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Abstract

First pass gadolinium-enhanced cardiovascular magnetic resonance (CMR) perfusion imaging 

allows fully quantitative pixel-wise myocardial blood flow (MBF) assessment, with proven 

diagnostic value for coronary artery disease. Segmental analysis requires manual segmentation of 

the myocardium. This work presents a fully automatic method of segmenting the left ventricular 

myocardium from MBF pixel maps, validated on a retrospective dataset of 247 clinical CMR 

perfusion studies, each including rest and stress images of three slice locations, performed on a 

1.5T scanner. Pixel-wise MBF maps were segmented using an automated pipeline including region 

growing, edge detection, principal component analysis, and active contours to segment the 

myocardium, detect key landmarks, and divide the myocardium into sectors appropriate for 

analysis. Automated segmentation results were compared against a manually defined reference 

standard using three quantitative metrics: Dice coefficient, Cohen Kappa and myocardial border 

distance. Sector-wise average MBF and myocardial perfusion reserve (MPR) were compared using 

Pearson’s correlation coefficient and Bland-Altman Plots. The proposed method segmented stress 

and rest MBF maps of 243 studies automatically. Automated and manual myocardial segmentation 

had an average (± standard deviation) Dice coefficient of 0.86 ± 0.06, Cohen Kappa of 0.86 ± 
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0.06, and Euclidian distances of 1.47 ± 0.73 mm and 1.02 ± 0.51 mm for the epicardial and 

endocardial border, respectively. Automated and manual sector-wise MBF and MPR values 

correlated with Pearson’s coefficient of 0.97 and 0.92, respectively, while Bland-Altman analysis 

showed bias of 0.01 and 0.07 ml/g/min. The validated method has been integrated with our fully 

automated MBF pixel mapping pipeline to aid quantitative assessment of myocardial perfusion 

CMR.

INDEX TERMS

Cardiovascular magnetic resonance; myocardial perfusion imaging; myocardial blood flow; image 
segmentation

I. INTRODUCTION

First pass gadolinium-enhanced cardiovascular magnetic resonance (CMR) perfusion 

imaging allows for fully quantitative assessment of myocardial blood flow (MBF) and has 

proven to have a diagnostic value for coronary artery disease as well as myocardial ischemia 

[1]–[6]. Research has been successful in fully automating the process of MBF quantification 

at the pixel level [5], [7]. These and other works demonstrated that fully automatic MBF 

pixel maps provide similar blood flow values to positron emission tomography [8], are 

capable of diagnosing coronary artery disease [5], [9], [10], and have high repeatability [11]. 

However, these analyses were performed based on manually segmented MBF maps 

according to the American Heart Association (AHA) segment model [12]. In other words, 

users were required to manually draw regions of interest (ROIs) around the myocardium and 

identify the right ventricle (RV) insertion point to divide myocardial sectors for segmental 

analysis. Not only is this process tedious and time-consuming, but it is prone to errors.

The research and development process of automatic segmental analysis of fully quantitative 

MBF pixel maps is relatively new, and only a handful of works have recently been published 

on automated myocardial segmentation. Scannell et al. [13] employed deep learning-based 

methods for myocardial segmentation based on 175 CMR perfusion studies. The 

segmentation process was split into four steps, each trained separately. Their data was split 

into three groups: 135 training data, 10 validation data and 30 testing data. The first step 

identified the frame of peak left ventricle (LV) enhancement. Second, a bounding box 

around the heart region was defined using this time frame. Third, the myocardium was 

segmented from the bounding box. Fourth and finally, the RV insertion point was detected 

and used to split the myocardium into different sectors.

Xue et al. [14] presented a deep learning approach for automatic MBF quantification and 

segmental analysis of myocardial perfusion imagery. Their method was trained on a dataset 

of 1825 perfusion scans from 1034 patients. An additional 200 perfusion scans from 105 

patients were used as an independent testing dataset. Before segmentation, the perfusion 

series were pre-processed to transform them into gadolinium concentration series. Then the 

transformed training data were split further into training and validation sets consisting of 

87.5% and 12.5% of studies, respectively. A U-net semantic segmentation architecture based 

Convolutional Neural Network (CNN) was trained to segment the myocardium, RV and LV. 
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The RV region was used to detect the RV insertion point based on AHA segment model. 

Unlike Scannell, which operates on images after scanning, Xue’s work is integrated with a 

dedicated imaging sequence [7] for image acquisition and reconstruction to allow in-line 

pipelined processing of the MBF maps as soon as the images are acquired.

In this work, we present a fully automatic method for perfusion MBF pixel map segmental 

analysis. The automated pipeline begins by locating the RV insertion via landmark detection, 

followed by segmentation of the myocardium from the dynamic perfusion images via region 

growing, edge detection, principal component analysis, and active contours. to segment the 

myocardium, detect key landmarks, and divide the myocardium into sectors appropriate for 

analysis. This result is used as a starting point for the myocardial segmentation of the MBF 

perfusion maps, using similar methods, before the region is finally divided into myocardial 

sectors with the detected RV insertion point.

II. METHODS

A. IMAGE ACQUISITION

A retrospective dataset of 247 clinical CMR perfusion studies was included in the present 

study. All studies were performed under procedures and protocols approved by the 

institutional review board of the National Heart, Lung and Blood Institute, and all subjects 

gave written informed consent (ClinicalTrials.gov Identifier: NCT00027170) over a four-

year period. Demographic information of the patients is shown in Table 1. In these studies, 

gadolinium-enhanced CMR perfusion imaging was performed on two 1.5T scanners 

(Siemens Healthcare, Erlangen, Germany) with a saturation recovery steady-state free 

precession dual-sequence technique [15]. Three short-axis slice locations of the heart at 

base, mid, and apex were acquired at every RR interval over 60 heart beats during 

breathhold.

