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Abstract

Purpose of review—Gallstone disease is a major epidemiologic and economic burden 

worldwide, and the most frequent form is cholesterol gallstone disease.

Recent findings—Major pathogenetic factors for cholesterol gallstones include a genetic 

background, hepatic hypersecretion of cholesterol, and supersaturated bile which give life to 

precipitating cholesterol crystals that accumulate and grow in a sluggish gallbladder. Additional 

factors include mucin and inflammatory changes in the gallbladder, slow intestinal motility, 

increased intestinal absorption of cholesterol, and altered gut microbiota. Mechanisms of disease 

are linked with insulin resistance, obesity, the metabolic syndrome, and type 2 diabetes. The role 

of nuclear receptors, signaling pathways, gut microbiota, and epigenome are being actively 

investigated.

Summary—Ongoing research on cholesterol gallstone disease is intensively investigating several 

pathogenic mechanisms, associated metabolic disorders, new therapeutic approaches, and novel 

strategies for primary prevention, including lifestyles.
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INTRODUCTION

Gallstones have a prevalence of 10–15% in adults [1] in the United States and Europe. 

About 75% of adult patients are asymptomatic, but gallstone disease generates major 

economic and social burdens [1,2] if symptoms or complications occur.
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Basic and clinical aspects of gallstone pathogenesis continue to receive attention worldwide 

[3,4▪,5,6,7▪,8▪]. Housset et al. [9▪] reviewed several functions of the gallbladder in health 

and disease. The European Society for the Study of the Liver has published exhaustive 

Clinical Practice Guidelines on prevention, diagnosis, and treatment of gallstones [10▪▪]. A 

study on 1 064 089 pregnant women [11], associated gallstone disease with adverse maternal 

and neonatal outcomes including preterm birth, a condition linked with risk of 

developmental problems [12]. The multivariable logistic regression models within the WHO 

Multinational mONItoring of trends and determinants in CArdiovascular disease (WHO 

MONICA) studies in Denmark confirmed a strong association between gallstone disease and 

insulin resistance, systemic inflammation, and genetic predisposition to obesity or type 2 

diabetes [13▪].

Risk factors for gallstone disease include unmodifiable [i.e., aging, female gender, races, and 

lithogenic (LITH) genes] and modifiable conditions (Table 1). In Western countries, 

gallstones are comprised mainly of cholesterol in 75–80% of cases, and are often associated 

with systemic abnormalities [14] (Fig. 1). Primary prevention strategies in the general 

populations and in study participants at risk are conceivable [21] while studying metabolic 

pathways [22–26].

Five primary defects play a critical role in the pathogenesis of cholesterol gallstones: LITH 
genes and genetic factors; hepatic hypersecretion of cholesterol, resulting in supersaturated 

gallbladder bile; rapid phase transitions of cholesterol in bile, with the precipitation of solid 

cholesterol crystals; impaired gallbladder motility with hypersecretion and accumulation of 

mucin gel in the gallbladder lumen and immune-mediated gallbladder inflammation; and 

intestinal factors involving absorption of cholesterol, slow intestinal motility, and altered gut 

microbiota [7▪] (Fig. 2).

This complex scenario puts the studies on cholesterol gallstone disease at the frontline of 

ongoing research involving treatments and prevention strategies [4▪].

LITH GENE, GENE–ENVIRONMENT INTERACTIONS, AND EPIGENETIC 

FACTORS

The prevalence of gallstones is high in the case of family history [27,28] and in specific 

ethnic groups [15,29]. Predisposing genetic factors (Lith genes) identified in mouse models 

[30,31] are involved in the synthesis, transport, and metabolism of cholesterol and bile acids 

[32,33]. In humans, the genetic susceptibility to gallstones has been explored by genome-

wide association study (GWAS) [34,35,36▪]. The ATP-binding cassette transporters G5 and 

G8 (ABCG5/G8) are responsible for hepatic cholesterol secretion. Two major variants 

