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Abstract

In humans and mice, susceptibility to infections and autoimmunity increases with age, due to age-

associated changes in innate and adaptive immune responses. Aged innate cells also have reduced 

activity, which leads to decreased naïve T cell and B cell responses. Aging innate cells also 

contribute to an overall heightened inflammatory environment. Naïve T cell and B cells undergo 

cell intrinsic age-related changes that lead to reduced effector and memory responses. However, 

previously established B and T cell memory responses persist with age. One dramatic change is 

the appearance of a newly recognized population of age-associated B cells (ABC) with a unique 

CD21−CD23− phenotype. Here we discuss the discovery and origins of the naïve phenotype IgD+ 

versus activated CD11c+Tbet+ ABC, with a focus on their protective and pathogenic properties. In 

humans and mice, antigen-experienced CD11c+Tbet+ ABC increase with autoimmunity and also 

appear in response to bacterial and viral infections. However, our analyses indicate that CD21− 

CD23− ABC include resting naïve progenitor ABC expressing IgD. Like generation of CD11c
+Tbet+ ABC, the naïve ABC response to pathogens depends on TLR stimulation, making this a 

key feature of ABC activation. We put forward a potential map of the development of distinct 

subsets from the putative naïve ABC. We suggest defining the signals that can harness the 

response of naïve ABC may contribute to protection against pathogens in the elderly, while CD11c
+Tbet+ ABC may be useful targets for therapeutic strategies to counter autoimmunity.
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I. Immune Responses to Respiratory Infections in the Aged

With age, humans become more susceptible to infections, leading to increased global 

morbidity and mortality.1,2 Lower respiratory tract infections (LRTI) are the most common 
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cause for hospitalizations in people over the age of 65 and 90% LRTI-related deaths are 

within the elderly population.1,3 Many viruses and bacteria cause LRTI such as 

Streptococcus pneumoniae, influenza and more recently SARS-CoV-2.1,3,4 According to the 

CDC, over half of influenza-related hospitalizations and deaths in the US, are in patients 

over the age of 65.5 Unfortunately, current vaccination strategies often fail to induce 

sufficient immunity in aged populations leaving them vulnerable to future outbreaks.6–8 

Aged males and females often show distinct susceptibility to infections, tumors and 

autoimmunity.8 Susceptibility to autoimmune disorders increases more among aged females, 

while there is a higher incidence of tumors in aged males8. Aged males are more highly 

susceptible to respiratory infections such as influenza and in the current COVID pandemic.
4,8 Understanding the mechanisms involved in responses of the aged immune system should 

provide insights that can inform development of new strategies to improve vaccine efficacy 

and therapeutic intervention in the elderly.

Previous studies have established that age-related changes in human and murine immune 

systems increase susceptibility towards infections.8 Aged innate cells express lower levels of 

toll-like receptors (TLR) which are one class of pathogen recognition receptors (PRR), and 

thus, in the aged, infections that stimulate these PRR produce reduced levels of type I 

interferon and other inflammatory mediators during responses to pathogens and reduce 

ability to clear the infection.9,10 Aged neutrophils and macrophages exhibit decreased 

migration and phagocytosis.8,9,11 As animals age, immature monocytes constitutively 

secrete higher levels of inflammatory cytokines in the absence of infection increasing basal 

levels of inflammation during aging.8 Macrophages from aged animals express lower MHC-

II and costimulatory molecule levels leading to a decreased ability to presentation antigen to 

T cells.6 Although aged dendritic cells (DC) secrete proinflammatory cytokines, they have 

defects in migration, phagocytosis, and antigen presentation to T cell during infection.12–14 

Therefore, unchecked inflammatory responses by immature monocytes and DC and poor 

function of neutrophils, macrophages and DC leads to an increase in tissue injury and 

impaired response of T cells, and hence less effective pathogen clearance.8,9 The increased 

proinflammatory environment that develops in the absence of infection may also contribute 

to age-related autoimmune disorders.8

In the adaptive immunity, T and B cells undergo multiple changes with age that play an even 

greater role in impaired immune responses. The aged thymus produces less naïve CD4 T 

cells, leading to a decrease in the CD4 TCR repertoire and a progressive reduction of the 

naïve CD4 T cell compartment (Figure 1).15–18 When stimulated the aged naïve CD4 T cells 