Gadolinium-DTPA (Magnevist, Berlex Laboratories, Wayne, NJ, USA) was administered 

(0.05 mmol/kg) at 5 ml/s during vasodilator stress and rest perfusion imaging followed by a 

saline flush. Typical imaging parameters for the myocardial perfusion image series included: 

90° composite saturation preparation pulse, 50° flip angle, 90 ms inversion time, 1.2 ms 

echo time, 2.3 ms repetition time, 8 mm slice thickness, 360×270 mm field of view, 128 × 

80 acquisition matrix, 256 × 192 image matrix after interpolation, and parallel imaging 

factor of 2 [16]. During each perfusion acquisition, a low-resolution arterial input function 

(AIF) image series was also acquired using a fast low-angle shot sequence with a separate 

saturation pulse. Typical imaging parameters for the AIF series were: 8° flip angle, 5.0 ms 

inversion time, 0.7 ms echo time, 1.3 ms repetitive time, 10 mm slice thickness, and 64 × 48 

acquisition and image matrix size. The dedicated AIF series was specifically designed to 

maintain linearity of signal intensity within the LV, providing accurate AIF measurements. 

At the beginning of each perfusion imaging, two proton density weighted images were also 

acquired without saturation preparation pulse which are used for surface coil intensity 

correction.
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B. IMAGE PROCESSING

An outline of the proposed image processing pipeline is shown in Figure 1. This pipeline is 

an extension of our automated pixel-wise MBF quantification pipeline previously presented 

in [17] and [5]. A non-rigid body image registration technique based on optical flow 

computation was first applied to correct for motion artifacts that may exist in the image 

series [18]. Our previous work [17] described a fully automated method of measuring the 

AIF from CMR perfusion images. The AIF was extracted only from the basal slice for 

subsequent use in MBF quantification at each slice location. Our previous work [5] 

described a fully automated pipeline which includes a model constrained deconvolution 

technique to estimate pixel-wise MBF values in ml/g/min. The main additions allowing for 

automated segmental analysis, which this section will focus on, are the automation steps for 

RV insertion point landmark detection, perfusion image myocardial segmentation, MBF map 

myocardial segmentation, and myocardial sector definition. The remaining steps in Figure 1 

have been previously described in [17] and [5].

While our goal is to perform myocardial segmentation on the MBF map, this process is 

more robust if the myocardium is segmented from the perfusion images first and then 

propagated to the MBF map for further refinement. Because the LV and RV cavities can be 

detected more reliably from the perfusion image series via different contrast enhancement 

phases, they provide a reliable anchor space for the initial myocardial segmentation.

1) LANDMARK DETECTION—To follow the segmental analysis recommendations of 

the AHA [12], the angle of the anterior junction point of the RV and LV, hereto referred to as 

the RV insertion point angle, must be identified. The RV and LV were segmented from the 

basal slice using a multi-level standard deviation threshold, weighted voting scheme, and 

independent component analysis similar to our previous work [17]. The angle is detected 

automatically by measuring the angles between the boundary points of the RV and the center 

of the LV. The image is then rotated to a common reference model, with the RV points to the 

left of the LV. From this orientation, the RV insertion point will be the pixel on the RV wall 

that has the smaller counterclockwise angle from the origin at the LV midpoint, as seen in 

Figure 1(b). The RV insertion point angle is measured from this and will be used for 

segmental analysis. The same angle is used on all three image slices, but the angle’s origin 

will be re-centered onto the LV of each slice, as detected in the following section.

2) MYOCARDIAL SEGMENTATION FROM PERFUSION IMAGES—The 

myocardium is detected on each slice location sequentially starting from the basal and 

proceeding to the apical slices. Figure 1(a–c) outlines example result of the process, while 

the individual steps are more precisely outlined in Figure 2. In the basal slice, the LV 

boundary, Figure 1(a), is refined using region growing from the initial LV cavity mask using 

the frame of peak LV intensity. A convex hull is applied also ensure that any the papillary 

muscles present are included with in the LV boundary. Selecting the enhanced LV boundary 

as the endocardial boundary ensures the exclusion of the papillary muscles. The epicardial 

edge of the myocardium is detected from a time-signal intensity normalized image series. 

This is distinct from 2D image normalization which, in general, sets the maximum intensity 

value to 1, the minimum to 0, and appropriately scales the intermediate values to the same 
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range. Instead, we normalize each pixel individually based on its intensity range over time. 

That is, the pixels’ maximum value over the time series is set to 1, while its minimum is set 

to 0, and intermediate values are scaled appropriately to this range. This pixel and time-

based normalization highlights the relative contrast enhancement timing of each pixel rather 

than its absolute signal intensity magnitude. This is useful in cases with perfusion defects 

which do not enhance with contrast as much as healthy tissue. The normalization amplifies 

this small enhancement to the same level as healthy myocardial enhancement to provide 

better contrast for segmentation. Using this normalized series, a rough estimate of the edge 

is detected from a baseline intensity image, in which the myocardium and LV are dark while 

the background tissue is relatively bright. We chose the baseline image because there is 

generally a larger relative intensity difference between the mid-level background and the 

dark baseline myocardium than there is to the mid-level background and the perfusing 

myocardium. This image is transformed into the polar domain centered on the LV, and 

Canny edge detection is applied [19]. The longest continuous edge is extended around the 

myocardium using a polynomial fitting and selected as the initial epicardial edge and is 

transformed back to the cartesian domain. Finally, this edge is refined using an active 

contours algorithm [20] performed on a contrast enhanced image during the washout phase. 

This image is reconstructed using principal component analysis (PCA) [21] to remove 

redundant information and extract the most prevalent myocardial contrast enhancement 

information. We construct the principal component images using the images after the peak 

contrast enhancement (i.e. during the washout phase) and select the first principal 

component image that contains the primary information of the images. This first principal 

component image has the effect of noise reduction and signal intensity contrast improvement 

for better myocardial boundary detection.

