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Abstract

Recent technological advances have demonstrated the feasibility of achieving high-throughput 

slide-free three-dimensional (3D) pathology of biopsy and surgical specimens. In comparison to 

conventional slide-based pathology, 3D pathology has the potential to provide a transformative 

improvement in diagnostic performance for a number of reasons: (1) vastly greater (multiple log 

orders) sampling of tissue specimens, (2) volumetric imaging of cell distributions and tissue 

structures that are prognostic and predictive, (3) nondestructive imaging, which allows valuable 

biopsy specimens to be used for downstream molecular assays, and (4) a simplified process with 

cost benefits for pathology laboratories. However, due to the immense size of these feature-rich 

datasets, new challenges exist in terms of data management and computer-aided interpretation. In 

this forward-looking Perspective, we first provide a brief overview of the imaging technologies 

that can enable nondestructive 3D pathology, including computational tools needed to support 

these 3D methods. We then provide a roadmap for how machine learning, which is already being 

developed within the context of 2D digital pathology, should be leveraged and refined for 3D 

pathology. Finally, we discuss future challenges and opportunities for the clinical validation, 

regulatory approval, and clinical adoption of this new paradigm for precision medicine, including 

for reducing health disparities across populations. This includes learning from, and integrating 

with, other diagnostic modalities such as radiology and genomics.

One Sentence Summary:

In this Perspective article, Liu et al. motivate and summarize the optical methods and related 

computational technologies being developed to enable a new diagnostic paradigm of slide-free 

nondestructive 3D pathology, as well as a vision for its clinical adoption.
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1. Introduction and summary of clinical vision and impact

1.1. Motivation and vision for nondestructive 3D pathology

Disease diagnosis and characterization depend upon the rapid and accurate pathological 

analysis of biopsies and surgically excised tissues. This careful interrogation of the 

morphological and molecular characteristics of the tissue plays a key role in determining 

which treatments are most appropriate for individuals. For many cancers, the biopsy-

determined grade of the disease provides the basis for stratifying patients for clinical 

management, and can result in dramatically different treatment paths 1,2. As an example, for 

prostate cancer, patients with low-grade cancer (Gleason score < 7) are candidates for active 

surveillance whereas patients with higher-grade cancer (Gleason score ≥ 7) are candidates 

for curative therapy (radiation and/or surgery), often in conjunction with neoadjuvant 

therapy for those with the highest-grade cancer (Gleason scores 8 to 10). Unfortunately, 

interobserver variance amongst pathologists is high, with kappa values ranging from 0.3 and 

0.8 3-6. This ambiguity can, in some cases, result in the overtreatment of certain patients 

with indolent disease 7,8, which results in unnecessary side effects and financial toxicity to 

both patients and the healthcare system. Likewise, the undertreatment or nonoptimal 

treatment of patients with aggressive disease leads to preventable morbidity and mortality 9, 

along with dramatically increased costs of care for patients with late-stage diseases. For 

example, largely due to delayed diagnosis and undertreatment of disease, uninsured men are 

roughly 5 times more likely to have incurable metastatic prostate cancer at initial diagnosis 

than insured men 10, and have 2.5 times the risk of prostate cancer-specific mortality 11.

Another example to illustrate the limitations of conventional pathology relates to the use of 

immune-checkpoint inhibitors (targeting PD-1 and PD-L1) as a treatment for patients with 

non-small-cell lung cancers (NSCLC), which account for 80 – 85% of lung cancers. 

Compared to standard chemotherapy, these drugs can decrease the risk of progression by up 

to 60% but are only effective in approximately 20% of patients 12. With treatment costs 

ranging from $150K to $1M per patient, as well as the possibility of auto-immune side 

effects, reliable assays are needed to predict which patients will respond to these treatments. 

Current companion diagnostics and complementary diagnostics for predicting PD-1/PD-L1 

treatment response are all based on immunohistochemistry (IHC) of PD-L1 expression, but 

have been criticized for their unreliability 13,14. A multitude of reasons have been offered to 

explain the shortcomings of these assays, including the variability in pathologist 

interpretation of PD-L1 IHC 15, the spatial and temporal heterogeneity of PD-L1 expression 

within the tumor microenvironment, and the general complexity of the immune response, in 

which multiple cell types must interact in a coordinated fashion to deliver a durable 

immunomodulatory response.

One contributing factor for the unreliability in diagnosing and grading malignant tissues, and 

for developing predictive assays, is that pathology laboratories handle biopsies and surgical 

specimens via a decades-old analog imaging process that only samples a small fraction of 

the specimens in 2D. In terms of reliability, imaging a small percentage of a heterogeneous 

tissue specimen is bound to introduce errors. For example, a 5-micron thick section of a 1-

mm thick biopsy represents only 0.5% of the biopsy. This limited sampling is due, in part, to 
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the complexity and time-consuming nature of traditional slide-based pathology, but also by 

its inherent destructiveness. In an era of molecular medicine where increasing numbers of 

assays (e.g. genomics and proteomics) are desired for personalized care (i.e. “precision 

medicine”), there is an ever-increasing need to preserve valuable tissue specimens for such 

downstream assays 16, further constraining the number of tissue sections that can be 

analyzed via destructive sectioning. In addition to sampling limitations, the thin slide-

mounted tissue sections that are currently viewed by pathologists provide only a 2D view of 

tissue structures and molecular targets, which can be challenging to interpret accurately and 

reproducibly (with high interobserver concordance) 17-19. Subjective visual interpretation of 

these 2D images is another source of uncertainty, which digital pathology with machine 

learning strives to remedy 20.