(ABCG5-R50C and ABCG8-D19H) are associated with gallstones in German, Chilean, 

Chinese, and Indian populations [37–43]. Carriers of CG genotype of ABCG8 rs11887534 

are also at higher risk of gallstone disease, gallbladder and bile duct cancer, compared to 

carriers of the GG genotype [44]. The increased susceptibility to gallstone disease is also 

linked with three variants of the Farnesoid X receptor (FXR) gene (rs35724, rs11110385, 

rs11110386 [45]), as well as polymorphisms of apolipoprotein E4 allele [46], mucin genes 
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[47] and fibroblast grow factor receptor 4 (FGFR4) [48]. The polymorphism rs3758650 

(mucin-like protocadherin gene) predicts the development of symptomatic gallstones [49].

A recent large-scale GWAS (8720 cases, 55 152 controls, European ancestry) searching for 

single-nucleotide polymorphisms associated with gallstone disease [36▪] identified four 

distinct loci (SULT2A1, TM4SF4, GCKR, and CYP7A1) encoding enzymes involved in 

cholesterol metabolism/transport, and in sulfonylation of bile acids or hydroxysteroids. The 

previously detected locus ABCG8 [34], involved in cholesterol efflux [50], was also 

confirmed. Another contributing gene is the ABCB4 in patients [51] and in mice [52] with 

gallstones because the ATP-binding cassette transporter B4 (ABCB4) is responsible for 

hepatic phospholipid secretion and its mutations or knockout lead to a lack of phospholipids 

in bile.

Another large study from Rodriguez et al. [53▪] on 15 241 women of European ancestry 

identified two new loci associated with gallbladder disease (GCKR rs1260326:T>C and 

TTC39B rs686030:C>A), and detected four independent single-nucleotide polymorphisms 

effects in ABCG8 rs4953023:G>A, ABCG8 rs4299376:G(>)T, ABCG5 rs6544718:T>C, 

and ABCG5 rs6720173:G>C in conditional analyses taking genotypes of rs4953023:G>A as 

a covariate.

However, studies on twin pairs show that genetic factors are responsible for no more than 

25–30% of symptomatic gallstones [54,55]. Environmental factors and gene–environment 

interactions can affect gene expression through epigenetic mechanisms [16], which also 

involve fat storage and insulin resistance [56]. These factors primarily include microRNAs 

(a large class of tiny, noncoding RNAs) [57]: 114 miRNA target genes are identified and 

regulate gallstone-related pathways [58]. An inverse correlation has been shown between 

expression levels of miR-210 and its potential target gene, ATP11A, in human gallstones. 

The interaction involves the regulation of the ATP-binding cassette ABC transporters 

pathway of cholesterol [58]. At a cellular level, the miRNA miR-122 regulates cholesterol 

homeostasis [57]. High circulating levels of miR-122 (3.07-fold higher than in controls) 

were also detected in obese patients, where risk factors for cholesterol gallstones include 

insulin resistance [59]. Singh et al. [60▪] reported the epigenetic roles of mammary serine 

protease inhibitor and thrombospondin 11-methylated genes in gallbladder cancer, but not in 

gallstone disease, in Indian population.

ALTERED BILE LIPID COMPOSITION

Cholesterol gallstones originate from the precipitation of solid cholesterol crystals mainly 

from multilamellar vesicles in a concentrated bile supersaturated with cholesterol, in which 

cholesterol cannot be solubilized by micelles and vesicles [8▪].

Insulin resistance promotes the formation of cholesterol gallstone by stimulating activity of 

3-hydroxy-3-methylglutaryl coenzyme A reductase [61] (the rate-limiting step in cholesterol 

synthesis) and activating the genes involved in cholesterol secretion: ABCG5 and ABCG8 
(in concert with dys-regulation of the liver transcription factor forkhead box protein O1) 

[4▪]. These molecular pathways [25], together with a condition of gallbladder stasis and 
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autonomic neuropathy [62], can account for the high gallstone prevalence in diabetic 

patients. Gallstone prevalence is markedly higher in women than in men and estrogen 

enhances cholesterol synthesis (while decreasing bile acid synthesis) by upregulation of 

estrogen receptor α and the G protein-coupled receptor 30 [63,64].

