0.01) [31]. Wang et  al. 
observed that SPARCL1 was a DNA methylation-reg-
ulated gene, and this gene was downregulated in LUAD 
[32]. Considering these reports and our findings, we can 
conclude that SPARCL1 and CHRDL1 play therapeutic 
and prognostic roles in the carcinogenesis and metastasis 
of LUAD.

Admittedly, several limitations existed in this analy-
sis. (1) Integrated bioinformatics analysis was per-
formed in our study to identify candidate prognostic 
genes in LUAD, but it might not be highly accurate for 
patients with each LUAD subtype. (2) Although the 

GSE75037 and TCGA-LUAD datasets had many LUAD 
samples, only the two datasets were included in our 
analysis. (3) We did not validate our findings by con-
ducting further experiments in addition to IHC, and 
more relevant basic experiments are required for fur-
ther validation.

Conclusion
In general, this analysis was performed to find hub 
genes that might be correlated with the initiation 
and progression of LUAD using differential gene 
expression analysis and WGCNA. Ten hub genes 
were identified according to the rank of MCC val-
ues, and four genes were significantly associated 
with OS. Furthermore, CHRDL1 and SPARCL1 were 
candidate therapeutic and prognostic biomarkers of 
LUAD.

Table 3  Relative pathways associated with the expression of CHRDL1 and SPARCL1 using GSEA

GSEA gene set enrichment analysis, NES normalized enrichment score, NOM nominal, FDR false discovery rate

Gene Name ES NES NOM
p-value

FDR
q-value

CHRDL1 GO_REGULATION_OF_DOUBLE_STRAND_BREAK_REPAIR − 0.55 − 1.93 < 0.0001 0.109

GO_CELL_CYCLE_CHECKPOINT − 0.51 − 1.93 0.006 0.107

GO_DNA_UNWINDING_INVOLVED_IN_DNA_REPLICATION − 0.81 − 1.93 < 0.0001 0.106

GO_EXONUCLEASE_ACTIVITY − 0.53 − 1.92 0.002 0.116

GO_RNA_SPLICING_VIA_TRANSESTERIFICATION_REACTIONS − 0.53 − 1.92 0.006 0.114

GO_TELOMERE_ORGANIZATION − 0.54 − 1.91 0.002 0.114

GO_ATTACHMENT_OF_SPINDLE_MICROTUBULES_TO_KINETOCHORE − 0.71 − 1.91 < 0.0001 0.114

GO_MITOCHONDRIAL_MEMBRANE_ORGANIZATION − 0.56 − 1.91 0.002 0.113

GO_MRNA_CLEAVAGE_AND_POLYADENYLATION_SPECIFICITY_FACTOR_COMPLEX − 0.73 − 1.91 0.002 0.112

GO_DNA_BIOSYNTHETIC_PROCESS − 0.47 − 1.91 0.002 0.112

SPARCL1 GO_ENDONUCLEASE_COMPLEX − 0.68 − 2.17 < 0.0001 0.047

GO_BASE_EXCISION_REPAIR − 0.67 − 2.11 0.002 0.048

GO_SPLICEOSOMAL_COMPLEX − 0.6 − 2.1 < 0.0001 0.031

GO_NCRNA_METABOLIC_PROCESS − 0.59 − 2.1 < 0.0001 0.048

GO_MITOTIC_SPINDLE_ORGANIZATION − 0.61 − 2.09 < 0.0001 0.048

GO_GLOMERULUS_DEVELOPMENT 0.69 2.27 < 0.0001 0.046

HP_HEMOPTYSIS 0.69 2.17 < 0.0001 0.033

GO_EXTERNAL_SIDE_OF_PLASMA_MEMBRANE 0.58 2.16 < 0.0001 0.048

GO_ENDOCARDIAL_CUSHION_DEVELOPMENT 0.68 2.16 < 0.0001 0.047

GO_POSITIVE_REGULATION_OF_PHOSPHATIDYLINOSITOL_3_KINASE_SIGNALING 0.6 2.16 < 0.0001 0.047
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Fig. 10  The distribution and expression of CHRDL1 and SPARCL1 proteins in twenty pairs of LUAD and normal tissues. Representative pictures of 
immunohistochemistry of CHRDL1 and SPARCL1 proteins are shown (a, b). The score of immunohistochemistry of CHRDL1 and SPARCL1 proteins 
are displayed (c, d). ***P = 0.001; ****P < 0.001
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