As a complement to traditional slide-based 2D pathology, there has been a re-invigorated 

interest in nondestructive 3D pathology, especially in light of recent technological 

advancements in optical clearing, high-throughput microscopy, and computational tools 

(including artificial intelligence or AI). At the heart of this movement is a belief that 

nondestructive volumetric microscopy can improve concordance and accuracy (diagnostic, 

prognostic, and predictive power) in the analysis of tissue specimens, thus resulting in 

superior patient outcomes. Here, diagnosis refers to the identification of a disease condition, 

including sub-type, whereas prognosis refers to the anticipated trajectory and outcome of the 

condition. In the context of this article, the term “predictive” refers to the anticipated effects 

of a specific treatment. Technical benefits of 3D pathology over traditional pathology 

include: (1) improved sampling of large volumes of tissue rather than sparse sampling with 

thin slide-mounted sections; (2) volumetric imaging of diagnostically relevant structures; (3) 
non-destructive imaging, which allows intact tissue specimens (e.g. core-needle biopsies) to 

be made fully available for downstream proteomic/genetic assays; (4) a simpler slide-free 

imaging process, which has the potential to save time and costs. A summary of some of 

these points is provided in Fig. 1.

While the full value of 3D pathology data has yet to be determined, three illustrative 

examples are provided in Fig. 2. The first example deals with convoluted structures, such as 

the branching-tree vascular and glandular networks known to be disrupted during disease 

progression. When viewing such complex 3D structures as 2D cross sections on glass slides, 

artifacts and ambiguities are unavoidable. This is particularly problematic for Gleason 

grading of prostate cancers, which is currently based on glandular architecture alone. For 

example, what appears in 2D to be a poorly formed gland (a variant of Gleason pattern 4) 

might be a tangential section of a well-formed gland (Gleason pattern 3) when viewed in 3D. 

Consequently, this cancer could be re-categorized from the 2D-determined grade (Gleason 

score 3+4=7) to a lower-grade Gleason score (3+3=6) when viewed in 3D 21,22. The second 

example is of complex distributions of cells, such as within the tumor-immune 

microenvironment. Here, the spatial relationships and interactions between cell types – e.g. 

the extent and proximity of PD-1 expressing cytotoxic T cells to PD-L1 expressing cancer 

cells 23, or the balance between immunosuppressive neutrophils and cytotoxic T cells 24,25 – 

could be more ideally characterized and quantified in 3D. Furthermore, the ability to 

interrogate larger volumes of tissue would be beneficial in light of the spatial heterogeneity 
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of most diseases at microscopic length scales 26-28. The third example is of rare cells that 

can play critical roles in the initiation, treatment resistance, and/or dissemination of various 

diseases. Examples of rare events that are difficult to identify on thin tissue sections include 

tumor-progenitor cells 29-31, minimal residual disease 32,33, and aggressive tumor subclones 

that invade the lymphovascular network 34-36 and metastasize 37. Note that the second and 

third categories mentioned above, of “complex distributions” and “rare events,” are related. 

In particular, as we begin to understand tumors as hierarchical collections of cells with 

significant intratumoral heterogeneity, one must recognize the pivotal role of rare cell 

populations, such as tumor-initiating cells (i.e. cancer stem cells), in some of the largest 

challenges/opportunities in oncology such as disease progression, treatment resistance, and 

recurrence 38-40.

1.2. Current status of 3D pathology

Three-dimensional microscopy / pathology is a technology that has been embraced and 

driven by life scientists for a number of decades. This has been catalyzed primarily by the 

invention of confocal microscopy, followed by multiphoton microscopy and most-recently 

light-sheet microscopy. In section 2, we will provide a cursory overview of these imaging 

technologies that are foundational to nondestructive 3D microscopy. In the realm of clinical 

diagnostics, however, 3D pathology is in its infancy. Much of this is due to technical 

adoption barriers, in terms of microscopy, tissue preparation, and computational methods 

(see section 2).

