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Abstract

Industrial Internet of Things (IIoT) ensures reliable and efficient data exchanges among the 

industrial processes using Artificial Intelligence (AI) within the cyber-physical systems. In the 

IIoT ecosystem, devices of industrial applications communicate with each other with little human 

intervention. They need to act intelligently to safeguard the data confidentiality and devices’ 

authenticity. The ability to gather, process, and store real-time data depends on the quality of data, 

network connectivity, and processing capabilities of these devices. Pervasive Edge Computing 

(PEC) is gaining popularity nowadays due to the resource limitations imposed on the sensor-

embedded IIoT devices. PEC processes the gathered data at the network edge to reduce the 

response time for these devices. However, PEC faces numerous research challenges in terms of 

secured communication, network connectivity, and resource utilization of the edge servers. To 

address these challenges, we propose a secured and intelligent communication scheme for PEC in 

an IIoT-enabled infrastructure. In the proposed scheme, forged identities of adversaries, i.e., Sybil 

devices, are detected by IIoT devices and shared with edge servers to prevent upstream 

transmission of their malicious data. Upon Sybil attack detection, each edge server executes a 

parallel Artificial Bee Colony (pABC) algorithm to perform optimal network configuration of IIoT 

devices. Each edge server performs the job migration to their neighboring servers for load 

balancing and better network performance, based on their processing and storage capabilities. The 

experimental results justify the efficiency of our proposed scheme in terms of Sybil attack 
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detection, the convergence curves of our pABC algorithm, delay, throughput, and control overhead 

of data communication using PEC for IIoT.
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1 Introduction

The Industrial Internet of Things (IIoT) is a new paradigm in Information and 

Communication Technologies (ICTs) that enables the interconnection of existing industrial 

devices with additional intelligence. These devices sense, process, and communicate data 

with each other via the Internet [1]. For efficient data processing in IIoT, Pervasive Edge 

Computing (PEC) has attained significant attention in recent years. Rather than forwarding 

the data to the cloud for processing, it is processed at the network edge for quick responses 

to the IIoT devices [2]. PEC reduces the amount of required bandwidth and improves the 

computation, communication and storage capabilities of these resource-constrained devices 

[3].

In PEC, the edge servers process the data using Artificial Intelligence (AI) techniques for 

making certain decisions, e.g. load optimization, channel assignment, etc [4]. The AI-based 

techniques such as machine learning, deep learning, genetic algorithms, and evolutionary 

algorithms can learn from the environment by gathering the data, analyzing it, and taking 

intelligent decisions based on it. For efficient analysis and quicker decisions, IIoT-enabled 

PEC gains popularity in the use of these algorithms. The Artificial Bee Colony (ABC) [5] is 

an evolutionary algorithm that aims to embed intelligence and strong inference capabilities 

in intelligent systems. The variants of this algorithm are used in numerous industrial 

applications for designing complex systems. For example, in [6], the authors proposed an 

improved ABC algorithm and evaluated it using different benchmark functions, mainly 

focused on industrial applications, e.g., infinite impulse response design and industrial 

image segmentation testing. Authors in [7] proposed a discrete ABC algorithm for 

disassembling the sequences to recycle and re-manufacture the industrial products using 

PEC. In [8], an ensemble ABC (En-ABC) was proposed for anomaly detection in an edge-

enabled IIoT environment using different datasets. In [9], the ABC algorithm was modified 

to achieve a QoS-aware secured scheduling in a cloud-based environment for IIoT 

applications. The use of ABC algorithm in an IIoT-enabled PEC has the potential to make 

human lives comfortable, however, at the same time, it faces threats in the context of data 

confidentiality and users privacy [10].

In recent years, the main focus of research for IIoT-enabled PEC has been the design of 

smart systems [11]. These systems are studied in the context of machine-to-machine 

communication [12], smart automation [13], intrusion detection [14], and bandwidth 

utilization [1]. However, limited attention has been given to privacy-preservation and 

secured communication systems for industrial applications. The low-powered IIoT devices 

are prone to various adversarial threats that misuse the limited resources of the devices and 
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cause the Quality of Service (QoS) degradation. Among these threats, Sybil attack is a 

prominent one, in which an intruder either fabricate or steal the identities of legitimate 

devices to infiltrate the network [15]. These forged and stolen identities of the intruder have 

the ability to disrupt the operations of entire network. In [3], the authors proposed a Sybil 

attack detection scheme using a channel-based machine learning approach for IIoT-enabled 

PEC. In [16], the authors proposed a secured edge-enabled framework for industrial 

applications. A lightweight encryption algorithm is executed at low-powered IIoT devices to 

detect forged identities of Sybil devices, whereas, the resource-intensive operations are 

performed at the edge servers. In [17], a Blockchain-enable edge framework was proposed 

to secure industrial applications from Sybil attack to guarantee service availability in an IIoT 

network.