proliferate less and produce less IL-2 contributing to a decrease in CD4 T cell effector 

responses, especially reduced formation of T follicular helper cells (TFH).19 One key change 

is a reduced response of CD4 T cells to IL-6, produced by interacting APC, which acts as a 

signal 3 for TFH and memory CD4 T cell generation.20,21 The limited TFH generation causes 

a dramatic decrease in germinal center B cell (GCB) responses, which leads to fewer Ab-

secreting cells (AbSC), long-lived PC (LLPC) and memory B cells (Bmem) (Figure 1).
6,16,17,20,22–24 Unlike young naïve CD4 T cells, aged naïve CD4 T cells are poor at 

developing into new T cell memory cells.25 Naïve CD8 T cells have similar defects and their 

poor response impairs development of cytotoxic effectors that kill infected targets. As with 
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CD4 cells, memory CD8 T cells generated early in life remain more competent.26 Thus, it is 

response to new or previously unseen pathogens that is mostly hampered by age.

Like naïve T cells, generation of pre and pro-B cells in the bone marrow (BM) decreases 

with age due to changes in the BM microenvironment.27,28 Although the total number of 

peripheral B cell remain the consistent, follicular B cells (FOB), which are the B cells that 

initiate GCB, decrease in the spleen.28 Due to a diminishing immature B cell pool in aged 

mice, splenic B cells are not replenished with new mature B cells and aged FOB consists of 

longer-lived, older naïve B cells, which express a reduced antibody repertoire (Figure 1).
28–30 Like FOB, marginal zone B cells (MZB), which are usually T-independent, decrease 

with age due to changes in anatomical structure in the marginal zone.28,31 These structural 

changes also prevent MZB from interacting with macrophages in the marginal zone 

decreasing the MZB response to blood-borne pathogens.31

Intrinsic changes in B cells also contribute to decrease in GCB responses, class switch 

recombination (CSR) and somatic hypermutation (SHM) (Figure 1).28 Studies show that 

human and murine aged B cells express less E47, a transcription factor that plays a role in 

Aicda transcription.32,33 Aicda gene encodes for activation-induced cytidine deaminase 

(AID), an enzyme required for CSR and SHM in B cells.33 Therefore, lower E47 expression 

in aged B cells leads to lower expression of AID, which decreases isotype-switching and 

affinity maturation (Figure 1).33 Decrease in CSR and SHM negatively impact production of 

antigen-specific GCB, antibodies, and memory B cells, which all play critical roles in 

protection clearing infections and providing long-term immunity to prevent re-infection.16,28 

Since naïve T and B cells are most impaired by aging, it is unsurprising that vaccines given 

to the elderly, including that for influenza, are often ineffective and provide only short-term 

protection, requiring yearly immunization.6

II. Discovery of Aged Associated B cells (ABC)

Although the numbers of splenic B cells remain roughly constant between youth and old age 

in mice, the subset composition changes.28 In young humans and mice, naïve splenic B cells 

are composed mostly of naïve FOB and MZB subpopulations, but these decline with age 

while isotype-switched IgG+ memory B cells accumulate.8,23,34–36 This shift from naïve to 

antigen-experienced B cells contributes to a decreasing immunoglobulin repertoire with age, 

and leads to poor responses to new pathogens.28–30 In 2011, studies by Michael Cancro and 

colleagues, identified a novel subset of splenic B cells that emerges in unimmunized aged 

mice.34 Unlike FOB (CD23+) and MZB (CD21+), this new B cell subset lacks CD23 and 

CD21. They were called “age associated B cells” (ABC) (Figure 2).34,37 Flow cytometry 

analysis revealed that CD21−CD23− ABC maintain surface IgD expression, but do not 

express CD86 and MHC II (Table 1).23,28,34,38 We find that CD21−CD23− ABC are a 

heterogenous population composed IgD+ and IgD− CD21− CD23− ABC.23 In the absence of 

intentional immunization, the IgD+ B cells have a phenotype consistent with unswitched 

naïve B cells, while the IgD− B cells have a phenotype of more antigen-experienced B cells.
28,36,39 Therefore, we proposed that CD21−CD23− ABC are composed of resting, 

unswitched naïve B cells (IgD+) and isotype-switched memory B cells (IgD).23 We believe 

these 2 subsets comprise the resting compartment of ABC (Table 1).
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Philippa Marrack and her colleagues described another distinct ABC population that lacked 