The same process is applied to the mid and apical slices, with one extra step: the LV and RV 

must be re-located by cross correlating the heart region pixels with the ventricles signal 

measured from the previous slice. The pixel with the highest coefficient of correlation is 

selected as a seed point, from which the remainder of the ventricle is region grown; this step 

is similar to the LV refinement performed on the basal slice. The LV in all slices is region 

grown based on the peak intensity frame as measured from the basal slice. It is possible that 

the ventricles, particularly the RV, may not be visible in the apical slice. If the RV is not 

detected, the processing continues without it. However, the processing for myocardial 

segmentation is aborted if the LV cannot be located.

3) MBF MAP SEGMENTATION AND SEGMENTAL ANALYSIS—After the initial 

myocardial segmentation on perfusion images is completed, the myocardial region is 

propagated to the fully quantitative MBF maps for further refinement. This is performed 

using similar steps as the previous myocardial segmentation, but now taking advantage of 

the increased contrast provided by the MBF maps and the myocardial segmentation from the 

perfusion images. Sample results are shown in Figure 1(d–e) while Figure 3 outlines the 

process in more detail. The endocardial boundary is region grown from the LV, now more 

distinguished by the blood pool’s extremely high MBF value. The epicardial boundary is 

also more easily differentiated from the non-perfusing tissue in the MBF maps using the 

same polar transform edge detection followed by active contours algorithm refinement.
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With the myocardium delineated, the detected RV insertion point angle is used to define an 

arbitrary number of sectors for myocardial segmental analysis on each slice, using the center 

of the LV as the angle’s origin. Average sector-wise MBF can be automatically measured 

and reported, providing fully automatic segmental analysis of the MBF pixel map.

C. QUANTITATIVE EVALUATION

To validate its performance, the proposed automated method was tested for segmental 

analysis of MBF maps from all three slices of the rest and stress series of the 247 studies. 

The method was implemented and executed using custom image analysis software 

developed in Interactive Data Language (IDL, Harris Geospatial Solutions, Melbourne, 

Florida). To provide a comparison, the same dataset was also manually processed by a 

trained CMR expert tracing the endocardial and epicardial borders of the myocardium on the 

MBF map using custom interactive image analysis software, also implemented in IDL. The 

ROIs were placed to exclude papillary muscles from the endocardial border, and 

anomalously bright regions along the epicardial border (likely right ventricular blood, fat, or 

coronary arteries). The RV insertion point was also manually selected to define six 

myocardial sectors, following the recommendations of the AHA [12], for segmental 

analysis. Sector-wise MBF and MPR measured from the automated and manual 

segmentation of the three slices were compared.

Agreement between the myocardial segmentations of the proposed method and the manual 

reference was measured using Dice coefficient and Cohen Kappa statistic. The agreement 

between the epicardial and endocardial borders was measured by the Euclidean distances 

between the automated and manual borders. The average sector-wise MBF and MPR 

calculated within the myocardial sectors generated by the proposed and the manual methods 

were compared using linear regression analysis, Pearson’s correlation coefficient, interclass 

correlation coefficient, Bland-Altman plots, and non-parametric Mann-Whitney U test to 

determine statistical significance. Results are shown as mean ± standard deviation (SD).

Additional quantitative metrics for the overall assessment of the automated vs. manual 

segmentation are provided in the appendix. These include commonly established statistics of 

accuracy, sensitivity, specificity, positive predictive value (also referred to as precision), 

volume overlap error, and relative volume difference [22]. Further border distance 

measurement metrics include, Hausdorff distance, Mahalanobis distance and the average 

symmetric surface distance [22].

III. RESULTS

Of the original 247 clinical studies, 2 were excluded due to poor image quality preventing 

reliable MBF quantification. The proposed automated method successfully processed 243 of 

the remaining 245 clinical studies, yielding a 98.38% success rate and 486 scans of 

validation metric data. Figures 4 and 5 provide example results of MBF map segmentation 

from a healthy volunteer and a patient with a perfusion defect, respectively. In Figure 4, one 

can see that both the automatic method and the manual reference depict similar areas, 

though the manual segmentation favors borders that include slightly less myocardial tissue 

to ensure exclusion of the LV, RV, and surrounding tissue. Despite this, the sector plots show 
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that sector-wise average blood flow is nearly identical between manual and automated 

measurements for both rest and stress. Figure 5 shows similar agreement on a case with a 

regional perfusion defect. The stress sector plots of manual and automated origin both show 

values consistent with regional perfusion defects, which is supported by the visual 

impression on all three stress slices.

Table 2 summarizes the area agreement metrics for the MBF map segmentation in each slice 

and the overall average, which showed good agreement between manual and automatic 

methods. Dice scores of at least 0.8 were achieved in 85.8% of the total 1458 MBF maps, 

and 99.5% of all maps had Dice scores of at least 0.6. Table 3 compares the Euclidian 

distances between the manual and automated segmentation of epicardial and endocardial 

borders, showing very good, overall sub-pixel level agreement in the tested dataset. These 

distances were calculated as the average of the root-mean-square distance of each boundary 

pixel on the automatically segmented boundary to the nearest pixel on the manually defined 

boundary. Table 4 and 5 show the area agreement and Euclidian distances, respectively, but 

separated into rest and stress series. This analysis shows that the proposed method performs 

similarly for both series, though perhaps slightly better on rest series. For the selection of the 

RV insertion point, the absolute angle difference averaged only 3.19 ± 4.16° between the 

manual and automatic methods.