The nuclear receptors FXR and liver X receptor (LXR) act as bile acid sensors and govern 

important pathways of cholesterol and bile acid metabolism. FXR knockout mice fed a 

lithogenic diet show high susceptibility to cholesterol gallstones in parallel with decreased 

expression of the hepatocyte bile acid transporter Abcb11 and phospholipid transporter 

Abcb4 [65]. Hepatic insulin resistance influences expression of FXR [25,66,67], and 

activation of LXR promotes biliary cholesterol secretion because hepatic ABCG5 and 

ABCG8 are upregulated [68]. The liver-specific disruption of the insulin receptor in LIRKO 

mice model increases susceptibility to cholesterol gallstones, with mechanisms involving 

disinhibition of the forkhead box protein O1 signaling cascade, increased expression of the 

cholesterol transporters Abcg5/g8, and a consequent increase of biliary cholesterol secretion. 

Changes of Abcg8 expression are also found in humans: the risk of gallstone disease is 

increased in twins with a heterozygous or homozygous ABCG8 D19H genotype [69]. 

Furthermore, the characteristics of the insulin resistance syndrome in men were linked with 

the Q604E polymorphism of the ABCG5 gene [70].

Recent studies have discussed factors modulating bile composition and cholesterol 

solubilization [4▪,71▪]. The multiligand class B scavenger receptor CD36 promotes cellular 

free fatty acid uptake and modulates both hepatic and intestinal cholesterol metabolism. Xie 

et al. [72▪] found that germline Cd36 knockout mice are protected against diet-induced 

gallstones compared with wild-type mice. Also, Cd36 knockout mice crossed into the 

susceptible phenotype of congenic gallstone-susceptible liver fatty acid binding protein 

knockout mice are protected against lithogenic diet-induced gallstones. CD36-modified 

gallstone susceptibility through a reduction in biliary cholesterol secretion and changes of 

the bile acid pool by shifting to more hydrophilic species. Notably, gallbladder contractility 

is also improved as tensiometric changes of gallbladder smooth muscle strips in response to 

methacholine and potassium chloride.

Biliary aquaporins (AQPs) also play a role in bile concentrating function [73]. Asai et al. 
[74▪] show that hepatic levels of the transcription factor hypoxia-inducible factor 1α subunit 

(HIF1A) promote cholesterol gallstone formation in the animal model. Suppression of 

hepatic AQP8 with decreased water secretion from hepatocytes are involved. In the same 

study, the activation of HIF1A in human gallstone patients with and nonalcoholic liver 

steatosis was also shown.

INTESTINAL ABSORPTION OF CHOLESTEROL

Gallstone patients display an imbalance between absorption and synthesis of cholesterol: 

increased biliary cholesterol secretion from high dietary cholesterol and decreased bile acid 

synthesis and pool, all driving bile supersaturation [75]. The small intestine absorbs dietary 

cholesterol and reabsorbs the secreted biliary cholesterol [76], with variable absorption 

efficiency [77,78]. Intestinal factors depend on expression of sterol transport proteins and on 
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dietary cholesterol [76,79]), which are regulated by multiple genes [76] and determined by 

the balance between influx and efflux of intraluminal cholesterol molecules crossing the 

brush border membrane of the enterocyte [76]. In mice, high-cholesterol diets and high 

intestinal cholesterol absorption efficiency are two independent risk factors for cholesterol 

gallstone formation [80]. Dysfunctional cholesterol transporters expressed on the enterocyte 

brush border membrane can account for such defects. In animal models, cholesterol uptake 

is altered with variants of the Niemann-Pick type C1-like protein (NPC1L1) transporter [81]. 