CD21 expression but expressed CD11c and CD11b and accumulated in young autoimmune-

prone mice.40 Unlike the resting CD21−CD23− ABC, CD11c+CD11b+ ABC express 

elevated CD86, MHC-II and Fas, suggesting that they are likely activated and/or atypical 

memory B cells (Table 1).40,41 Further gene array analysis has revealed that this population 

expresses high levels of T-bet, a transcription factor associated with IgG2a/c+ memory B 

cells during viral infections.40–45 Later studies revealed that CD21−CD23−ABC also express 

CD11c and T-bet mRNA suggesting that this population is possibly related to the more 

activated CD11c+CD11b+ ABC subset.46 However, whether CD11c+CD11b+ ABC arise 

from CD21−CD23−ABC and if they represent a small or larger fraction of the presumed 

ABC subset remains unclear (Figure 3).

III. Requirements for ABC development and/or differentiation

Several studies from Cancro’s group suggest that CD21−CD23−ABC arise from antigen-

experienced FOB that accumulate with age.34,46 When young CD23+-enriched FOB were 

adoptively transferred into unimmunized WT hosts they divided more compared to FOB 

transferred into CD40 −/− and MHC-II −/− hosts.34,46 Moreover, the highly divided fraction 

of donor FOB cells lacked CD21 and CD23 expression, but expressed high levels of T-bet.46 

In addition, aged CD154 −/− mice, which lack CD40L on T cells did not form 

CD21−CD23−ABC. Since CD4 T cell activation requires MHC II-bound peptides on antigen 

presenting cells, and CD40 binding to CD40L mediates T and B cell interactions, this data 

suggests that generation of CD21−CD23−Tbet+ ABC is T-cell dependent.37,46 Further 

studies to evaluate if ABC are antigen-experienced quantified the number of somatic 

mutations in resting ABC in unimmunized aged mice and compared it to aged FOB, MZB, 

and GCB. This study revealed that CD21−CD23−ABC contain more somatic mutations in 

their heavy and light chains compared to aged FOB and MZB, but not as many as GCB, 

which undergo multiple rounds of affinity maturation.46 This indicates that 

CD21−CD23−ABC have undergone at least some affinity maturation consistent with the 

hypothesis they are antigen-experienced memory B cells. However, this ABC subset has a 

diverse B cell receptor (BCR) repertoire similar to aged FOB and MZB, suggesting that the 

subset in aged mice, housed in SPF conditions, had undergone minimal clonal selection 

indicating a more naïve like status.46 Moreover, reports indicate that CD21−CD23−ABC 

mostly express IgD, and contain a separate population of IgD− B cells and they occur 

equally in germ-free vs. specific pathogen-free (SPF) aged mice (Kugler-Umana and Swain, 

unpublished results), implying there may be multiple subsets of ABC.23 We propose that the 

majority of resting ABC in SPF mice are indeed naïve and that they develop by an intrinsic 

pathway, independent of foreign and commensal microbe exposure. We suggest that the 

CD21−CD23−ABC may also contain a fraction of memory B cells that accumulate in T-cell 

dependent manner. Thus, we propose, in very old mice (over 18 months) resting ABC are 

dominant naïve B cell population.

While FOB are T-cell dependent, MZB. B1b, and B1a cells are T-cell independent B cell 

subsets that rapidly become antibody-secreting cells in response to BCR crosslinking and 

TLR signaling39. However, these subsets decrease in number and activity.8,27,31 Studies 

shows that CD21−CD23− ABC divide more with in vitro with TLR7 and TLR9 stimulation 
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compared to aged FOB and MZB.34 Our own studies indicate that in aged mice, the resting 

ABC are the major B cell population that responds to influenza infection independent of T 

cells (Figure 3). We transferred FACS-sorted resting phenotype ABC into influenza-infected 

RAG−/− host and studied their differentiation and activity.23 We found infection caused naïve 

ABC to express Fas and become influenza-specific Ab-secreting cells (AbSC).23 We termed 

this subset as induced age-associated B cells (iABC). Further studies show that iABC 

formation from donor ABC depends on TLR7 and/or other endosomal TLR expressed by 

host cells (Kugler-Umana and Swain, unpublished results). TLR7 is an endosomal sensor 

capable of detecting ssRNA which we believe is how influenza infection stimulates the ABC 

response. This suggests that resting ABC can mount an influenza-specific response, without 

T cells, but dependent on TLR pathways.