Figure 6 displays the linear regression and Bland-Altman analyses of the automatically and 

manually measured sector-wise MBF values from the segmental analysis of all 243 studies 

analyzed, separated by slice, including the limits of agreement (mean ± 1.96 SD). Sector-

wise MBF values from automatic and manual segmentation correlated well, with an average 

Pearson’s coefficient of 0.97 (p < 0.001), interclass correlation coefficient of 0.97 (95% 

confidence interval: 0.97; p < 0.001), and an R2 value of 0.94 in all three slices. Bland-

Altman analysis showed minimal bias overall (0.01 ml/g/min) and SD (0.25 ml/g/min) 

between the two methods. Automatic and manual sectorized MBF values differed on 

average by 0.14 ± 0.30 ml/g/min (p = 0.189) for base, 0.11 ± 0.17 ml/g/min (p = 0.630) for 

mid, and 0.17 ± 0.24 ml/g/min (p = 0.236) for apex.

Figure 7 displays the linear regression and Bland-Altman analyses of the automatically and 

manually measured sector-wise MPR values of all 243 studies, separated by slice, including 

the limits of agreement (mean ± 1.96 SD). Sector-wise MPR values from automatic and 

manual segmentation also correlated well, with a Pearson’s coefficient of 0.92 (p < 0.001), 

interclass correlation coefficient of 0.92 (95% confidence interval: 0.91 – 0.92; p < 0.001) 

and an R2 value of 0.84. Bland-Altman analysis showed a slightly larger bias (0.07) and SD 

(0.36) in MPR than MBF between the two methods. Automatic and manual sectorized MPR 

values differed on average by 0.21 ± 0.26 (p < 0.001) for base, 0.17 ± 0.21 (p = 0.433) for 

mid, and 0.29 ± 0.36 (p = 0.001) for apex.

Additional quantitative evaluation of our method based on independent datasets acquired 

with different imaging protocols are provided in the appendices as an external validation. 

Average execution times for the proposed method on myocardial image segmentation and 

landmark detection was approximately 6 seconds, and myocardial segmentation on the MBF 
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map took approximately 2 seconds per slice on a desktop computer with an Intel Core i7–

6950 3.0 GHz processor.

IV. DISCUSSION

We have presented a fully automated method for segmental analysis of fully quantitative 

CMR perfusion MBF pixel maps. It has been evaluated on a large clinical dataset and 

processed 243 of 247 studies, with Dice scores of at least 0.8 in 85.8% of the maps. 

Automatic myocardial segmentation of MBF pixel maps were in good agreement with the 

manually segmented reference myocardial regions and RV insertion landmarks. Further, 

automatic sectorization and sector-wise MBF and MPR measurements were shown to agree 

with manual reference measurements. These results indicate that the proposed method 

agrees with manual reference standards both in terms of the segmented area, sector 

definition, and region derived MBF measurements. By providing the AHA recommended 

segmental analysis while eliminating the tedious need of manual myocardial segmentation 

and sector definition, the proposed method speeds the extraction of quantitative medical 

information for a patient, and hopefully increases the throughput and clinical utility of fully 

quantitative CMR perfusion imaging.

Our rest vs. stress Euclidian distance metrics show that the proposed method has a slightly 

better performance on the rest series. This increased performance is likely due to a greater 

uniformity of the rest perfusion images and MBF maps that improves the myocardial region 

detection especially for the endocardial boundary. Our MBF and MPR comparisons also 

show that the proposed method performed better on the basal and mid slices than on the 

apical slice. The apical slice presents larger partial volume effects in the perfusion images 

which can result in residual motion issues after motion correction that can challenge even 

manual segmentation. Further, the RV blood pool, which is helpful in defining a portion of 

the epicardial boundary for the LV myocardium, is not always visible in the apical slice. 

These issues resulted in lower area and border agreement, as well as lower correlation 

between MBF and MPR measurements with the manual reference for the apical slice. 

However, the Bland- Altman plots show no systemic bias in the automated apex slice 

measurements, despite a larger dispersion. In our statistical comparisons of automated vs. 

manual sector-wise MBF and MPR values, there are larger errors in the MPR than in the 

MBF comparison among all three slices. Because the MPR is a ratio measurement of two 

MBF values, any discrepancy in one of the two MBF value can lead to a greater discrepancy 

in the MPR measurement due to the division operation.

Of the original 247 study dataset, two studies were excluded from the quantitative 

evaluation. Both were due to image quality issues that made MBF maps results ambiguous 

for manual segmentation. From the remaining 245 studies, the proposed method was able to 

process all but two. One failure was due to an extremely small LV blood pool in the mid 

slice, despite that both basal and apical slices went through the automatic segmentation 

successfully. The other was due to a failure to correctly segment and differentiate the LV and 

RV. As mentioned during the method description, detection of the LV in all three slices is 

paramount to locating the myocardium. Examination of Figures 4 and 5 show that the 

automated method is more inclusive than the manual reference, often including more edge 
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pixels that the more conservative manual segmentation excluded. This extra inclusion 

however did not adversely affect sector-wise MBF values, resulting in minimal and non-

significant difference. These minor differences had a slightly more significant effect on the 

MPR measurement, likely due to the division operation previously discussed.