Ezetimibe, the potent NPC1L1 selective inhibitor, reduces the amount of cholesterol 

reaching the liver through the enterolymphatic circulation of cholesterol by inhibiting 

intestinal cholesterol absorption and the biliary cholesterol saturation. In this scenario, 

cholesterol gallstone formation is prevented in ezetimibe-treated gallstone-susceptible mice, 

even fed a lithogenic diet [82–84]. Furthermore, gallstone patients show significantly lower 

cholesterol absorption [85,86], and higher or unchanged [86] de novo synthesis of 

cholesterol [85]. This metabolic trait could precede gallstone formation in risk groups [85]. 

Insulin resistance also affects cholesterol homeostasis by reducing intestinal cholesterol 

absorption while increasing cholesterol synthesis, and the effect is independent on obesity 

[87,88].

Osteopontin (OPN) is a soluble cytokine and a matrix-associated protein expressed in 

several tissues and body fluids and is involved in cholesterol homeostasis [89]. Lin et al. 
[90▪] reported that OPN knockout mice are protected against lithogenic diet-induced 

gallstone formation because of reduced expression of intestinal NPC1L1 and intestinal 

cholesterol absorption.

GUT MICROBIOTA

Intestinal dysbiosis occurs in cholesterol gallstone patients and might play an important role 

in the pathogenesis of gallstone disease. Wu et al. [91] studied the composition of bacterial 

communities of gut, bile, and gallstones from 29 cholesterol gallstone patients and the gut of 

38 healthy study participants, analyzing 299 217 bacterial 16S ribosomal RNA gene 

sequences. They found significant increment of intestinal bacterial phylum Proteobacteria 

and decrement of Faecalibacterium spp., Lachnospira spp., and Roseburia spp. Others 

reported increased amount of Gram-positive anaerobic bacteria with elevated 7α-

dehydroxylation activity in the cecum of gallstone patients, a finding linked with increased 

concentrations of the hydrophobic and lithogenic secondary bile acid deoxycholate [92].

Gallstone patients undergoing cholecystectomy show microbial diversity of gut microbiota 

and the genus Roseburia spp. is reduced compared with that in controls. Moreover, the 

microbiota from gallstone patients is enriched with uncultivated genus Oscillospira spp. This 

last genus is positively correlated with the concentration of the secondary bile acids and 

negatively correlated with the primary bile acids, whereas the phylum Bacteroidetes shows 

an opposite trend [93].

Wang et al. [94▪] recently found that mice fed a lithogenic diet and forming gallstones 

display reduced microbiota richness and α diversity with lower levels of Firmicutes and 

decreased ratio of Firmicutes to Bacteroidetes.
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The microbiota is also affected by environmental toxics introduced with food. This step 

might influence pathogenetic factors of gallstones. Liu et al. [95▪▪] found abnormal gut 

microbiota (as abundance and composition) after 8-week exposure to organochlorine 

pesticides such as dichlorodiphenyldichloroethylene (P,p’-DDE) and β-

hexachlorocyclohexane. These changes include bile acid composition, enhanced 

hydrophobicity, decreased expression of genes regulating bile acid reabsorption in the 

terminal ileum, and a compensatory increase in expression of genes involved in the synthesis 

of hepatic bile acids.

GALLBLADDER MOTILITY

Several clinical conditions are associated with defective gallbladder motility (Table 2), 

which is another risk factor for cholesterol gallstones [15,96,97]. About one-third of 

cholesterol gallstone patients display enlarged fasting and postprandial residual gallbladder 

volumes with delayed emptying [98–100]. This defect antedates gallstone formation and is 

not affected by the presence of gallstones [98,101–103], unless chronic gallbladder 

inflammation and/or mechanical obstruction exist [98]. Sustained supersaturation of 

cholesterol in bile enhances the absorption of cholesterol into gallbladder muscularis 

propria, reduces back diffusion of cholesterol into bile, and inhibits action potentials and 

Ca2+currents [104]. In animals on lithogenic diet, Tharp et al. [105] demonstrated that 

curbing the accumulation of triacylglycerol in the gallbladder wall increases its contractile 

strength and prevents gallstone formation.