Like activation of CD21−CD23−ABC, MZB and B1b subsets, initial CD11c+CD11b+ ABC 

generation also requires TLR signaling (Figure 3).40 Studies indicate that unimmunized aged 

TLR7−/− and Myd88−/− aged mice do not accumulate the CD11c+CD11b+ ABC subset 

compared to aged WT, TLR4−/− and TLR3−/− mice. Moreover, repeated administration of 

TLR7 agonists increases the number of ABC in young mice compared to repeated 

administration of TLR3, TLR4 and TLR9 agonists suggesting that chronic TLR7 stimulation 

is particularly important for CD11c+CD11b+ ABC generation.40 Further in vitro and in vivo 
studies also shows that, in both cases, TLR7 stimulation synergizes with BCR signaling to 

generate CD11c+ B cells from young B cells that express T-bet which are presumably the 

Ag-experienced B cells.42 Additionally, overexpression of T-bet also leads to an increase of 

CD11c and CD11b expression in B cells.42 Although TLR7 stimulation plays an important 

role in generating these active ABC, CD11c+CD11b+ ABC also require IL-21.47,48 Adding 

IL-21 in vitro in addition to TLR7 or 9 stimulation also led to an increase in CD11c+T-bet+ 

B cells from cultured FOB, compared to TLR7 or 9 stimulation alone.47 Later studies 

investigated the molecular pathways that contribute to IL-21 dependent CD11c+CD11b+ 

ABC generation. Their studies revealed that young SWAP-70 and DEF6 double knockout 

(DKO) mice develop lupus and prematurely accumulate CD11c+CD11b+T-bet+ ABC which 

lack CD21 and CD23 expression.48 Additionally, they show that this increase in ABC is due 

to the absence of regulation, by the SWAP-70 and DEF6 proteins, of IL-21 mediated IRF5 

accessibility to key targets involved in ABC formation.48 This suggests that accumulation of 

CD11c+CD11b+T-bet+ ABC also depends on IRF5 signaling.48 Altogether these studies 

support the idea that the ABC with the activated CD11c+/CD11b+, T-bethi phenotype arise 

from a combination of Ag or auto-Ag recognition, IL-21 and TLR7 stimulation. Although 

ABC generation depends on IL-21 in the context of autoimmunity, whether IL-21 

dependence holds true in aged mice where T cell help is deficient and ABC activation is T-

cell independent, remains unclear.16,23

IV. Role of ABC in autoimmunity (mouse and human)

Multiple studies suggest that both ABC populations play a role autoimmune pathogenesis 

(Table 2).38,47,49,50 Prior to becoming mature B cells, pro-B cells express a surrogate light 

chain (SLC), which along with μ heavy chain form a functional pre-BCR, that is required for 

B cell selection.51,52 Without SLC, the pro-B cell pools shift to SLClow pro-B cells and 

allows for the introduction of autoreactive B cells into the peripheral B cell pool.51,52 
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Studies show that CD21−CD23−ABC secrete TNF-α that reduces SLChigh pro-B cells in 

aged mice, which increases the pool of SLClow pro-B cells and autoantibodies.35,51,52 

Therefore, this ABC subset may aid the development of autoreactive B cells and thus 

contribute to rising autoimmunity with age.

The CD11c+CD11b+T-bet+ ABC accumulate at a faster rate in several young mouse models 

for SLE such as Mer −/− mice, NZBxWF1, and SWAP-70 −/−DEF6 −/− double knock out 

mice compared to young wild-type mice40,53. These ABC can make more autoantibodies 

against chromatin, nuclear ribonuclear proteins (nRNP) and cardiolipin compared to FOB, 

suggesting they directly contribute to autoimmunity40,48,53. One possibility is that the 

autoimmune environment may mimic the aging environment leading to the generation of this 

subset even in the young. Many studies on CD11c+CD11b+T-bet+ ABC function have been 

done in mouse models of autoimmunity. Several indicate that CD11chi T-bethi ABC secrete 

IFNγ and can present self-antigen to T cells.40,42,44,50,54 Furthermore, the presence of 