Previous CMR perfusion image segmentation research has mainly focused on segmenting 

the myocardium from the perfusion image series. Spreeuwers and Breeuwer [23] detected 

the ventricles by region growing from regions of maximal intensity. The LV boundary was 

used as the endocardial boundary, while the epicardial boundary was segmented using a 

contrast-ratio maximizing snake, initiated upon the RV border nearest to the LV. To highlight 

the myocardium, this process was performed on a difference image between pre- and post-

contrast arrival maximal intensity projection. When tested on 30 image series and visually 

analyzed, the method successfully segmented 86.7% of them. Gupta et al. [24] proposed 

training active appearance models on 50 pre-labeled images to model a mean target object, 

and variations using features of region shape and texture. The completed model was tested 

on the basal and mid slices of 18 perfusion studies and was deemed successful on 83.3% of 

them. The semi-quantitative measurement of perfusion upslope was not found to be 

significantly different from manual segmentation. Tarroni et al. [25] presented a semi-

automated segmentation method requiring a user-defined seed point to be selected within the 

LV cavity. A region-based level set technique based on the normal distribution of noise in 

the blood pool and myocardium was used to detect the epicardial boundary. The endocardial 

boundary was located with classic edge-based level set methods, and a user selected the RV 

insertion point for sector definition and measurement of semiquantitative metrics. The 

segmentation was visually evaluated as accurate. Sector-wise measurements of signal 

intensity showed good signal-to-noise ratio, frame by frame intensity agreement, and semi-

quantitative metrics were like a manual reference. Further, the semi-quantitative metrics 

were shown to have similar diagnostic accuracy to a quantitative coronary angiography 

reference. Beache et al. [26] developed a method using level sets combining probabilistic 

shape priors, Gaussian modeling of intensity probability distribution, Potts models, and 

Gibbs potentials. This segmentation was performed on each image, and then each region was 

deformed to be consistent with a reference region over time. Validation tests showed the 

method was superior to two other generic shape-based segmentation methods in 24 datasets.

Some researchers have also investigated the feasibility of segmenting the myocardium from 

perfusion images to extract the region-wise or sector-wise time signal intensity curves for 

perfusion analysis. Adluru et al.’s method [27] detected the epicardial boundary from the 

LV, intensity thresholding a polar image centered on the pixel with maximal weighted 

intensity variance, presumably within the LV. The endocardium was then segmented by an 

evolving ring guided by a level set algorithm, initiated a set distance out from the detected 

endocardium. This was performed in five frames centered on the peak LV intensity. The final 

myocardium was selected as the pixels agreed upon by 4/5th of the images. Their work, 

however, did not present an automated method for sector definition. Validation tests on 16 

perfusion series gave similar regional flow indices to manual segmentations, but the spatial 

agreement of the segmentations was not reported. Hautvast et al.’s method [28] employed 

Otsu thresholding [29] of temporal projections of the image series to locate the heart region. 

The myocardium was segmented via a Hankel transform-based ring detector in the perfusion 
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images. Tests on 25 perfusion studies comparing region-wise MBF values derived from time 

signal-intensity curves of manual and automatically segmented regions gave an R2 value of 

0.805.

In addition to focusing on the perfusion images rather than the maps, all of these methods 

differed from our work in a few key ways. First, Gupta et al. [24], Adluru et al. [27], and 

Hautvast et al. [28] did not automatically segment or validate their methods on the apical 

slice. Second, none of the methods provided automatic segmental analysis. Tarroni et al. 
[25], Beache et al. [26], Adluru et al. [27], and Hautvast et al. [28] presented segmental 

analysis results using manually selected RV insertion point and sectors, while Spreeuwers 

and Breeuwer [23] and Gupta et al. [24] did not perform segmental analysis. Third, Tarroni 

et al.’s method [25] required user interaction for the myocardial segmentation. These 

omissions demonstrate both the difficulty and the need for fully automated segmental 

analysis.

As previously mentioned in the Introduction, two recent studies have utilized deep learning-

based methods for myocardial segmentation of CMR perfusion pixel maps [13], [14]. The 

similarity of these works to our own methods warrants some comparison. Scannell’s work 

[13] provided independent test results based on 60 scans from 30 subjects for each of the 

four steps in their method, while Xue’s work [14] presented testing results of 200 scans from 

105 patients for myocardial, LV, RV, and RV insertion point detection, and the resulting 

MBF measurements. The results from our conventional computer vision approach were 

measured on 486 scans from 243 studies. Here we will focus the comparison of our results 

with these methods based on 1) myocardial segmentation and Bland Altman analysis of 

measured MBF values in all three postposed methods, 2) the resulting sector-wise analysis 

with [13], and 3) RV insertion point accuracy with [14]. As Xue and our methods detect an 

RV insertion point angle, instead of the exact pixel location as in [13], a comparison of 

Scannell’s RV insertion point was not deemed practical. Similarly, Xue’s segmental analysis 

did not provide enough information to determine differences between automated and manual 

MBF measurements. They only reported that “the per-sector measures showed no difference 

between the CNN and manual measures (P = 0.92)” [14], so a direct MBF comparison in 

automatic vs. manual measured segments is not possible.

In our comparison with [13], [14], we find that 1) in the overall myocardial segmentation 

indices comparison, Scannell’s method achieved an average Dice score of 0.80 ± 0.06 over 

all slices, compared to the proposed method’s 0.86 ± 0.06 and Xue’s 0.93 ± 0.04. Scannell’s 

Bland Altman analysis yielded a bias of 0.04 ml/g/min versus the proposed methods 0.01 

ml/g/min. Xue’s paper did not report exact bias numbers, but their Bland Altman plot shows 

a bias less than 0.025 ml/min/g. Scannell did not report segmentation failure on any cases, 

while Xue and the proposed method reported two failed segmentations each. 2) Scannell’s 

sector-wise analysis showed an R2 of 0.76 over all three slices while our results achieved 

0.94. 3) Xue’s RV insertion point differed from the manual by 2.65 ± 3.89°, compared with 

the proposed method’s 3.19 ± 4.16°. Over all these comparisons show that the three methods 

provide similar results of comparable segmentation performance; however, in general the 

proposed method yields slightly superior results to Scannell et al. [13] but slightly inferior 

results to Xue et al. [14].
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In terms of methodology, the main differences between Scannell and Xue’s methods versus 

our approach are 1) the use of deep learning methods at each stage of processing, and 2) the 

decision to use the perfusion image myocardial segmentation to limit both quantification and 

segmental analysis. Regarding the former, deep learning is a burgeoning segment of the 

medical image processing field and is likely to result in great advances. Its main drawback is 

the requirement for large amounts of independently and manually generated training data; 

hence why 135 of Scannell’s 175 subjects and 1825 scans Xue’s dataset were relegated to 

the training dataset. Due to the present rarity of such large, labeled datasets, the proposed 

method opted for more traditional image processing techniques and was able to maintain a 

similar performance.