In this paper, we aim to integrate security, AI, and edge computing to enhance the 

performance of IIoT-enabled PEC. The proposed scheme uses a three layer architecture. The 

bottom layer is IIoT architecture layer that is composed of low-powered IIoT devices for 

data collection and Sybil attack detection. The middle layer comprises edge servers for load 

optimization and job migration using our proposed parallel ABC (pABC) algorithm. Finally, 

the top layer is the core layer that includes the industrial cloud for data accumulation and 

storage. The main contributions of this paper are as follow.

• There does not exist any scheme for a secured and intelligent IIoT-enabled PEC 

in the existing literature. This scheme is unique because it secures the IIoT 

architecture layer, and performs optimal configuration at the edge layer using 

pABC. This results in efficient resource utilization by improving the 

performance of IIoT-enabled PEC.

• To protect the low-powered IIoT devices from Sybil attack, we propose a 

lightweight Sybil attack detection protocol. The Sybil devices are detected by 

IIoT devices and the results are shared with neighboring devices and also 

reported to the edge servers. This ensures the blockage of upstream transmission 

of fabricated data towards the industrial cloud.

• For efficient utilization of the network resources, the pABC algorithm is used to 

optimize the core layer using PEC. Upon Sybil attack detection, the pABC 

algorithm is executed in parallel at each edge server to perform their optimal 

configuration with the IIoT devices. The heavy loaded servers mutually migrate 

jobs to the neighboring servers that result in efficient resource utilization and 

network performance.

• Finally, we perform extensive simulations in terms of accuracy, sensitivity, 

specificity of Sybil device detection, and convergence curves of pABC algorithm 

to prove the efficiency of the proposed scheme. Moreover, we evaluated delay, 

throughput, and control overhead of the data communication within the network.

The rest of the paper is organized as follows. The system model is discussed in Section 2. In 

Section 3, the proposed scheme is illustrated followed by results and discussion in Section 4. 

Section 5 concludes the paper with future research directions.
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2 System Model

In this section, we discuss the system model of our proposed IIoT-enabled PEC scheme. The 

system model is composed of three layers, the IIoT architecture layer, the edge layer, and the 

core network layer, as shown in Fig. 1. The bottom layer is composed of low-powered 

systems and sensor-embedded industrial devices. These devices need to be utilized 

efficiently with authentic data exchanges and interoperable connectivity to the rest of 

network entities. The middle layer consists of edge servers (Es) that performs different 

functions, e.g. data exchanges, storage, and computation. The top layer has two sub layers, 

i.e., core networks, and the cloud services. The core networks sub-layer is similar to a 

conventional network with an exception of traffic profile. It is responsible to perform 

routing, data exchanges, and management of network information among different sub-

networks. The cloud service is responsible for hosting various applications that provide 

different services.

In the system model, the IIoT architecture layer has no security mechanism to protect the 

low-powered IIoT devices from malicious threats such as DoS and Sybil attacks. The low-

powered IIoT devices need to be secured, and an optimal configuration of these devices with 

Ess need to be maintained for efficient resource utilization and network performance. To 

protect the IIoT devices, we proposed a Sybil attack detection scheme to prevent the 

malicious entities from the transmission of compromised data. For efficient utilization of the 

network resources at the edge layer, we propose a pABC algorithm. In Section 3, we discuss 

them in detail.

3 The Proposed Scheme

In this section, we design a Sybil attack detection protocol to securely utilize the resources 

of low-powered, sensor-embedded industrial devices. PEC is used to process and securely 

forward the data to the industrial cloud from these devices. Upon network initialization, our 

pABC algorithm runs in parallel at each Es. This algorithm performs optimal configuration 

of IIoT devices and Es that results in faster delivery of information to the industrial cloud. 

The quick delivery of information is not only due to optimal configuration but also due to 

Sybil attack detection, which prevents the flow of compromised data in the network. Besides 

optimal configuration, each Es performs job migration when the gathered data exceed its 

storage and processing capability. This improves the efficient utilization of the network 

resources, resulting in higher throughput and minimum delay during data transmission.

3.1 Sybil Attack Detection and Prevention Model

Our proposed Sybil attack detection protocol uses signalprints, which is a vector of RSSI 

values received from multiple sources. Transmissions from the same location share the same 

channel response, i.e., the same RSSI, while it varies for transmissions coming from 

different locations. Like all other IIoT devices, the transmission from a Sybil device devices 

is omnidirectional. Neighboring IIoT devices, e.g. devicei and devicej receive the 

transmission from devices and they coordinate and evaluate the signal strength of this 
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transmission. When the devicei and devicej receive a control signal from devices with illicit 

identity h, then the received power Rdevicei
ℎ  can be computed using Eq. (1).

Rdevicei
ℎ = Tx ⋅ c

ddevicei
ρ (1)

Here, Tx is the transmitted power, c is a constant, ddevicei
ρ  is the Euclidean distance between 

sender and receiver, and ρ is the path-loss exponent and is equal to 4πddevicei/λ [18]. In ρ, λ 

represents the wavelength of a radio signal. Similar to devicei, the neighboring devicej also 

computes its received RSSI Rdevicej
ℎ .