The past few years have witnessed early signs of a renewed interest in 3D pathology for 

clinical diagnostics. For example, in 2016, van Royen et al. 41 demonstrated the basic 

feasibility to image archival formalin-fixed paraffin-embedded (FFPE) and fresh prostate 

tissues in 3D by employing optical clearing and confocal microscopy. That same year, Olson 

et al. described the use of multiphoton microscopy with optical clearing to generate 3D 

histology images of kidney biopsies 42. The following year, Tanaka et al. 43 utilized optical 

clearing and light-sheet microscopy to examine FFPE specimens (bladder), showing the 

ability to quantify certain histomorphometric features, such as vascular density and 

tortuosity. Here, they showed that 3D pathology is superior to 2D pathology for staging 

cancers and predicting progression-free survival. This same group also imaged and analyzed 

the lymphatics within bladder tumors in 2018 44. In 2017, Glaser et al. 21 described an open-

top light-sheet (OTLS) microscopy system that was specifically designed for high-

throughput 3D pathology of large clinical specimens. This report included an anecdotal 

study demonstrating that 3D pathology could improve the grading of prostate core-needle 

biopsies by mitigating some of the ambiguities and artifacts encountered when viewing 2D 

tissue sections of prostate carcinoma. A follow-up study by Reder et al. 22, using the OTLS 

technology, provided additional insights into the potential value of 3D pathology, including 

the high variability in glandular morphology throughout an entire core-needle biopsy, which 

could have a dramatic influence on treatment decisions. More recently, Lee et al. 45 

performed 3D confocal microscopy of immune infiltrates in preclinical and human core 

needle biopsies (head & neck cancer), showing that the spatial distribution of tumor-

infiltrating cytotoxic T cells (CTLs) is correlated with other hallmarks of disease progression 

such as the tumor microvasculature. In addition, Verhoef et al. 46 performed a detailed 
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investigation of the 3D structure of prostate cancers, revealing two major architectural 

subgroups of growth patterns that could potentially be of prognostic value. Note that the 

previous examples are not intended to constitute an exhaustive list of 3D pathology studies, 

but serve to illustrate the growing interest and progress in this field, as well as the many 

unknowns that remain. In addition, while there is some overlap in technologies, we are not 

discussing intraoperative applications of optical microscopy, as described in many other 

articles for rapid ex vivo 21,47-56 and in vivo 57-61 examination of excised tissues and wound 

cavities to guide surgical decisions.

1.3. Major challenges in nondestructive 3D pathology

A number of challenges will need to be overcome in order to translate nondestructive 3D 

pathology into mainstream clinical practice:

• The ease-of-use, technical capabilities, and throughput of tissue-preparation 

protocols (clearing and labeling), imaging devices, and data-processing routines, 

as described in section 2. This includes a discussion of big-data challenges that 

3D pathology datasets will introduce.

• Computational analysis and visualization techniques to assist clinicians with the 

interpretation of large 3D pathology datasets within reasonable time frames, as 

discussed in section 3. This includes developing and applying new classes of 

computational pathology algorithms for detection, segmentation, visualization 

and characterization of 3D morphology and histologic primitives.

• Strategies for regulatory approval and acceptance by clinicians and patients, 

including a staged approach for introducing new technologies such as machine 

learning, and issues related to cost and time (workflow). These issues will be 

discussed in section 4.

• Integration with other diagnostic technologies, such genomics and radiology, for 

delivering holistic decision support for patients/clinicians across disparate 

populations. These issues will be discussed in section 5.

2. Enabling technologies for nondestructive 3D pathology

2.1. Tissue-clearing and labeling protocols

In recent decades, numerous protocols have been developed to improve the transparency of 

excised biological tissues for the purposes of enabling deep optical imaging at high 

resolution. A number of review articles have been written that describe the principles and 

popular approaches 62,63. In short, optical clearing seeks to homogenize the refractive index 

profile within tissues, primarily through dehydration and replacement of the water (n ~ 1.33) 

with a high-index solvent that is better-matched to the remaining tissue components (mostly 

proteins and lipids). Certain protocols also perform lipid removal with detergents, in some 

cases accelerated with active electrophoretic transport, and/or decalcification to enable 

optical imaging through bone 64,65. Early protocols were often developed for clarification of 

brain tissue for neuroscience applications with limited optimization for other organs 66-69. 

Such protocols were often complex, including the use of hydrogel embedding, in order to 
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preserve the structure of delicate brain tissues as well as to maintain the brightness of 

genetically encoded fluorescent proteins 68,70. Recent efforts have focused on clearing whole 

organisms and various types of human tissues 64,65,71,72. While an in-depth analysis and 

comparison of these approaches is beyond the scope of this article, one relatively simple 

method that has gained popularity for clearing a variety of preclinical and clinical tissues has 

been iDISCO 71, including a more-recent variant that utilizes a food-grade cinnamon oil 

(ethyl cinnamate, ECi) 72 for final index matching rather than the corrosive and carcinogenic 

dibenzylether (DBE) utilized in the original iDISCO protocol. Note that different clearing 

protocols exhibit varying levels of compatibility with fluorescent labeling approaches, 

including small-molecule fluorescent probes and large antibodies 62,73.

For clinical applications of 3D pathology, unique requirements and constraints exist for 

tissue processing in preparation for imaging. First and foremost, until these techniques 

become the standard of care in future decades, they should ideally not interfere with current 

methods in histopathology, such as slide-based H&E staining and immunohistochemistry. 