Regarding the latter, in contrast to Scannell’s, Xue’s and other previous methods, the 

proposed automated processing method includes segmentation of the myocardium from both 

the myocardial perfusion images and the MBF map images. This is implemented by using an 

initial myocardial segmentation from the perfusion images to refine the myocardial 

segmentation of the MBF map. From our experience, myocardial segmentation performed 

on either perfusion image series or MBF maps alone had limitations. By leveraging the 

information from the perfusion images and MBF maps together, a more reliable and robust 

segmentation was achieved.

For example, residual motion, partial volume effects, and perfusion imaging artifacts may 

hamper the accuracy of the myocardial segmentation in the perfusion images. These issues 

could introduce mismatched myocardial borders frame-to-frame within the image series and 

hinder the consistency of the myocardial region between the image series and the MBF 

maps. On the other hand, segmentation of the RV and LV regions can be more reliably 

performed on the perfusion images due to distinct time-varying contrast signal in the blood 

pool.

In contrast, myocardial segmentation performed on the MBF maps alone also introduced 

technical difficulties. For example, the background region in the maps appears patchier and 

noisier than the perfusion images (the result of quantifying non-myocardial pixels), which 

can make it more difficult to isolate the epicardial edge than in the perfusion images. 

However, MBF map segmentation is more robust to the residual motion and blurring effects 

after the deconvolution step as it provides a low-pass smoothing effect to the pixel time-

signal intensity curves. It also produces a more practical MBF value to help differentiate the 

myocardial pixels, rather than using arbitrary signal intensity units. By segmenting the 

perfusion images first, we can better constrain the segmentation in the MBF maps to remove 

the background non-myocardial pixels and locate the myocardial pixels, making the overall 

method more robust and accurate.

Despite the similarity of these works, each still stands on its own as worthwhile, 

complementary processes, and none should invalidate the others. The inline approach by 

Xue et al. [14], for example may increase speed of initial data availability, while the 

proposed post-processing methods allow re-analysis of legacy data, or modification of 

segmentation or quantification parameters for different acquisition protocols or non-typical 

cases.
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The presented work has some limitations. Our primary dataset in the current study is limited 

to scans from one center, and two scanners, and all use the same dual-sequence imaging 

protocol. That said, we include in the appendix two smaller independent validation datasets, 

one from our institution but using an alternate imaging protocol, and another from an 

external institution. Further, while the presented automated MBF map segmentation does not 

depend on one specific AIF imaging protocol, a dedicated AIF acquisition method (such as 

the dual-sequence [15] or the dual-bolus approach [30]) is required for the MBF maps 

generation, but these methods are not yet widely available clinically. However, it is hoped 

the results presented will bolster the use of quantitative CMR perfusion in the field.

It is worth noting that this limitation is also shared by the discussed deep learning methods. 

The current deep learning methods have not been shown to be generalizable to different 

acquisition protocols. While Scannell’s study only used dual-bolus perfusion acquisition 

[13], Xue’s approach only worked in dual-sequence perfusion imaging [14]. There is a need 

for a direct comparison of different perfusion quantification and segmentation approaches 

based on a common and large dataset that includes multi-centers, multi-vendors, and multi-

acquisition protocols to evaluate their clinical diagnostic performance. It is also our hope 

that increased data availability and diversity will improve all AI methods to be generalizable 

to different environments and diseases in the near future.

Since the goal of the presented work was to perform myocardial segmentation on the MBF 

maps, as opposed to the perfusion image segmentation methods surveyed earlier, we did not 

perform independent validation for the myocardial segmentation on the perfusion image 

series. In the proposed method, the perfusion image segmentation is only an intermediate 

step to improve the accuracy of the final MBF map segmentation. It is therefore less 

important and unclear whether the intermediate segmentation of the perfusion images is 

accurate enough to justify its use in separate applications. However, future work could test 

the accuracy of this step in more detail and perhaps improve upon both it and the MBF map 

segmentation. Similarly, it is acknowledged that individual processing steps in generating 

the perfusion pixel maps, such as motion correction or deconvolution, may affect the MBF 

map segmentation. Nevertheless, it is beyond the scope of this work to evaluate the effects of 

each of these individual steps for the final segmentation accuracy.

Finally, our evaluation makes use of an 18-sector model based on one RV insertion point at 

the basal slice instead of a more common AHA 16-sector model. However, given the same 

model was used for both manual and automatic methods, it should not affect the overall 

conclusions of the study. Furthermore, this was not an imminent concern because mapping 

the sector-wise MBF measurements to arterial territories (the primary utility of AHA 

segmental analysis) can be reprogrammed according to different needs.

V. CONCLUSION

We have presented a fully automated method for segmental analysis of the myocardium 

from CMR imaging perfusion MBF maps. The method successfully processed 243 of 247 

clinical studies. Further, the proposed method was shown in excellent agreement with a 

manual reference standard in terms of segmented area and region derived perfusion 
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measurements. The presented method will be integrated with our fully automated CMR 

perfusion pixel mapping pipeline to aid in its use and proliferation for different clinical 

applications, as well as future research into improved methods for computer aided diagnosis.
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APPENDIX A

We have assembled a secondary, independent dataset acquired in our institution which 

makes use of a different acquisition protocol: dual bolus AIF acquisition scheme, details of 

which are described in [3], rather than the dual sequence method in our primary dataset. 