The main motive of this protocol is to detect Sybil devices using their untrusted and false 

RSSI values. These RSSI values mostly have limited transmission power Tx, which is 

related to received power Rx, as shown in Eq. (2).

Tx = Rx

1/ddevicei
ρ (2)

The location of devices with respect to devicei can be computed using Euclidean distance 

given in Eq. 3.

ddevicei = xdevicei − xdevices
2 − ydevicei − ydevices

2
(3)

Next, devicei computes and appends Rdevicei
ℎ  to its own control packet and transmits it to 

devicej. As discussed earlier, devicej has calculated Rdevicej
ℎ  after receiving a similar control 

packet from devices at time t1. Putting the values of Eq. (2), (3), and ρ in Eq. (1), we can 

write

Rdevicej
ℎ

Rdevicei
ℎ = Rx ⋅ c

ddevicej
ρ / Rx ⋅ c

ddevicei
ρ . (4)

Further solving Eq. 4 results in

Rdevicej
ℎ

Rdevicei
ℎ =

ddevicei
ddevicej

ρ
, wheret = t1 . (5)

At time t0+t1, devices again broadcasts control packets with a different identity ℏ. The two 

IIoT devices repeat the aforementioned operations and compute the RSSI ratio using Eq. 6.
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Rdevicej
ħ

Rdevicei
ħ =

ddevicei
ddevicej

ρ
, whent = t0 + t1 . (6)

At this point, devicej compares the RSSI ratio of Eqs. (5) and (6), and declares if the control 

packet received is from devices or not? A control packet belongs to devices iff Eq. (7) holds.

Rdevicej
ℎ

Rdevicei
ℎ −

Rdevicej
ħ

Rdevicei
ħ ≈ 0. (7)

An IIoT device that does not trust other IIoT devices and believes in their RSSI values 

(genuineness) is known as the initiator. The initiator can label other IIoT devices as Sybil or 

genuine IIoT devices. The initiator becomes an observer after sharing its knowledge with 

neighboring devices. In this way, any device is classified as Sybil if the observer and initiator 

have computed the same RSSI value for that device. In other words, a Sybil device devices 

has presented two illicit identities, h and ℏ to its neighboring IIoT devices. The RSSI values 

calculated by neighboring devices are equal at different time periods that reflect the 

incoming transmission from the same location.

At the IIoT architecture layer , all the devices perform a similar operation to detect Sybil 

devices and their illicit multiple identities. Once the Sybil devices are detected, the IIoT 

devices share their forged or fabricated identities with their connected edge servers Es to 

prevent upstream transmission of malicious data towards the core network using PEC. Once 

the Sybil devices and their forged identities are prevented from network participation, the 

IIoT devices transmit their own data upstream towards the Es. The proposed pABC 

algorithm is executed in parallel at each Es for optimal configuration of IIoT devices to each 

Es. In the next section, we discuss ABC and pABC algorithms in the context of our proposed 

scheme.

3.2 Artificial Bee Colony Algorithm

The ABC algorithm is a probabilistic searching evolutionary algorithm used to solve 

optimization problems. It has three basic components, food sources, employed foragers, and 

unemployed foragers [5]. The food sources refer to solutions in the optimization problems 

that depend on proximity, richness, and ease of extraction, i.e., the objective function. The 

quality of food is considered as a fitness value. The employed foragers are responsible for 

collecting honey, which refers to finding an optimal solution for solving the optimization 

problems. The unemployed foragers are categorized into onlookers and scouts bees. The 

onlooker bees observe the employed bees on the dancing area to know about a food source 

(solution set), whereas the scout bees perform random search about a food source.

The ABC algorithm has numerous advantages over other intelligent evolutionary algorithms. 

For example, it has better exploration ability as the scout bees always generate new solutions 

that are different than the previous ones. In this way, a diverse set of solutions is produced 

that can prevent the premature convergence issue in the network. The ABC algorithm is 
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extremely simple as it uses only two control parameters. It is also efficient in local search as 

compared to GA, ACO, and PSO, due to its simplicity. However, its search time is longer 

and new solutions are generated based on the old solutions, which reduce the local 

optimization accuracy and convergence time. The process of collecting honey and 

optimization problems are given in Table 1. In the following sections, we describe the 

mapping of ABC algorithm to our proposed system model, the phases of this algorithm, and 

our proposed pABC algorithm that runs in parallel at Es.

3.2.1 Mapping—The applications of ABC algorithm need the design of chromosomes, 

which is a set of parameters required to solve a particular problem. In other words, the 

chromosomes is a possible arrangement to find an optimal solution. In our proposed scheme, 

we have represented chromosomes with scalar values. In this section, we map the decision 

variables of our objective function to solve the target problem. The decision variables, i.e., 

chromosomes, below are used to find an optimal solution.

• Sc: Storage capacity of the edge server

• Pc: Processing capability of the edge server

• Lc: Location of the edge server

Like other evolutionary algorithms, in our scheme, a population is a large set of individuals, 

where each individual is represented by Es. The Es uses chromosomes for reaching to an 

optimal solution.