CD11chi T-bethi ABC correlate with kidney damage and early mortality in SLE-prone mice.
50

According to a study by Marrack, healthy human patients across different ages and sexes did 

not have CD11chiCD21low ABC cells.40 However, this ABC population increased with age 

in peripheral blood among aged RA (Rheumatoid Arthritis) patients (Table 2).40 In contrast, 

CD21−CD23− ABC and CD11b+CD11c+T-bet+ ABC develop in healthy WT aged mice and 

CD21−CD23− ABC develop in germ-free mice (Kugler-Umana and Swain, unpublished 

results).34,40,41 Human ABC are a CD11chiCD21low subset that express activation markers 

such as CD80 and CD86, lack IgD and IgM expression, and express IgG.40,55 Given this 

phenotype and human exposure to multiple infections and non-infectious Ag, it makes sense 

that the human ABC populations are most likely isotype-switched activated memory B cells.
39,40 Like murine CD11b+CD11c+T-bet+ ABC, CD11c+T-bet+ ABC accumulate in the blood 

of young SLE patients and correlate with SLE symptoms (Table 2).40,50,56 Also like human 

ABC found in aged RA patients, this autoimmune-associated B cell population lacks surface 

IgD and IgM expression and a fraction express IgG.40,56 The CD11c+ autoimmune B cells 

express IL-21 inducible genes suggesting this subset is IL-21 dependent in human SLE as 

well.48,54 Recent studies have also identified CD11c+T-bet+ ABC in inflamed synovial 

tissues of aged RA patients and CD11c+ B cells in nephritic kidneys in young SLE patients 

suggesting that this subset may contribute to local inflammation (Table 2).56,57 Although 

human ABC lack CD21 expression, they are not equivalent to the murine CD21−CD23− 

naïve predominant ABC population since the human ABC do not express surface IgD and 

do express CD80 and CD86.23,34 Unlike human ABC increase in aged RA patients, in MS 

patients this population decreases with age.40,55 Furthermore, unlike the 2011 RA study, in 

this 2016 MS study there is a significant increase of CD11chiCD21low ABC in aged healthy 

patients compared to young patients.40,55 This suggests that human ABC are not associated 

with all autoimmune conditions and there is a need to collect more data from healthy aged 

patients. Furthermore, the progenitor of the different human subsets of distinct phenotype is 

unclear and they may not all be derived from bone fide ABC. Studies in mice show that the 

activated ABC subset in human autoimmune disease may be a good therapeutic target. B cell 

specific T-bet deletion in young SLE model mice reduced development of splenic CD11chiT-

bethi ABC, and led to decreased spontaneous GCB formation, which reduced autoantibody 
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production and kidney damage. T-bet targeting or the depletion of the activated ABC subset 

could be a useful therapy for autoimmunity.50

V. Role of ABC in Bacterial and Viral infections (mouse and human)

Several ABC-like populations have been identified in bacterial and viral infections. Initial 

studies identified a CD11c+IgM+ B cell population in E. muris-infected young mice, which 

were described as unswitched memory B cells, which express T-bet.58–60 To study their 

secondary responses without the interference of neutralizing antibodies, this subset was 

sorted and transferred into E. muris challenged vs. naive hosts.60 With E. muris challenge, 

this T-bet+ memory B cell subset differentiated into AbSC, suggesting they could provide 

protection against E. muris reinfection.60 Similar to E. muris infection, CD11c+T-bet+ ABC 

accumulate in young mice infected with gammaherpesvirus 68 (gHV68), mouse CMV, 

lymphocyte choriomeningitis virus, and vaccinia.42 To determine if such ABC contributed to 

anti-ghV68 antibody production and ensure that T-bet deletion is restricted to B cells, they 

made mixed bone chimeras containing a mixture of bone marrow cells from μMT mice and 

either T-bet −/− mice or WT mice.42 Results showed that the B cell T-bet−/− chimeras had 

higher ghV68 viral titers and less ghV68-specific antibodies, suggesting that T-bet+ B cells 

play a role in viral clearance.42 This data coincides with reports that show that T-bet drives 

NP-specific IgG2a+ memory B cells and influenza-specific AbSC cells formation.43,47,61 