For most clearing methods, the reagents are relatively gentle in comparison to formalin 

fixation. In other words, once the tissue is fixed in formalin – as is currently required within 

strict time frames upon clinical biopsy or resection – subsequent steps for most 3D 

pathology pipelines are less harsh and damaging to the tissue and its molecular constituents 

(e.g. proteins, DNA, and RNA). Nonetheless, studies are needed to rigorously demonstrate 

that 3D pathology methods are compatible with standard pathology techniques. For 

example, initial studies by us and others have shown that fixed and deparaffinized tissues 

that are labeled with fluorescent stains and cleared with methods such as iDISCO / ECi can 

be subsequently embedded in paraffin and subjected to standard H&E and IHC methods 

with no apparent degradation in quality 22,43,56.

Beyond demonstrating that 3D pathology methods do not interfere with current 

histopathology methods, the advent of 3D pathology offers the potential to modernize tissue-

preservation methods. In particular, as genomics and transcriptomics assays rapidly improve 

and gain clinical acceptance, a major performance bottleneck is the damaging effects that 

formalin fixation has on DNA and RNA integrity. Alternative tissue-preservation methods, 

such as RNAlater 74,75 and PAXgene 76,77, have been developed to maintain the fidelity of 

nucleic acids. A tissue-preservation protocol, relying upon intra- and intermolecular 

crosslinking of biomolecules, has also been developed to enable effective optical clearing 

and fluorescent labeling of molecular targets (including RNA transcripts) 78. The ability to 

incorporate and standardize new tissue-preservation strategies within a clinical pipeline for 

3D pathology, for high-quality volumetric imaging and optimization of nucleic acids, could 

be transformational for precision medicine. Section 5 provides additional discussions on 

these forward-looking topics.

2.2. Technical requirements for translation of 3D pathology into clinical practice

While there are many factors to consider when designing any 3D optical imaging system, 

key attributes to consider include resolution, contrast (signal to background ratio), speed/

throughput, ease of use, and cost/complexity. In terms of importance, characteristics such as 

ease-of-use and speed/throughput are of higher priority for applications in anatomic 
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pathology in comparison to most research applications – while life-science researchers often 

seek to resolve increasingly finer structures in order to gain novel biological insights, 

pathologists generally do not image tissues at the high levels of resolution that biologists are 

accustomed to (e.g. with 1.4 NA oil-immersion objectives). With the exception of a few 

specialties such as renal pathology, which routinely employs electron microscopy, the vast 

majority of anatomic pathology cases are viewed at low resolution (standard 5x to 10x 

objectives, NA ~ 0.1 to 0.3) and occasionally at moderate resolution (standard 20x to 40x 

objectives, NA ~ 0.4 to 0.8). Rather, for pathologists, the ability to view large areas/volumes 

of tissue is often of paramount importance, especially in light of the spatial and molecular 

heterogeneity of neoplastic lesions 28,79. Therefore, in general, the requirements for spatial 

resolution are relaxed for clinical versus research applications of 3D microscopy.

In terms of achieving high image contrast, which directly impacts imaging depth, a key 

distinction is that while biologists often desire to visualize living organisms, pathologists 

tend to examine excised and preserved specimens. With most living tissues, the ability of an 

optical-sectioning microscope to deliver high contrast (signal to background ratio, SBR) is 

important for high-quality imaging at reasonable depths (e.g. up to ~0.5 to 1 mm for 

confocal and multiphoton microscopy in most tissue types). However, recent advances in 

optical-clearing approaches enable nearly all excised tissues (including bone) to be rendered 

highly transparent 63,69-71,80-82, thereby allowing for imaging depths of several millimeters, 

and even centimeters (see section 2.1). This ability to make tissues transparent to light has 

greatly relaxed the requirements for contrast (rejection of background light) for 3D 

microscopy of excised specimens.

2.3. Destructive 3D microscopy techniques

While the concept of 3D pathology is not new, the technologies have evolved considerably 

over the years. Early studies relied upon destructive serial sectioning techniques 83, which 

required considerable expense and labor for imaging large numbers of sectioned tissues, and 

their subsequent 3D reconstruction. Automated serial-sectioning approaches, such as knife-

edge scanning (KESM) and micro-optical sectioning tomography (MOST) 84,85, have 

greatly improved throughput, and have been commercialized for the purposes of delivering 

3D pathology data, but are destructive of tissue specimens and introduce sectioning artifacts 

(Fig. 3A).

2.4. Confocal and multiphoton laser-scanning microscopy

In terms of nondestructive high-resolution 3D imaging of tissues, the traditional work-horse 

technologies have been confocal and nonlinear/multiphoton microscopy 49,50,86-88. As 

mentioned previously, several recent studies on 3D pathology have utilized confocal 

microscopy 41,46,89, and it remains the most prevalent volumetric microscopy technique in 

academic and industrial labs. Multiphoton microscopy has also been widely adopted in 

academic research due to the ability to provide enhanced imaging depths (contrast) when 

imaging nontransparent tissues, and also the ability to achieve label-free imaging by relying 

upon a number of linear and nonlinear contrast mechanisms such as autofluorescence 

generation 50,54,87,90-93, second harmonic generation (SHG) 94-96, coherent four-wave 

mixing (e.g. CARS and SRS) 51,52,87,97,98, and pump-probe methods 99,100. A number of 
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groups have recently explored the use of multiphoton microscopy for clinical applications of 

anatomic pathology such as surgical guidance and diagnosis 42,50,87,93,101.