3.2.2 Population Initialization—Before initializing the population of ABC algorithm, 

we need to define the swarm size S, the number of cycles T, and the limit variable. We 

determine the food sources Fs, the number of employed bees Eb, the onlooker bees Ob using 

S, i.e., Fs = Eb = Ob = S
2 . Next, we initialize random solutions for the population within the 

boundaries of our objective function, as shown in Eq. (8).

xi
j = xlb

j + rand(0, 1) xub
j − xlb

j
(8)

Here, xlb
j is the lower bound and xub

j  is the upper bound of xi in the jth direction. Now, the 

fitness values of each solution can be computed using Eq. (9).

fit =
1

1 + obj() , if obj() ≥ 0

1 + abs(obj()), if obj() < 0
(9)

In this equation, obj() is the objective function as defined in Eq. (10).

obj() = ∑
i = 1

n
xi (10)

Here, xi is the decision variable. We also generate the initial trial vector that is used during 

the scout phase.
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3.2.3 Employed Bee Phase—In the population initialization, a set of random solutions 

is generated using Eq. 8. From the generated solution set, choose the first solution (candidate 

solution) and a partner solution from the remaining solution set. Select a decision variable in 

the first chosen solution to generate a new solution using Eq. (11)

xnew
j = xmin

j + ϕi
j xmin

j − xpj (11)

where, xnew
j is the new generated decision variable, xj is the old decision variable, ϕ is a 

function that generates the random numbers ∈ [−1,1], and xpj is the corresponding decision 

variable in the partner solution. The employed bees check the bounds of xnew
j , evaluates the 

fitness using Eq. (9), and updates the solution using a greedy selection procedure, given in 

Eqs. (13) and (14). If xnew
j  violates the bounds, then apply Eq. (12). The pseudo code of Eb 

phase is provided in Algorithm 1.

xnew
j =

max xnew
j , lbi , for lowerboundviolation

min xnew
j , ubi , forupperboundviolation

(12)

xnew
j =

x = xnew
j , if fitnew ≥ fit

x = x, if fitnew < fit
(13)

obj()new =
obj() = obj()new, if fitnew ≥ fit
obj() = obj(), if fitnew < fit (14)

3.2.4 Onlooker Bee Phase—The onlooker bee phase resembles the employed bee 

phase as shown in Algorithm 2. In this phase, we need the probability of each solution Probi, 

which is calculated using Eq. (15),
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Probi = 0.9 × fiti
max(fit) + 0.1. (15)

After obtaining the probabilities of every solution, the onlookers select the first Fs, and 

compare the probability of first solution with a random number r ∈ [0,1]. If r > Probi, then 

the onlookers do not generate a new Fs, and they repeat this process continuously. If r < 
Probi, generate a new Fs by selecting a random decision variable in the current Fs using Eq. 

(11). Check bounds of the new Fs and fix it using Eq. (12), evaluate fitness using Eq. 9, and 

update the solution using greedy selection given in Eqs. (13) and (14).

3.2.5 Scout Bee Phase—The employed bees whose Fs are abandoned are known as the 

scout bees. Each scout bee uses a trail vector that is generated during the initialization phase. 

The trail vector keeps track of how many times it failed to generate a better solution in 

comparison to the existing solution. During the scout bee phase, new solutions are generated 

using Eq. (8). The previous best solutions stored in trial vector are compared with the newly 

generated solution based on its fitness value. The solution with the best fitness value is 

maintained in the trial vector. The pseudocode of the scout bee phase is provided in 

Algorithm 3.

3.2.6 Parallel Artificial Bee Colony Algorithm—The issues in the traditional ABC 

algorithm are its long search time, slow convergence rate, and proneness to local optimum 

on a large number of decision variables. To overcome these issues, we have made changes to 

all the three phases, i.e., employed bee, onlooker bee, and scout bee. The employed and 

onlooker bee phases use Eq. (11) to generate a new solution and a new Fs, respectively. 

These newly generated solutions are not much different from the previous solutions, 

resulting in the least improvements after many iterations. It causes premature convergence 

when the optimal solution is not detected, which shows the inefficiency of the traditional 

ABC algorithm. To overcome this issue, we modify Eq. (11) to generate new solutions with 

a good convergence rate using Eq. (16).

xnew
j = xi

jrand() + ϕi
j xi

j − xk
j + ψi

j − 0.5 2 yi
j − xi

j (16)

where, ψi
j − 0.5 2 yi

j − xi
j  is the gbest that helps in efficient optimal convergence, and ψi

j is 

the new mutation step size, calculated in Eq. (17).

ψi
j = 1 − t

T (17)

where, t is the current iteration, and T is the total number of iterations. Furthermore, we 

modified Eq. (8) for the scout phase, as shown in Eq. (18). This equation generates a better 

solution than the original scout bee phase solution. Here, xbest
j  is the previous best term 

saved.
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xnew
j =

xmin
j + rand() * ψi

j * xbest
j − xi

j , forrand() ≤ 0.5

xmin
j + rand() * ψi

j * ybest
j − xi

j , forrand() > 0.5
(18)

Our proposed pABC algorithm needs to be executed simultaneously by all edge servers for 

optimal configuration of IIoT devices to the Es. Each Es needs a random selection of a group 

of networks, and evaluate their fitness and objective functions using pABC, respectively. 