The lipid-induced gallbladder lipotoxicity [106–108] is revealed to be associated with 

defective smooth muscle contractility and relaxation [109,110], whereas excessive 

cholesterol absorption may lead to cell proliferation and inflammation in the gallbladder 

mucosa and lamina propria [97,111]. Dysfunctional gallbladder motility provides sufficient 

time for cholesterol nucleation and gallstone growth [102,112] and predisposes to gallstone 

recurrence after successful extracorporeal shock-wave lithotripsy and/or oral bile acid 

dissolution therapy [113,114].

Endogenous CCK regulates postprandial gallbladder emptying [115–117] by activating 

CCK-1 receptors (CCK-1R) that are located on gallbladder myocytes [102,118]. Wang et al. 
[119▪] confirmed that CCK knockout mice fed a lithogenic diet have defective postprandial 

gallbladder emptying and show rapid cholesterol crystallization and gallstone formation. 

Mice also had enlarged fasting gallbladder volume, sluggish intestinal transit time, and 

increased intestinal cholesterol absorption with supersaturated bile. Devazepide, a CCK-1R 

antagonist produces similar outcomes [120▪].

Under lithogenic conditions, the signaling transduction decoupling of the CCK-1R 

deteriorates [112,121–123] as CCK binding to CCK-1R is not followed by G protein 

activation [121,124–126]. Indeed, tensiometric studies on isolated gallbladder smooth 

muscle strips show more severe dysfunction in patients with cholesterol stones than those 

with pigment stones [98]. Also, polymorphisms in the CCK1-R gene [127] and decreased 

density of CCK-1R [128] may be associated with cholesterol cholelithiasis in humans. 

Defective gallbladder motility is observed in lean, nondiabetic, gallstone-free study 
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participants with insulin resistance [129], whereas changes in CCK-1R density is evident in 

patients with gallstone and type 2 diabetes [130]. Impaired gallbladder motility is also found 

in women with polycystic ovary syndrome, a condition where insulin resistance often exists 

[131]. In these cases, gallbladder dysmotility is ameliorated by metformin treatment [132].

Villanacci et al. [133▪] recently explored by immunohistochemistry the main cell 

components of gallbladder intrinsic innervation in patients with cholesterol stones and in 

acalculous gallbladders. Neurons, enteric glial cells, mast cells, and interstitial cells of Cajal 

(ICC), were markedly decreased in gallstone patients. This study integrates the findings of 

Tan et al. [134] relating decreased stem cell factor/ckit signaling pathway with depletion of 

ICC and defective gallbladder motility in gallstone patients.

Impaired gallbladder motility during cholesterol gallstone formation also involves 

postprandial emptying and refilling phase and the interdigestive (i.e., fasting) rhythmic 

fluctuations of gallbladder volume. Postprandial refilling requires appropriate gallbladder 

relaxation promoted by the acid-stimulated duodenal release of vasoactive intestinal peptide 

and human fibroblast grow factor 19 protein (FGF19; FGF15 in mice) [135]. FGF19 works 

on the gallbladder epithelium, cholangiocytes [136], and the ileum [137], with 

concentrations about 23-fold higher in bile than in serum [136]. Increased FGF19 into the 

portal circulation depends on bile acids which reach the terminal ileum and activate FXR 