While confocal and multiphoton microscopy have become ubiquitous in biomedical research 

labs, offering exquisite contrast (i.e. rejection of background) and spatial resolution, there 

are certain challenges to overcome for clinical applications. For example, confocal and 

nonlinear microscopy typically generate an image in a point-by-point fashion, which 

requires spatial scanning in all three dimensions to create a volumetric image (Fig. 3B). This 

tends to add mechanical complexity and is often slow. While methods do exist to accelerate 

this process, such as the use of spinning disks for confocal microscopy 102,103, and temporal-

focusing 104,105 or multifocal methods106-108 for nonlinear microscopy, speed is often still a 

significant constraint when trying to image large 3D volumes. Furthermore, these 

technologies, which rely upon complex high-NA optics, high-speed laser scanning, and 

pulsed lasers (for multiphoton microscopy), are often expensive both in terms of equipment 

and technical support staff.

2.5. Light-sheet microscopy

Over the past decade, light-sheet microscopy, also known as selective plane illumination 

microscopy (SPIM), has emerged as the technique of choice for rapid 3D fluorescence 

microscopy of relatively transparent specimens (e.g. embryos and optically cleared tissues) 
109-117. In light-sheet microscopy, a thin excitation beam is incident upon the specimen 

perpendicular to detection axis such that only one localized focal plane (“optical section”) of 

interest is excited within the sample (Fig. 3C). Light-sheet systems utilize highly sensitive 

and fast sCMOS detector arrays to obtain 2D images from a specimen, from which a 3D 

dataset may be rapidly generated by scanning the specimen (or light sheet). A well-

appreciated feature of light-sheet microscopy is its highly efficient geometry that only 

excites fluorescence within the detection plane, thereby minimizing photobleaching and 

photodamage compared with alternative 3D microscopy techniques 111,112,114. Thus, light-

sheet microscopy has been referred to as a “gentle” form of 3D microscopy 118.

Early light-sheet microscopes were constrained to image small non-clinical specimens (e.g. 

embryos, mouse brains, etc.) that were often embedded in agarose and/or mounted in 

specialized mounts (e.g. for sample rotation), thus limiting the size/geometry of the 

specimens and the ease-of-use of the systems 112,114,117,119. More recently, a number of 

light-sheet microscope systems have been developed to accommodate larger specimens with 

less physical constraints and simpler mounting requirements 21,115,117,120-130. Many of these 

systems have utilized an inverted architecture in which one or more tissue samples may be 

conveniently placed on a platform and imaged from above or below. In particular, imaging 

from below the specimen(s) allows for “open-top” light-sheet (OTLS) microscopy in which 

tissues, transparent sample holders, and accessories of arbitrary size can be accommodated 
21,123,125,130,131. One downside of OTLS or other forms of inverted light-sheet microscopy 

is that the imaging depth is limited by the working distance of the angled imaging 

objectives. Since working distance typically trades off with NA, resolution is usually in the 

low to moderate range (NA < 0.8) for such inverted systems. However, as mentioned in 

section 2.2., this level of resolution is adequate for the vast majority of clinical diagnostic 

Liu et al. Page 8

Nat Biomed Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applications. In order to maximize imaging depth and resolution, some research groups have 

explored the use of a single high-NA objective, oriented perpendicular to the sample, which 

is used to generate both an oblique illumination light sheet, and to image the light-sheet-

generated fluorescence signal onto a detector array (camera) 128-130.

In its simplest form, light-sheet microscopy utilizes relatively low-NA illumination such that 

the light sheet has a long depth of focus at the expense of a thick beam waist. While higher-

NA collection ensures that adequate (i.e. micron to sub-micron-scale resolution) is achieved 

in two dimensions within the plane of the light sheet, most light-sheet systems exhibit 

anisotropic resolution in which resolution in markedly worse in the direction axial to the 

light sheet (due to the thick beam waist of the low-NA light sheet). This is similar to 

conventional slide-based histology, in which paraffin-embedded tissue sections are generally 

cut at a thickness of 4 to 5 microns, but are imaged in the orthogonal direction with micron- 

to sub-micron scale resolution. However, with 3D imaging, isotropic resolution can 

potentially be of importance and several strategies have been developed to achieve this with 

light-sheet microscopy. A popular approach has been to rapidly swap the imaging and 

collection paths of a light-sheet microscope such that two volumetric datasets of the 

specimen are ultimately obtained, but with different low-resolution axes. A “fusion” de-

convolution algorithm can then be applied to generate a 3D image with isotropic resolution, 

albeit with large demands for alignment, calibration, and computational processing 
117,132,133. A more-direct approach for achieving isotropic resolution employs axial 

scanning of a high-NA light sheet (i.e. one in which the thickness of the beam waist matches 

the lateral resolution of the collection path) 127,134. Synchronizing the beam waist with the 

“rolling shutter” of a sCMOS camera ensures that an image is generated in a line-by-line 

fashion from signal generated at the beam waist (isotropic resolution) as it is scanned. 