Then, using Algorithms 1, 2, and 3, the new best solutions can easily be computed. Finally, 

these algorithms search the local best solution and decide to migrate the solution with the 

neighboring servers based on a user-defined threshold value (λ). After finding the best 

solution and optimal configuration, the Es performs job migration to the neighboring Ess if 

the gathered data from IIoT devices is larger than its storage and processing capabilities. The 

pseudo-code of the pABC is given in Algorithm 4.
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4 Experimental Results and Discussion

In this section, the proposed scheme is analyzed using simulation-based results. We have 

compared our Sybil attack detection protocol with [19], [20], and [21] using the confusion 

matrix given in Table 2. On the other hand, the convergence of our pABC algorithm is 

compared against Genetic Algorithm [22], Artificial Bee Colony [5], and Particle Swarm 

Optimization [23] using mean values of different benchmark functions. Finally, the delay, 

throughput, and control overhead are compared with [1] and [5].

4.1 Sybil Attack Detection

The performance of our Sybil attack detection scheme is compared using Table 2, where the 

true positive TP reflects the occurrence of Sybil attack that was detected instantly, while true 

negative TN shows no attack and correctly detected. A false-positive FP is the case when a 

genuine activity is detected as an attack and FN is the case when an attack is detected as a 

genuine activity. The IIoT-enabled PEC uses the performance metrics such as accuracy, 

sensitivity, and specificity for comparison. Accuracy is the probability of accurate detection 

as shown in Eq. (19). Sensitivity is the percentage of positive events as shown in Eq. (20), 

whereas Specificity is the adverse events correctly detected as shown in Eq. (21).

Accuracy = TP + TN
TP + TN + FP + FN

(19)

Sensitivity = TP
TP + FN

(20)

Specificity = TN
FP + TN

(21)

In Figs. 2, 3, and 4, the effect of Sybil devices on the aforementioned performance metrics is 

highlighted. The number of forged or fabricated identities of each device varies between 10 

and 26. In comparison to the existing schemes, our scheme performs better in terms of these 

performance metrics for a varying number of forged identities. The values on the y-axis for 

all metrics increase by increasing the number of forged identities. The higher number of 

Sybil nodes increase the chances of their detection due to their increased fabricated 

identities. The main reason for better performance of our scheme is the use of RSSI values 

from multiple sources. The RSSI-enabled detection of our scheme allows it to detect even 

the smallest of fluctuation in the signal strength coming from the same physical location. 

The performance of [19–21] is slightly lower than our proposed scheme because they have 

used a single RSSI value for Sybil attack detection and also there is high fluctuation in these 

values experienced at IIoT devices.
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4.2 Optimization using Parallel ABC

In this section, we discuss the effectiveness of pABC algorithm using benchmark functions 

[24] of Table 3. These functions are used to compare our pABC algorithm with conventional 

ABC [5], PSO [23], and GA [22] as shown in Fig. 5, 6, and 7, respectively. In these figures, 

the values on y-axis decrease by increasing the number of iterations. The convergence 

curves of pABC are better because of the improved step size. Moreover, it has better new 

solutions every time in comparison to the previous solutions. The modifications at every 

phase of pABC result in faster convergence that gives an optimal network configuration in a 

shorter time. It has also a good effect on achieving a higher QoS of the network. Moreover, 

our proposed pABC algorithm runs in parallel at each Es, and shares the results with 

neighboring Ess that helps in the learning process and faster convergence.

4.3 Network Performance Metrics

In this section, we demonstrate various performance metrics, e.g. end-to-end delay, 

throughput, and control overhead of our IIoT-enabled PEC.
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4.3.1 End-to-End Delay—The End-to-End Delay (E2E) is the total delay incurred by a 

packet from its transmission to its final reception at the industrial cloud. In Fig. 8, the E2E 

delay against the number of transmitting devices for different schemes is depicted. The 

largest delay is incurred when the network is under a Sybil attack. Moreover, each packet 

experiences a higher delay under normal network operations, i.e., without optimization. The 

delay of ABC algorithm is better than [1] due to its efficient convergence and in finding 

optimal solutions. In [1], authors have performed optimal configuration of IIoT devices with 

edge servers using PSO. They have also used high-bandwidth communication channels in 

the licensed band using cognitive radio. Our proposed scheme outperforms all these schemes 

because it efficiently detects the Sybil attack at the IIoT architecture layer, and achieves an 

optimal network configuration at the Edge layer using pABC. Besides, pABC executes 

simultaneously at different Es that causes minimum delay and performs efficient job 

migration under heavy load.

4.3.2 Throughput—Throughput is defined as the number of data packets correctly 

transmitted over a network in a particular period. In Fig. 9, the throughput of different 

schemes against the number of transmitting devices is shown. The throughput is degraded 

when the network is under a Sybil attack. The throughput of [1] is better against the network 

without optimization due to the optimal device-to-gateway configuration and the use of 

high-bandwidth licensed channels. The ABC algorithm performs better than [1] due to 

efficient convergence and the fast optimal solution. Our pABC algorithm outperforms all 

these schemes due to Sybil attack detection, and optimal network configuration.