(rank order CDCA > LCA > DCA >> CA). FGF19, in turn, activates the gallbladder 

fibroblast growth factor receptor 4 (FGFR4) and its co-receptor β-klotho [9▪]. This pathway 

induces smooth muscle relaxation creating a feedback mechanism that leads to gallbladder 

refill before the next meal [97,135]. Intraluminal hydrophobic bile acids also act as signaling 

agents of the G protein-coupled bile acid receptor 1 (GPBAR-1) [138], located in the 

gallbladder epithelium and smooth muscle [9▪,139] and driving gallbladder relaxation 

independently on FGF19 [140]. Hydrophobic bile acids inhibit gallbladder smooth muscle 

contraction via stimulation of GPBAR-1 receptors and activation of ATP-sensitive potassium 

channel [141]. GPBAR-1 knockout mice display a decreased bile acid pool size, sluggish 

response to GPBAR-1, and dietary lithogenesis [140,142].

Whether impaired gallbladder refilling (mediated by FGF19 and/or GPBAR-1) contributes 

to the pathogenesis of gallstones needs to be further addressed. Zhou et al. [143▪] modulated 

bile acid metabolism by FGF19 in 12-week old Abcb4 knockout mice, which resemble 

biochemical, histological, and clinical features of human cholangiopathies and cholelithiasis. 

FGF19 reverses liver injury, decreases hepatic inflammation, attenuates biliary fibrosis, and 

reduces cholecystolithiasis in Abcb4 knockout mice by inhibiting the hepatic expression of 

Cyp7a1 and Cyp27a1, encoding enzymes responsible for the rate-limiting steps in the classic 

and alternate bile acid synthetic pathways, and reducing the bile acid hepatic pool and blood 

levels.

During fasting, the gallbladder regulates the enterohepatic circulation of bile acids through 

coordinated neurohormonal mechanisms involving the liver and gut [97,144,145]. Small 

phasic contractions decrease the gallbladder volume by 20–30% of the fasting volume 

through vagal-motilin-mediated stimuli at the end of phase II of the migrating myoelectric 

complexes [146,147]. Cholesterol gallstone patients may have an altered interprandial 
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gallbladder motility [102,148] mainly secondary to less frequent migrating myoelectric 

complexes cycles and abnormal motilin release compared with healthy control subjects [97–

99,148]. The fasting motility defect could increase the direct liver secretion of lithogenic bile 

to the small intestine with faster recycling of bile acids and increased hydrophobicity of the 

bile acid pool [149]. This mechanism is another predisposing factor for cholesterol 

crystallization and stone growth [150].

DIETARY FACTORS AND LIFESTYLES

Lifestyle and dietary factors (Table 3) influence the pathogenesis of gallstone disease. 

Bertola-Compagnucci et al. [151▪] estimated by specific questionnaire that mean energy 

intake may be higher in gallstone patients than in control subjects. Thus, diet and lifestyle 

have a potential role in primary prevention of cholesterol gallstones. The European Society 

for the Study of the Liver panel concludes that healthy lifestyle and food, regular physical 

activity, and maintenance of an ideal body weight might prevent cholesterol stones and 

symptomatic gallstones [10▪▪].

CONCLUSION AND FUTURE RESEARCH

Risk factors of cholesterol gallstone share some common pathogenic pathways across major 

metabolic abnormalities, including insulin resistance, with those in obesity, the metabolic 

syndrome, and type 2 diabetes. Current research points to some key mechanisms involving 

the role of LITH genes, nuclear receptors, signaling pathways, gut microbiota, epigenetic 

factors, and lifestyles in the pathogenesis of cholesterol gallstone disease. Finding 

modifiable pathogenic factors for cholesterol cholelithiasis will pave the way to primary 

prevention of cholesterol gallstone disease, a very prevalent hepatobiliary disease 

worldwide.
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KEY POINTS

• Five primary defects determine the pathogenesis of cholesterol gallstones: 

genetic background and LITH genes, hepatic hypersecretion of biliary 

cholesterol (with supersaturated gallbladder bile), rapid phase transitions of 

cholesterol in bile (with the precipitation of solid cholesterol crystals), 

gallbladder dysmotility (with the accumulation of mucin gel in the gallbladder 

lumen and immune-mediated gallbladder inflammation), and intestinal factors 

(with increased absorption of cholesterol, slow intestinal motility, and 

dysbiosis).