Specially engineered illumination strategies, such as “propagation-invariant beams,” have 

also been employed to achieve isotropic resolution without sacrificing depth of focus, albeit 

with some trade-offs in terms of image contrast and both hardware and computational 

complexity 114,135,136. For clinical diagnostic applications of 3D pathology, the value of 

achieving isotropic resolution is currently unclear and studies are especially needed to 

determine its value for computer-assisted analysis of datasets.

2.6. Data-handling challenges

For all of the previously mentioned 3D microscopy techniques, digital reconstruction of 

large 3D images requires stitching and fusing of large numbers of 2D image tiles. Once 

generated, these 3D datasets are often on the terabyte (TB) scale, where challenges exist in 

terms of storage, low-loss compression, quality control, and visualization. In order to 

streamline progress in the years to come, standard open-source informatics tools and 

annotated datasets should ideally be established while this field is within a nascent but 

logarithmic stage of growth. As shown in Fig. 4, 3D microscopy generates vastly more data 

compared to conventional 2D microscopy approaches. However, data-generation speeds 

(~800 MB/sec) are similar to current whole-slide imaging (WSI) devices since they utilize 

similar sCMOS camera technologies – this should facilitate adoption by institutions that are 

already accommodating a digital pathology workflow. Figure 4 outlines various strategies 

for processing raw data from 3D microscope systems (e.g. local vs. cloud-based pipelines), 
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as well as general strategies for machine-learning-based analysis of these massive feature-

rich datasets.

2.6.1. 3D image stitching.—A key step in the acquisition pipeline for 3D microscopy/

pathology is efficiently assembling large numbers of 2D image tiles into seamless 

volumetric datasets. A number of commercial software packages, such as Imaris Stitcher and 

Volocity, have been developed to address this challenge, as well as popular open-source 

tools, such as TeraStitcher 137,138 and BigStitcher 139. Some software tools, such as 

BigStitcher 139, are designed to correct for deformation and registration artifacts through 

affine transformations, including chromatic shifts between wavelength channels. Such 

operations can be computationally expensive, and should ideally be tailored for specific 

imaging methods, and parallelized for maximum throughput. For example, for the open-

source community, efforts are underway to upgrade the popular hierarchical (multi-

resolution) HDF5 file format with a similar format, N5, which will allow for parallel writing 

(https://github.com/saalfeldlab/n5). For the clinical implementation of 3D pathology, 

quality-control algorithms will ultimately be needed to ensure the performance of these, and 

other, image-processing tasks (see section 3.3).

2.6.2. Compression of 3D imaging data.—The detectors of choice for camera-based 

3D microscopy approaches, including light-sheet microscopy, are currently 16-bit sCMOS 

cameras that generate ~800 MB of data per second. Having a large 16-bit dynamic range has 

practical benefits for avoiding detector saturation when imaging bright tissue regions while 

also ensuring that bit noise (i.e. digitization noise) is not an issue when imaging dim tissue 

regions. However, the signal-to-noise ratio (SNR) at any tissue region is generally much 

lower than 16 bits, due to a combination of detector noise and/or shot noise (signal- and 

background-induced). This means that a significant level of “lossless” compression can be 

achieved by windowing the dynamic range of the data to remove noise (at the low end) and 

unused pixel well capacity (at the high end). For example, unlike lossy compression schemes 

like JPEG, which down-sample the data in the Fourier or wavelet space, a recently 

developed B3D compression scheme estimates the noise level of every pixel within an image 

(based on neighboring pixels) and limits the compression such that pixel deviations remain 

within that noise level 140. With B3D, fully “lossless” compression can be routinely achieved 

with a ~10X reduction in file size for the 16-bit imaging data generated by sCMOS-camera-

based light-sheet microscopy systems. In terms of speed, B3D is built on the CUDA 

framework to enable GPU-based compression of imaging data at high speeds (> 1 GB/sec), 

which surpasses the data rate of standard sCMOS cameras 140. Depending upon the image-

analysis task at hand, the use of more advanced 3D compression methods that factor in the 

inherent redundancy of a 3D dataset could yield significant data-compression results. For 

optical microscopy, most compression work has been in 2D, even when applied to 3D, as 

each slice is considered independently. However, other methods such as Fourier or wavelet-

based compression are likely to provide superior compression results for 3D datasets with 

acceptable tradeoffs 141. Additional studies are needed to examine the effects of these 

various compression schemes on both manual and computerized image-analysis routines.
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2.6.3. Visualization.—Human observers may choose to visualize 3D pathology datasets 

as volume renderings or as a series of 2D cross-sectional views, depending upon the 

diagnostic problem of interest and the complexity/density of the image. In some cases, it 

may be necessary to segment (i.e. extract) a subset of tissue structures using machine-

learning techniques (see section 3) in order to visualize the 3D structure in an informative 

way. For example, the ability to visualize a 3D mesh model of a vascular or glandular 

branching-tree network could yield key insights including tortuosity, branching, and other 

features that are not easily inferred from 2D images. On the other hand, it is also helpful for 

pathologists to visualize 2D cross sections of the same vessels or glands within the context 

of the surrounding cellular and stromal milieu, as is the case with standard H&E histology. 