4.3.3 Control Overhead—Fig. 10 compares the control overhead of different schemes, 

which is the ratio of the control packet to data packets transmitted. During Sybil attack, the 

data is not successfully transmitted resulting in a higher overhead. In [1], the overhead is 

smaller when running PSO and it increases while detecting licensed channel in a spectral 

band. It is because the licensed channel detection needs various control messages. The 

pABC algorithm has higher control overhead in comparison to ABC because the proposed 

scheme transmits the control messages during Sybil device detection.

5 Conclusion

In this paper, we proposed a secured and intelligent communication scheme for the 

Industrial Internet of Things (IIoT)-enabled Pervasive Edge Computing (PEC). The 

proposed scheme relies on Sybil attack detection, Artificial Intelligence (AI)-based optimal 

configuration, and edge computing. Using a lightweight detection protocol, the Sybil devices 

were detected by the IIoT devices. After Sybil devices detection, their illicit identities are 

shared with the neighbors and edge servers to prevent upstream transmission of malicious 

data towards the industrial cloud. At the edge server, an optimal configuration of IIoT 

devices was achieved by executing a parallel Artificial Bee Colony (pABC) algorithm. This 

algorithm identified an optimal configuration of edge servers to the IIoT devices, and shared 

the results with the neighbors. Each edge server performed job migration to its neighbors 

when the incoming data from IIoT devices exceeded its processing and storage capabilities. 

The experiments results showed that our scheme is resilient against Sybil attack in terms of 

accuracy, sensitivity, specificity, and detection rate. Moreover, it has better convergence 
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curves against the existing approaches for various benchmark functions and achieved higher 

Quality of Service (QoS) of the network. In the future, we aim to perform mutual 

authentication among edge servers and IIoT devices prior to communication. Also, we aim 

to improve the performance of pABC by regulating the traffic from industrial cloud via 

Software-defined Networks (SDNs) controller.

Acknowledgements

This work is partially supported by a pilot award from the Center for Research in Human Movement Variability and 
the NIH (P20GM109090) and a planning award from the Collaboration Initiative of the University of Nebraska 
system.

Biographies

Dr. Fazlullah Khan is a faculty member at the Department of Computer Science, Abdul 

Wali Khan University Mardan, Pakistan. He had been the recipient of various prestigious 

scholarships during his PhD studies and has been awarded the best researcher awarded for 

the year 2017. His research interests are Intelligent and robust protocol designs, Security and 

Privacy of Wireless Communication Systems, Internet of Things, Machine Learning, 

Artificial Intelligence. Recently, he has been involved in latest developments in the field of 

Internet of Vehicles security and privacy issues, Software-defined Networks, Fog Computing 

and Big Data Analytics. He has published his research work in top-notch journals and 

conferences. His research has been published in IEEE Transactions on Industrial 

Informatics, IEEE Internet of Things, IEEE Access, Elsevier Computer Networks, Elsevier 

Future Generations Computer Systems, Elsevier Journal of Network and Computer 

Applications, Elsevier Computers and Electrical Engineering, Springer Mobile Networks 

and Applications. He has served over 10 conferences in leadership capacities including 

General Chair, General co-Chair, program co-Chair, track Chair, session Chair, and 

Technical Program Committee member, including IEEE TrustCom 2017, 2018, EuroCom, 

GCCE 2019, ITNG 2018, Future5V 2017, CCODE-2017, IoT-BC2 2016. He has been an 

active reviewer for high-cited and highly ranked international journals, including IEEE 

Transactions on Dependable and Secure Computing (TDSC), Elsevier Computer Networks, 

Springer Mobile Networks & Applications and Wiley Concurrency and Computation: 

Practice and Experience.

Dr. Mian Ahmad Jan is an assistant professor at the department of computer science, 

Abdul Wali Khan University Mardan, Pakistan. He completed his PhD at the University of 

Technology Sydney (UTS), Australia. He had been the recipient of various prestigious 

Khan et al. Page 14

IEEE Trans Industr Inform. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scholarships during his PhD studies. He was the recipient of International Research 

Scholarship (IRS), UTS and Commonwealth Scientific Industrial Research Organization 

(CSIRO) scholarships. He has been awarded the best researcher awarded for the year 2014 at 

the University of Technology Sydney Australia. His research interests include energy-

efficient and secured communication in Wireless Sensor Networks and Internet of Things. 

Recently, he has been actively involved in machine learning, big data analytics, smart cities 

infrastructure and vehicular ad hoc networks. His research has been published in IEEE 

Transactions on Mobile Computing, IEEE Transactions on Cloud Computing, IEEE 

Transactions on Industrial Informatics, IEEE Transactions on Network Science and 

Engineering, IEEE Internet of Things Journal, IEEE Journal of Selected Areas of 

Communications and ACM Computing Surveys are few to mention. He has been guest 

editor of numerous special issues in various prestigious journals such as IEEE Transactions 

on Industrial Information, Springer Neural Networks and Applications, and Elsevier Future 

Generation Computer Systems etc.