These additional tests are intended to determine the generalizability of our approach to 

different acquisition protocols.

This set of independent data is composed of 25 dual bolus perfusion studies that have 

adequate vasodilator response for quantitative CMR perfusion imaging and MBF 

quantification. They include the same three slices at rest and stress as our primary dataset. 

All patients have signed research consent documents and all data was fully anonymized to 

meet our institutional requirements for patient inclusion before image processing.

The MBF maps of these cases were manually contoured, and then compared with the 

segmentation generated by the proposed automated method. The results of this independent 

dual bolus dataset are summarized in Table 6 and Table 7. Comparison of sector-wise 

perfusion values between automated and manual segmental analyses yielded Pearson’s 

correlation coefficients of 0.98 (p < 0.001) for MBF estimates, and 0.89 (p < 0.001) for 

MPR estimates. An example of our automated segmentation is included in the Figure 8.
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FIGURE 8. Dual bolus example result:
Comparison of automated and manual segmentation of stress and rest MBF maps obtained 

from a different imaging protocol based on dual bolus acquisition approach.

TABLE 6.

Myocardial area agreement metrics.

Basal Mid Apical Total

Dice 0.86 ± 0.05 0.86 ± 0.06 0.83 ± 0.10 0.85 ± 0.07

Cohen Kappa 0.86 ± 0.05 0.86 ± 0.06 0.83 ± 0.10 0.85 ± 0.08

TABLE 7.

Myocardial border distance metrics.

(mm) Basal Mid Apical Total

Epicardial 1.57 ± 0.52 1.75 ± 1.01 1.93 ± 1.75 1.75 ± 1.22

Endocardial 0.79 ± 0.37 1.10 ± 0.63 0.83 ± 0.62 0.91 ± 0.57

JACOBS et al. Page 14

IEEE Access. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TABLE 8.

Myocardial area agreement metrics.

Basal Mid Apical Total

Dice 0.80 ± 0.04 0.84 ± 0.04 0.78 ± 0.07 0.81 ± 0.06

Cohen Kappa 0.80 ± 0.04 0.84 ± 0.04 0.77 ± 0.07 0.80 ± 0.06

TABLE 9.

Myocardial border distance metrics.

(mm) Basal Mid Apical Total

Epicardial 1.88 ± 0.41 2.12 ± 0.63 2.00 ± 0.51 1.99 ± 0.54

Endocardial 1.25 ± 0.49 1.09 ± 0.47 1.21 ± 0.68 1.18 ± 0.56

Analysis shows that these dual bolus results are comparable to our primary results from the 

dual sequence dataset presented in the body of paper, helping to validate our methods’ 

generalizability to alternative quantitative perfusion imaging approaches.

APPENDIX B

We have assembled a tertiary, independent dataset consisting of scans performed at a 

partnered institution (NHS Golden Jubilee National Hospital, Clydebank, United Kingdom) 

using a different scanner running different imaging parameters than those used in our 

institution. These additional tests are intended to determine the generalizability of our 

approach to different scanners and imaging parameters.

This set of independent data is composed of 25 perfusion studies captured using a dual 

sequence acquisition method, similar to our primary dataset, which includes both rest and 

stress scans of three slices. All images were fully anonymized before reaching our institution 

to meet the source institution’s requirements for data sharing. All studies had adequate 

vasodilator response for quantitative CMR perfusion imaging and MBF quantification. 

However, the perfusion images in this test dataset had noticeably lower spatial resolution and 

more pronounced image noise than the data from our institution.
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FIGURE 9. Alternate institution example result:
Comparison of automated and manual segmentation of stress and rest MBF maps obtained 

from an independent institution using a different scanner and imaging parameters.

The MBF maps of these studies were manually contoured and then compared with the 

proposed automated segmentation method. The results of this independent dual sequence 

dataset are summarized in Table 8 and Table 9. Comparison of sector-wise perfusion values 

between automated and manual segmental analyses yielded Pearson’s correlation 

coefficients of 0.95 (p < 0.001) for MBF estimates, and 0.78 (p < 0.001) for MPR estimates. 

An example of our automated segmentation is shown in Figure 9

Compared with the results of the primary data from our institution, these quantitative 

segmentation metrics show a slightly lower Dice score and slightly increased distance 

measurement from this independent dataset. However, this small performance decrease is 

not surprising due to the lower resolution imaging setting used at this clinical site, which 

resulted in larger myocardial pixels in the images and led to greater distance errors. Despite 

this, the overall agreement metrics are still acceptable in the basal and mid slices. Only the 

apical slice suffers more considerably, perhaps due to partial volume effect as well as motion 

artifacts. This additional analysis helps validate our method’s generalizability to external 

datasets collected from independent clinical sites with difference scanning configurations.
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APPENDIX C

In addition to the quantitative metrics presented in Tables 2 to 9, several supplementary 

metrics were assessed to evaluate the overall segmentation performance. These include 

accuracy, sensitivity, specificity, positive predictive value (PPV, also referred to as 

precision), volume overlap error (VOE), relative volume difference (VD) [22], and the 

border distance metrics of the average symmetric surface distance (ASSD) [22], Hausdorff 

distance (HD), and Mahalanobis distance (MD). Table 10 presents the assessment results of 

our primary dataset. Table 11 summarizes the results of the independent dataset in Appendix 

A, while Table 12 gives the results of the independent dataset in Appendix B.

Please note that one reason these metrics were not included in the body of the paper is due to 

known biases in some of them. For example, specificity is the ratio of pixels classified as 

true negative (correct background) to all true negative and false positive pixels. Due to a 

relatively small myocardial region of interest in our images, the vast number of true negative 

pixels of the background region overwhelms the relatively few false positive pixels, resulting 

in a misleadingly high metric.

TABLE 10.

Additional assessment metrics for the primary dataset (N = 243 subjects, 1458 slices).