In particular, since pathologists are currently trained to interpret 2D cross sections, and a 

vast body of pathology literature exists for characterizing diseases with 2D images, it is 

desirable to have both 2D and 3D visualizations. Note that the amount of time required to 

review large volumes of 3D data is often impractical. For example, in our experience, a 

prostate biopsy, which can be evaluated in 2D within a few minutes, can require 15-20 

minutes for a thorough 3D evaluation 22. Thus, in many cases, the full 3D dataset may only 

be necessary and practical to visualize in the case of diagnostic ambiguity, where it will have 

the largest clinical impact. In fact, early clinical implementations of 3D pathology may be as 

an adjunct to standard 2D pathology in situations when diagnostic ambiguity arise or critical 

treatment decisions must be made, for example for Gleason 6 – 7 prostate cancer patients 

needing to decide between active surveillance, surgery, or radiation. In summary, a variety of 

visualization techniques will likely need to be developed and standardized in order for 

pathologists to extract maximal utility from 3D pathology datasets (see section 4.4). A 

number of examples are shown in Fig. 5 of volume-rendered vs. cross-sectional views of 3D 

pathology.

The ability to render 3D datasets with color palettes that mimic conventional slide-based 

H&E histology and IHC will likely be important for pathologists to trust and adopt 3D 

pathology methods in the near future, as well as to validate 3D pathology datasets. While 

fluorescence images from light-sheet and other forms of 3D microscopy are typically 

acquired using monochrome cameras (with the appropriate filters in place), it is possible to 

false-color the datasets to mimic the appearance of standard chromogenic stains that are 

visualized by standard bright-field pathology microscopes. For example, it is relatively 

straightforward to utilize the formulae for Beer-Lambert-law absorption of light to convert 

two-channel images of tissues (labeled with a fluorescent analog of H&E) into H&E-like 

representations 142. Likewise, 3D immunofluorescence images can be rendered to mimic 

conventional chromogenic IHC 123. This ability to create images that are familiar to 

pathologists is crucial for clinical adoption, so that pathologists can continue to rely upon 

existing disease-classification schemes, while also learning how to improve their diagnostic 

determinations with the added insights that 3D pathology offers.

2.6.4. Value of open-source tools for data processing, visualization, and 
analysis.—A key element to utilizing and deploying any imaging method is to identify the 

optimal informatics and computational workflows. In the life cycle of all image datasets, be 

it research or clinical, software is used to acquire, visualize, analyze and disseminate results. 
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Currently, in the research imaging world, there are a number of both open- and closed-

source software tools. Popular open-source platforms include the Fiji / ImageJ environment 
143-145 and related applications such as MicroManager146, BigDataViewer / BigStitcher 
139,147, and Napari (https://github.com/napari/napari). Closed-source analysis platforms for 

3D microscopy data include Imaris, Amira, Arivis, and Aivia. There is a growing movement 

in the imaging field advocating for the value and need for open-source workflows to ensure 

reproducibility, transparency, and broad dissemination 148-151. Since software tools undergo 

continuous developments over rapid timelines, and obtaining patent protection for software 

is difficult, many commercial entities have chosen open-source platforms, especially when 

used to support other technologies and devices that enjoy a stronger IP position. The need 

for accuracy, transparency and reproducibility is particularly relevant in 3D pathology due 

its emerging nature, and the large diversity of analysis parameters and metrics that will be 

developed. Future tools are likely to be developed by many independent researchers and 

companies with access to well-curated cloud-hosted 3D pathology datasets, in which a 

common open-source software platform could accelerate progress and standardization.

3. Challenges / opportunities for artificial intelligence in 3D pathology.

3.1 Overview

Recent adoption of whole slide imaging (WSI) scanners by multiple hospitals and health 

care institutions, which have started digitizing their entire pathology workflows, 

complemented by rapid increases in computational power, have led to the proliferation of 

digital pathology approaches in oncology and other areas 20,152-154. The moniker of digital 

pathology has now become associated with artificial intelligence (AI), including machine-

learning approaches to quantitatively examine whole-slide images to address clinical 

challenges in early detection, diagnosis, prognosis and treatment response. While AI 

approaches have so far been developed mostly for analysis of 2D pathology images, the 

advent of 3D pathology techniques has provoked interest in 3D AI and feature-learning 

approaches. High-quality comprehensive 3D representations of tissue micro-architecture 

over large regions of interest offer a potential opportunity for AI analyses, due to the large 

amounts of data that can be generated from each patient specimen in a nondestructive 

fashion.