Dr. Ateeq ur Rehman is Assistant professor of Computer Science at Abdul Wali Khan 

University Mardan, Pakistan. He received his BEng degree in Computer Science and 

Information Technology from the Islamic University of Technology Dhaka, Bangladesh, in 

2009. He got his PhD degree in wireless communications from the University of 

Southampton in January 2017. His major research interests are next generation wireless 

communications and cognitive radio networks, Cooperative communication, Resource 

allocation, particularly cross layer approach and Hybrid ARQ. Currently, he is working on 

security and privacy of Internet of Things using machine learning algorithms. He published 

20 quality scholarly articles. His most recent research achievements have been published in 

several highly cited IEEE Transactions and Elsevier journals including IEEE Internet of 

Things journal, Future Generation Computer Systems, and Computer Networks. His 

research contribution on network security is internationally recognized.

Dr. Spyridon Mastorakis is an Assistant Professor in Computer Science at the University 

of Nebraska Omaha. He received his Ph.D. in Computer Science from the University of 

California, Los Angeles (UCLA) in 2019. He also received an MS in Computer Science 

from UCLA in 2017 and a 5-year diploma (equivalent to M.Eng.) in Electrical and 

Computer Engineering from the National Technical University of Athens (NTUA) in 2014. 

His research interests include network systems and protocols, Internet architectures, IoT and 

edge computing, and security.

Khan et al. Page 15

IEEE Trans Industr Inform. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dr. Mamoun Alazab is an Associate Professor at the College of Engineering, IT and 

Environment at Charles Darwin University, Australia. He received his PhD degree in 

Computer Science from the Federation University of Australia, School of Science, 

Information Technology and Engineering. He is a cyber security researcher and practitioner 

with industry and academic experience. AlazabâĂŹs research is multidisciplinary that 

focuses on cyber security and digital forensics of computer systems with a focus on 

cybercrime detection and prevention. He has more than 150 research papers in many 

international journals and conferences, such as IEEE transactions on Industrial Informatics, 

IEEE Transactions on Industry Applications, IEEE Transactions on Big Data, IEEE 

Transactions on Vehicular Technology, Computers & Security, and Future Generation 

Computing Systems. He delivered many invited and keynote speeches, 24 events in 2019 

alone. He convened and chaired more than 50 conferences and workshops. He works closely 

with government and industry on many projects, including Northern Territory (NT) 

Department of Information and Corporate Services, IBM, Trend Micro, the Australian 

Federal Police (AFP), the Australian Communications and Media Authority (ACMA), 

Westpac, United Nations Office on Drugs and Crime (UNODC), and the Attorney 

GeneralâĂŹs Department. He is a Senior Member of the IEEE. He is the Founding chair of 

the IEEE Northern Territory (NT) Subsection.

Prof. Paul Watters is Adjunct Professor of Cybersecurity at La Trobe University, and 

Honorary Professor at Macquarie University. He is a Chartered IT Professional, a Fellow of 

the British Computer Society, a Senior Member of the IEEE, and a Member of the 

Australian Psychological Society. Professor Watters is Academic Dean at Australasian 

Academies Polytechnic, an ASX-listed education provider. He is also Australia’s leading 

trusted cybersecurity advisor, thought leader, and founder of Cyberstronomy Pty Ltd, home 

of the www.100pointcybercheck.com.

References

[1]. Yao W, Khan F, Jan MA, Shah N, Rahman I. ur, Yahya A, and ur Rehman A, “Artificial 
intelligence-based load optimization in cognitive internet of things,” Neural Computing and 
Applications, pp. 1–11, 2020.

[2]. Sun W, Liu J, Yue Y, and Zhang H, “Double auction-based resource allocation for mobile edge 
computing in industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 14, 
no. 10, pp. 4692–4701, 2018.

[3]. Chen S, Pang Z, Wen H, Yu K, Zhang T, and Lu Y, “Automated labeling and learning for physical 
layer authentication against clone node and sybil attacks in industrial wireless edge networks,” 
IEEE Transactions on Industrial Informatics, 2020.

Khan et al. Page 16

IEEE Trans Industr Inform. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.100pointcybercheck.com/


[4]. Sangaiah AK, Medhane DV, Han T, Hossain MS, and Muhammad G, “Enforcing position-based 
confidentiality with machine learning paradigm through mobile edge computing in real-time 
industrial informatics,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4189–
4196, 2019.

[5]. Karaboga D, “An idea based on honey bee swarm for numerical optimization,” tech. rep., 
Technical report-tr06, Erciyes university, engineering faculty, computer, 2005.

[6]. Gao H, Shi Y, Pun C-M, and Kwong S, “An improved artificial bee colony algorithm with its 
application,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 1853–1865, 2018.