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

VOE 
(%)

VD 
(%)

ASSD 
(mm)

HD 
(mm)

MD 
(mm)

99.48 ± 0.21 87.87 ± 09.92 99.65 ± 0.19 78.36 ± 
9.70

29.56 ± 
10.00

8.21 ± 
6.84

1.28 ± 
0.60

14.27 ± 
3.70

0.173 ± 
0.12

TABLE 11.

Additional assessment metrics for the independent dataset in Appendix A (N = 25 subjects, 

150 slices).

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

VOE 
(%)

VD 
(%)

ASSD 
(mm)

HD 
(mm)

MD 
(mm)

99.49 ± 0.25 89.48 ± 10.14 99.64 ± 0.18 77.55 ± 
8.55

29.26 ± 
9.76

9.49 ± 
7.05

1.36 ± 
0.72

13.97 ± 
3.77

0.19 ± 
0.12

TABLE 12.

Additional assessment metrics for the independent dataset in Appendix B (N = 25 subjects, 

150 slices).

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

VOE 
(%)

VD 
(%)

ASSD 
(mm)

HD 
(mm)

MD 
(mm)

99.41 ± 0.16 83.05 ± 9.51 99.66 ± 0.15 79.10 ± 
9.76

31.70 ± 
10.62

5.87 ± 
4.53

1.59 ± 
0.38

12.75 ± 
3.30

0.23 ± 
0.14
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FIGURE 1. Image Processing Pipeline.
An outline of the proposed methods for automated MBF pixel map segmentation, labeled 

from (a) to (e). They are integrated with the fully automated pixel-wise MBF quantification 

processing pipeline we developed previously (dashed box). More details of steps (c) can be 

found in Figure 2; steps (d-e) are further detailed in Figure 3.
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FIGURE 2. Myocardial Segmentation from Perfusion Images.
An outline of the automated image processing steps for CMR perfusion image segmentation. 

This is part of the proposed automated pixel-wise MBF quantification processing pipeline as 

shown in Figure 1.
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FIGURE 3. Myocardial Segmentation from MBF Maps.
An outline of the automated image processing steps for MBF pixel maps segmentation. This 

is part of the proposed automated pixel-wise MBF quantification processing pipeline as 

shown in Figure 1.
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FIGURE 4. Myocardial segmental analysis of a healthy heart.
The left three columns show automatic and manual segmental results on the MBF map 

images for a healthy volunteer. The red ROI indicates the endocardial boundary, and the 

green the epicardial boundary. The blue line indicates the angle of the RV insertion point, 

and the white lines show the delineation of six sectors for sector-wise analysis. MBF polar 

plots in the right column show the average flow values (in ml/g/min) from each sector. The 

sectors from outermost to innermost are the base, mid, and apex slices.
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FIGURE 5. Myocardial Segmentation from a heart with a perfusion defect.
Automatic and manual segmentation results on the MBF maps with a perfusion defect from 

a patient with suspected coronary artery disease. MBF polar plots show the average flow 

values (in ml/g/min) from each sector.
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FIGURE 6. Sector-wise MBF Correlation and Bland-Altman Plot.
Correlation and Bland-Altman plots of automatic and manual sector-wise MBF values (in 

ml/g/min) for the 243 studies processed, separated by different slice locations. The dotted 

blue lines in the first row represent the trend of linear regression. The dashed lines in the 

second row represent the bias (automated – manual) and limits of agreement (mean ± 1.96 

SD).
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FIGURE 7. Sector-wise MPR Correlation Plot and Bland-Altman Plot.
Correlation and Bland-Altman plots of automatic and manual sector-wise MPR values for 

the 243 studies processed, separated by different slice locations. The dotted lines represent 

the trend of linear regression. The dashed lines represent the bias (automated – manual) and 

limits of agreement (mean ± 1.96 SD).
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TABLE 1.

Patient demographic data.

Gender (male: female) 162:85

Age (year) 50 ± 18

Weight (kg) 82 ± 19

Height (cm) 171 ± 12

Body Mass Index (kg/m2) 28.1 ± 5.7

Body Surface Area (m2) 1.9 ± 0.2

Baseline Heart Rate (beats/min) 65 ± 12

Peak Heart Rate (beats/min) 98 ± 16

Baseline Systolic Blood Pressure (mmHg) 128 ± 19

Peak Systolic Blood Pressure (mmHg) 124 ± 20

Baseline Diastolic Blood Pressure (mmHg) 75 ± 14

Peak Diastolic Blood Pressure (mmHg) 72 ± 15
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TABLE 2.

Myocardial area agreement metrics.

Basal Mid Apical Total

Dice 0.86 ± 0.05 0.88 ± 0.05 0.84 ± 0.08 0.86 ± 0.06

Cohen Kappa 0.86 ± 0.05 0.87 ± 0.05 0.84 ± 0.08 0.86 ± 0.06
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TABLE 3.

Myocardial border distance metrics.

(mm) Basal Mid Apical Total

Epicardial 1.34 ± 0.56 1.52 ± 0.81 1.56 ± 0.77 1.47 ± 0.73

Endocardial 0.95 ± 0.46 1.13 ± 0.54 0.99 ± 0.50 1.02 ± 0.51
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TABLE 4.

Myocardial area agreement metrics.

Rest Stress Total

Dice 0.86 ± 0.06 0.85 ± 0.06 0.86 ± 0.06

Cohen Kappa 0.86 ± 0.05 0.85 ± 0.06 0.86 ±0.06
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TABLE 5.

Myocardial border distance metrics.

(mm) Rest Stress Total

Epicardial 1.34 ± 0.66 1.59 ± 0.77 1.47 ± 0.73

Endocardial 0.93 ± 0.40 1.11 ± 0.58 1.02 ± 0.51
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