• Pathogenetic pathways link cholesterol gallstones with widely diffused 

metabolic conditions which include insulin resistance, obesity, the metabolic 

syndrome, and type 2 diabetes.

• The burden of cholesterol gallstones depends on potentially modifiable 

mechanisms.

• Research on cholesterol gallstones should ameliorate the efficiency of current 

therapies, test novel therapies, and employ appropriate lifestyles for primary 

prevention.
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FIGURE 1. 
(a) Solitary cholesterol gallstone showing a spheroidal modular surface. (b) Multiple 

cholesterol gallstones showing a multifaceted surface. Cholesterol content in both cases is 

more that 75%. (c) Pigment gallstones. Black, soft, friable, and easily pulverized material 

contains mainly calcium bilirubinate, calcium carbonate, and phosphate. A tiny amount of 

cholesterol (less than 10% cholesterol) can be found. The black horizontal lines at the 

bottom are equal to 1 cm.
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FIGURE 2. 
Pathogenetic factors involved in the formation of cholesterol gallstones. Five primary defects 

are involved. The primary cause of cholesterol gallstone formation originates from increased 

hepatic hypersecretion of cholesterol. The genetic predisposition is largely involved in this 

process.
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Table 1.

Exogenous risk factors associated with any type cholelithiasis

Metabolic syndrome (Chol)

 Physical inactivity

 Insulin resistance

 Diabetes mellitus

 Obesity (visceral)

 Nonalcoholic fatty liver disease

Dietary factors (Chol)

 High carbohydrate intake

 High calorie intake

 High glycemic load

 Low fiber intake

 High heme iron intake

Increased enterohepatic circulation of bilirubin

 Liver cirrhosis (Chol, Pigm)

 Ileal resections (Pigm)

 Crohn’s disease (Chol, Pigm)

Medications (Chol)

 Hormone replacement therapy

 Octreotide

 Fibrates

 Calcineurin inhibitors

Defective gallbladder motility

 See Table 2

Chol, cholesterol stones; Pigm, black pigment stones.

Adapted with permission [4▪,14–20].
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Table 2.

Conditions associated with defective gallbladder motility

Physiological, dietary, and metabolic factors

 Pregnancy

 Obesity

 Insulin resistance, diabetes mellitus

 Rapid body weight loss (bariatric surgery for morbid obesity, and very low calorie diet)

 Increased biliary cholesterol secretion

 Physical inactivity (men>women)

 Westernized diet: high calorie, low fiber, high-refined carbohydrate, and high lipids

 Total parenteral nutrition

Gastrointestinal diseases

 Irritable bowel syndrome

 Primary sclerosing cholangitis

 Acute hepatitis A

 Chronic pancreatitis

 Liver cirrhosis

Neural factors

 Neural damage after total gastrectomy, and spinal cord injury

Drugs and hormones

 Inhibition of CCK release by somatostatin, somatostatinoma, therapy with somatostatin analogues (octreotide), celiac disease

 Estrogens and oral contraceptives

 Oral bile acid therapy

 Use of 5-hydroxytryptamine inhibitors

Curr Opin Gastroenterol. Author manuscript; available in PMC 2021 May 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Di Ciaula et al. Page 22

Table 3.

Dietary factors influencing the pathogenesis of cholesterol gallstone disease

Factors increasing the risk Factors decreasing the risk

Increased energy intake High consumption of monounsaturated fats and fiber

Highly refined sugars and sweet foods

High fructose intake Olive oil

Low fiber consumption Fish (ω-3 fatty acids)

High fat content Vitamin C supplementation

Consumption of fast food Vegetable proteins

Consumption of meat Fruit consumption

Low vitamin C intake

Adapted with permission [10▪▪].
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