[7]. Tian G, Ren Y, Feng Y, Zhou M, Zhang H, and Tan J, “Modeling and planning for dual-objective 
selective disassembly using and/or graph and discrete artificial bee colony,” IEEE Transactions 
on Industrial Informatics, vol. 15, no. 4, pp. 2456–2468, 2018.

[8]. Garg S, Kaur K, Batra S, Aujla GS, Morgan G, Kumar N, Zomaya AY, and Ranjan R, “En-abc: An 
ensemble artificial bee colony based anomaly detection scheme for cloud environment,” Journal 
of Parallel & Dist. Computing, vol. 135, pp. 219–233, 2020.

[9]. Thanka MR, Maheswari PU, and Edwin EB, “An improved efficient: Artificial bee colony 
algorithm for security and qos aware scheduling in cloud computing environment,” Cluster 
Computing, vol. 22, no. 5, pp. 10905–10913, 2019.

[10]. Makhdoom I, Abolhasan M, Lipman J, Liu RP, and Ni W, “Anatomy of threats to the internet of 
things,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1636–1675, 2018.

[11]. Chen J, Li K, Deng Q, Li K, and Philip SY, “Distributed deep learning model for intelligent video 
surveillance systems with edge computing,” IEEE Transactions on Industrial Informatics, 2019.

[12]. Wang T, Luo H, Jia W, Liu A, and Xie M, “Mtes: An intelligent trust evaluation scheme in 
sensor-cloud enabled industrial internet of things,” IEEE Transactions on Industrial Informatics, 
2019.

[13]. Zhang Y, Qian C, Lv J, and Liu Y, “Agent and cyberphysical system based self-organizing and 
self-adaptive intelligent shopfloor,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2, 
pp. 737–747, 2016.

[14]. Gao X, Shan C, Hu C, Niu Z, and Liu Z, “An adaptive ensemble machine learning model for 
intrusion detection,” IEEE Access, vol. 7, pp. 82512–82521, 2019.

[15]. Zhang S and Lee J-H, “Double-spending with a sybil attack in the bitcoin decentralized 
network,” IEEE Transactions on Industrial Informatics, vol. 15, no. 10, pp. 5715–5722, 2019.

[16]. Jan MA, Zhang W, Usman M, Tan Z, Khan F, and Luo E, “Smartedge: An end-to-end encryption 
framework for an edge-enabled smart city application,” Journal of Network and Computer 
Applications, vol. 137, pp. 1–10, 2019.

[17]. Xu J, Wang S, Zhou A, and Yang F, “Edgence: A blockchain-enabled edge-computing platform 
for intelligent iot-based dapps,” China Communications, vol. 17, no. 4, pp. 78–87, 2020.

[18]. Liu X, Qiu T, Zhou X, Wang T, Yang L, and Chang V, “Latency-aware path planning for 
disconnected sensor networks with mobile sinks,” IEEE Transactions on Industrial Informatics, 
vol. 16, no. 1, pp. 350–361, 2020.

[19]. Jan MA, Nanda P, He X, and Liu RP, “A sybil attack detection scheme for a forest wildfire 
monitoring application,” Future Generation Computer Systems, vol. 80, pp. 613–626, 2018.

[20]. Ssu K-F, Wang W-T, and Chang W-C, “Detecting sybil attacks in wireless sensor networks using 
neighboring information,” Computer Networks, vol. 53, no. 18, pp. 3042–3056, 2009.

[21]. Dong W and Liu X, “Robust and secure time-synchronization against sybil attacks for sensor 
networks,” IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1482–1491, 2015.

[22]. Tang K-S, Man K-F, Kwong S, and He Q, “Genetic algorithms and their applications,” IEEE 
signal processing magazine, vol. 13, no. 6, pp. 22–37, 1996.

[23]. Kennedy J and Eberhart R, “Particle swarm optimization,” in Proceedings of ICNN’95-
International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, 1995.

[24]. Toktas A and Ustun D, “A triple-objective optimization scheme using butterfly-integrated abc 
algorithm for design of multi-layer ram,” IEEE Transactions on Antennas and Propagation, 2020.

Khan et al. Page 17

IEEE Trans Industr Inform. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
System model of the proposed scheme
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Fig. 2: 
Accurate detection of Sybil devices
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Fig. 3: 
Sensitivity of Sybil devices detection
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Fig. 4: 
Specificity of Sybil devices detection
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Fig. 5: 
Convergence curves the Sphere function
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Fig. 6: 
Convergence curves for the Schaffer function
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Fig. 7: 
Convergence curves for the Griewank function
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Fig. 8: 
End-to-End Delay vs. Number of IIoT Devices
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Fig. 9: 
Throughput vs. Number of IIoT Devices.
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Fig. 10: 
Control Overhead vs. Number of IIoT Devices
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TABLE 1:

Honey collection vs optimization problems

Bees collect honey Optimization problem

Proximity of the food source Possible solution

Abundance of the food Number of solutions

Ease of extraction Easiness in getting a possible solution

Quality of the food Fitness value

Maximum quality food Optimum solution
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TABLE 2:

Confusion Matrix

Positive Negative

Positive TP FN

Negative FP TN
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