Meanwhile, a recent study indicates that T-bethi influenza-specific memory B cells are 

restricted to the spleen, blood and bone marrow in humans and mice and that they produce 

anti-HA stalk antibodies in mice, indicating that they may have potential to contribute to 

protective responses.62

In humans, T-bet+ B cells accumulate in chronically-infected HIV-positive patients, 

chronically-infected aged Hepatitis C (HCV) patients and patients immunized with live 

yellow fever or vaccinia vaccine.63,64 Antiviral treatment of chronic HCV infection reduced 

the number T-bet+ B cells, suggesting that chronic infection is needed to sustain this subset.
64 Like the CD11c+T-bet+ ABC in autoimmune patients and autoimmune-prone mice, this 

subset lacks CD21, IgD, and IgM expression, but does express IgG, CD86 and CD95 

indicating these are isotyped-switched memory B cells.63,64 Furthermore, in HIV-positive 

patients, a large frequency of HIV-specific B cells expressed T-bet, which correlates with the 

production of HIV-specific IgG1 antibodies in the serum.63 More recently, studies indicate 

that rhinovirus infection produces T-bet+ memory B cell in human subjects, which infiltrate 

nasal tissue and make heterotypic IgG responses.65 This suggests that T-bet+ B cells may 

play a role in inducing and/or mediating human antigen-specific B cell responses. One major 

challenge to understanding the role of different subsets, is that T-bet can be expressed by 

conventional B cells as well as ABC B cells and so great care must to taking in designing 

experiments that ascribe functions to ABC.

VI. Positive ABC Role in Overcoming Aged Defects and Shared Strategies 

of T and B Aging

Based on the literature in the field and our data discussed above, we propose that ABC, 

defined as the lineage not expressing CD21 and CD23, are a lineage of B cells with subsets 
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at different differentiation stages. We find that in unimmunized aged mice, the majority of 

ABC are resting naive B cells expressing sIgD, and/or IgM. This population increases with 

age and is more prominent in females (Figure 2).34 In contrast, in autoimmunity and chronic 

infection, activated memory ABC population(s) develop and accumulate.38 The activated 

populations are likely diverse and functionally heterogenous, having developed under 

different conditions. Although many studies have focused on the activated, T-bethi ABC as 

mediators of autoimmunity, the activated ABC induced by infections may play critical 

positive roles in protective immunity. At least in aged mice they are the major naïve B cell 

subset that responds to new pathogens.23 Furthermore, recent studies indicate that a T-bethi 

B cells may play a role in producing anti-HA stalk antibodies during influenza infection.62 

This coincides with reports that shows that broadly-neutralizing antibodies are maintained as 

we age and accumulate with each subsequent vaccination.66–68 Since ABC accumulate with 

age, we propose that this age-dependent subset may be an important source of these broadly 

neutralizing antibodies. This may be particularly important given that aged immune systems 

do not generate effective Ab responses from naïve FOB cells and naïve CD4 do not develop 

TFH in aged mice, unless pathogen recognition (PR) signals are high.17,20,21 Therefore, 

understanding ABC generation and activation may provide a strategy for a universal 

influenza vaccine in aged populations.

We should also consider that TFH that drive T-cell dependent B cell responses, decrease with 

age leading to poor primary memory B cell formation and antibody responses towards new 

pathogens. However, our studies show that ABC can respond in the absence of TFH and CD4 

T cells to produce AbSC.20 Unlike FOB, in vitro TLR7 and TLR9 stimulation activates 

CD21−CD23−ABC and in vivo chronic TLR7 stimulation induces CD11c+Tbet+ABC.34,40 

This suggests that primary aged B cells responses become less T-cell dependent and depend 

more on PR pathways. This may be a useful strategy to circumvent the poor T cell responses 

in the aged (Figure 4). By defining the factors required for protective ABC responses, we 

may learn how to harness the positive potential of ABC in anti-pathogen immunity.

Like aged B cells, aged T cells also become more dependent on PR pathways.20,21 Our early 

studies showed that addition of IL-2 or addition of pro-inflammatory cytokines [IL-1, IL-6, 

TNF] increased aged CD4 T cell responses.19,69 Indeed we found that APC stimulated with 

TLR agonists make IL-6 and interact with the aged naïve CD4 T cells, restoring much of the 

aged naïve CD4 T cells response.17,20,21 We suggest this heightened dependence on PR 

signaling limits the naïve T cell response to circumstances where a pathogen presents a 

compelling danger, most likely to prevent un-necessary inflammation and limit development 

of autoimmunity. This change is thus analogous to the change in the B cells with aging, 

where the responsive naïve ABC have a strict dependence on TLR7/9, indicating they are 

restricted by the need for PR signaling. We suggest the increasing dependence on PR 

pathways is a shared beneficial strategy, for the animal and a key feature of T and B cell 

aging.

Unsurprisingly most aging studies imply that all aging is harmful and leads to harmful loss 

of immune functions. However, we argue that loss of certain aspects in adaptive immunity in 

aging may be part of a beneficial strategy.70,71 The loss of naïve T and B cells with age is 

largely caused by homeostatic shifts. This is particularly clear for naïve T cells because the 
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thymus undergoes gradual involution and makes less T cells. We propose that this may be an 

evolutionary strategy to make room for memory T and B cells, which accumulate with 

exposure to pathogens throughout young life.6 Unlike naïve T cells, memory CD4 cells 

generated in young mice retain their function with age.72 Our research shows that 

development of naïve CD4 defects is also a programmed process driven by the increased 

chronological age of the naïve CD4 population that becomes longer-lived.73,74 Additional 

studies, where CD4 T cells are depleted from aged mice, indicated that newly generated 

CD4 T cells do not express key age-related defects and function like young cells.22,75 

Furthermore, without a thymus and heterogenous expression of the pro-apoptotic protein 

BIM, the naïve CD4 T cell population develop aging defects more quickly and become 

older.73,74 We recently found that loss of naïve CD4 T cells and functional reduction in IL-6 

response, occur in germ-free mice just as in conventional mice even though they mice lack 

exposure to pathogens and to commensal microbes (Swain et al. unpublished). These results 

suggest that the changes in naive T cells are part of a developmental program and that they 

have helpful effects.

We suggest that identifying the changes in the aged immune system and strategies to 

overcome those changes, may provide alternative vaccination strategies in the elderly 

(Figure 4). Since T and B cell memory cells accumulate and remain responsive with age, 

one strategy would be to immunize young and middle-aged populations with key vaccines to 

increase the T and B cell memory pool.6,66,72 Based on our studies of aged naïve T cells, 

another strategy would be to develop vaccines that provide higher levels of antigen and 

TLR-signaling and thus drive more optimal CD4 T cells responses including new memory 

responses to emerging or altered pathogens.17,20,21 Not only should increases in antigen 

dose and TLR signaling improve naïve CD4 T cell responses, but it may also enhance the 

naïve ABC responses. Targeting both aged naïve T cells and ABC may lead to establishing 

new memory cells to emerging or altered pathogens in aged populations.

VII. Conclusions

We conclude that the process of aging leads to major changes in innate and adaptive, T and 

B cell immunity. We focus on changes in naive CD4 and naïve B cells, that make it difficult 

to readily vaccinate the elderly to new pathogens and propose different vaccine strategies for 

aged populations (Figure 4). We discuss that for B cells, there is a shift of naïve B cells from 

conventional FOB responses which become limited, to a recently described ABC subset 

(age-associated B cells) and point out the naïve ABC can respond only if sufficient pathogen 

recognition is present. We draw parallel to the cell intrinsic changes in naïve CD4 T cells, 

which also become dependent on PR activation of APC. We suggest this may reveal a basic 

strategy to avoid un-necessary responses with age which can be pathogenic and possibly to 

avoid dangerous autoimmunity, but to retain sufficient potential to respond to pathogen 

infection. These new hypotheses need further evaluation but provide a novel framework to 

think about some of the aging changes that most impact immunity.
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Abbreviations:

ABC age-associated B cells

AbSC antibody-secreting cells

AID activation-induced cytidine deaminase

APC Antigen-presenting cell

BCR B cell receptor

BM bone marrow

CSR Class switch recombination

DC dendritic cells

FOB follicular B cells

GCB germinal center B cells

iABC induced age-associated B cells

MZB marginal-zone b cells

LLPC long-lived plasma cell

LRTI lower respiratory infection

nRNP nuclear ribonuclear proteins

PR pathogen-recognition pathway

PRR pathogen recognition receptor

RA Rheumatoid Arthritis

SHM somatic hypermutation

SLE systemic lupus

SPF Specific pathogen-free

SLC surrogate light chain

TCR T cell receptor

Tfh T follicular cell

TLR toll-like receptor
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Figure 1: Age-Associated Changes in T cell and B cells.
With age, the number of naïve B cells and T cells decreases leading to a smaller TCR and 

BCR populations and repertoires. Upon pathogen exposure, naïve CD4 T cells secrete less 

IL-2 leading to lower effector T cell responses including T follicular helper cells (Tfh). 

Lower Tfh responses decrease GCB responses, which leads to fewer memory B cells and 

antibody-secreting cells towards newly encountered pathogens. However, memory B cells 

from previous immune responses accumulate with age leading to a larger memory B cells 

pool in the aged.
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Figure 2: B cell responses shift to PR-dependent mechanisms with age
With age, humans and mice experience higher antigen exposure and an increased 

proinflammatory environment. Furthermore, the number of FOB, MZB and B1b/a cells 

decrease as ABC accumulate with age. This can be replicated in chronically infected and 

autoimmune-prone young mice, which accumulate CD11c+Tbet+ ABC. T-cell responses 

also decrease leading to a higher dependence on PR signals. Unlike, T-cell dependent FOB, 

ABC can be T-independent, and their activation depends on higher Ag exposure and PR 

signals. Thus, they can mount a primary response to new pathogens, which may provide 

protection.
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Figure 3: Proposed relationship between naive and primed ABC
Our studies show that with high Ag and PR exposure, naïve ABC can become active ABC 

which express Fas and differentiate into Ab-producing cells. We termed this subset as 

induced age associated B cells (iABC). Although autoimmune ABC can accumulate in 

young mice, we propose that this primed subset may also arise from naïve ABC with 

multiple Ag exposures and heightened inflammatory environment. Like iABC effectors, this 

autoimmune ABC differentiates into Ab-producing cells which produces autoantibodies.
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Figure 4: Proposed Vaccine Strategies to Enhance Response in the Elderly
Studies show that memory T and B cell response increase with age and may provide 

protection against reoccurring infection. One way of enhancing the aged immune system is 

by increasing exposure to Ag by vaccination in young or middle-aged populations in order 

to increase the size of the memory repertoire later. Another way of enhancing aged immune 

responses is by providing higher doses of Ag and TLR-signaling to antigen-presenting cells 

(APC). These should lead to optimal naïve aged T and B cells responses and help establish 

new memory T and B cells responses to new pathogens.
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Table 1:

Comparison of resting vs. activated ABC phenotypes

Markers Resting ABC Activated ABC References

CD21 − − 34,40

CD23 − − 34,40

IgD + − 34,40

(Memory: IgD−)

T-bet + + 40, 46,48

CD80 N/A + 40,56

CD86 − + 34,40

MHC II − + 34,40

CD11c + + 40,41,46.48

CD11b N/A + 40,41,48

The table shows (+)-positive or (−)-negative expression of various markers associated with ABC in resting and activated states, based on the listed 

references. Resting ABC are composed of IgD+ and IgD− (naïve & memory) subsets that lack CD80 and CD86 expression. Meanwhile, active 
ABC express these two costimulatory markers show decreased IgD expression suggesting they are an active isotype-switched subset.
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Table 2:

Comparison of ABC-like subsets in autoimmunity and chronic infections

Condition Phenotype Location Function References

Rheumatoid Arthritis 
(RA)
(human)

T-bet+CD11c+IgD−IgM−CD21−CD23−CD11c+IgG+ Blood, synovial 
joint tissues

Local Inflammation, 
Autoantibody 

production

40,57

Systemic Lupus (SLE)
(human, mouse)

T-bet+CD11c+IgD−IgM−CD21−CD23−CD38−IgG+ Blood, spleen, 
kidneys

T cell activation, 
autoantibody production

50,54,56

Multiple Sclerosis (MS)
(human)

IgD−IgM−CD21−CD11c+IgG+ Blood autoantibody production 55

HIV
(human)

T-bet+CD85j+CD11c+IgD−IgM−CD21−IgG+ Blood Antibody production 63

HCV
(human)

T-bet+IgD−IgM−CD21−IgG+ Blood Antibody production 64

Table shows phenotype, distribution, location and function of ABC-like populations in different autoimmune diseases and chronic infections based 
on the listed references.
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