AI approaches in oncology primarily aim to develop a machine classifier for clinical 

decision support, such as identifying patients with aggressive disease who would benefit 

from aggressive therapies such as chemotherapy, or identifying patients who are likely to 

respond to specific forms of therapy such as immune-checkpoint blockade. Two commonly 

used classification approaches include “end-to-end” and “multi-stage” feature-extraction 

(i.e. “hand-crafted”) approaches 155. The first strategy involves training a deep-learning 

model to directly classify a lesion/patient based on the imaging data. Such strategies have 

been shown to be extremely powerful and accurate, but suffer from lack of interpretability in 

many cases and the need for very large numbers of well-curated patient datasets in order to 

train a reliable algorithm. Advances are being made on data-efficient techniques as applied 

to digital pathology, such as multiple instance learning, semi-supervised learning, and 

transfer learning approaches 156-158. However, the variance on account of pre-analytic 
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factors in the context of pathology often makes it difficult to create generalizable algorithms 

without sufficiently large and diverse datasets. In addition to being sensitive to minute and 

often-imperceptible variations in image quality, it is often difficult to spot errors when they 

occur, or to determine the source of the errors 159. Alternatively, traditional or deep-learning-

based image-processing methods can also be used to segment out tissue structures that are 

already well-known and trusted by pathologists (e.g. cells, glands, collagen, etc.), from 

which quantitative “hand-crafted features” can be extracted (e.g. density, tortuosity, fractal 

dimension, angular disorder, etc.). These quantitative histomorphometric features can then 

be used in a multi-stage approach to train a clinical classifier. An advantage of such an 

approach is that domain experts (i.e. pathologists) can verify the accuracy of the 

intermediate segmentation steps of this process, which engenders trust and enables error-

checking. Another advantage of a “hand-crafted” approach is that each digital pathology 

dataset typically contains large numbers of morphological exemplars (i.e. features) that can 

contribute to the training of an algorithm. Therefore, for low-level tasks (e.g. segmentation 

of well-conserved micro-architectural features), a modest number of patient specimens or 

training sets is often sufficient 159-161. The caveat with these approaches, however, is that 

they require a greater amount of domain-specific information for model training and might 

be more challenging to train compared to end-to-end approaches. Finally, hybrid approaches 

are possible, such as using hand-crafted features as intermediate operators within a DL 

network, and/or in conjunction with DL-derived data-driven features, to develop an optimal 

classifier 162,163.

3.2 Unique challenges for AI in 3D pathology

While there has been a sharp growth in the use of deep learning (DL)-based approaches for 

prognostic and predictive classification with digital pathology data, these have been largely 

confined to 2D pathology images. In training these networks, the images are typically 

broken up into smaller 2D patches and introduced to a DL network for training. The 

challenge with 3D pathology images is that traditional 2D networks are not equipped to 

handle large 3D datasets. This will necessitate 3D CNNs, which have been previously used 

in the context of 3D radiographic images 164, albeit at much smaller file sizes (low-

resolution radiography).

Beyond the computational expense of training 3D CNNs, an additional challenge is 

definition of the training set and annotating regions or targets of interest. The need for 

manual annotation of structures and primitives in 3D by a domain expert (i.e. pathologist) 

will necessitate efficient and user-friendly interactive software tools. These tools will need to 

be flexible enough to allow the user to navigate through the 3D volume and refine and 

update annotations of primitives and regions of interest. While tools like Sedeen (Pathcore 

Inc.)165 and QuPath166 allow for object annotation of 2D pathology images, these toolkits 

will require substantial modifications to accommodate the annotation of structures in large 

3D pathology datasets. Alternatively, in order to bypass the requirements for laborious 

manual 3D annotations by domain experts, which is somewhat subjective, certain features 

can be labeled via molecular biomarkers such that traditional intensity- and morphology-

based segmentation methods can be employed. Examples include keratin 8 (KRT8) to 

identify the luminal epithelial cells that line all prostate glands, and CD31 (PECAM-1) to 
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highlight the lymphovasculature. While this molecular-labeling approach is objective and 

does not rely on manual annotations, the downside is that antibody-based labeling of thick 

3D tissues can be very slow and expensive. However, if a DL model can be trained to predict 

the appearance of 3D immunofluorescence images based on images generated with 

inexpensive and fast small-molecule fluorophores (e.g. an H&E analog), or even without the 

use of labels 160,161,167, it could be possible to develop an annotation-free segmentation 

algorithm based on “synthetic” immunolabeling of specific features. Such a method would 

be objective (no human annotations), fast (small-molecule labeling of thick tissues), and 

inexpensive (antibody-free).

3.3 The need for quality control for AI analysis

In addition to data size, one of the most important factors that influences performance of AI 

approaches in digital pathology is the inherent quality of the data fed into the algorithm. AI 

analysis of 2D pathology is often limited by pre-analytic sources of variations, such as with 

staining quality (e.g. hue, saturation, intensity), sectioning artifacts, out-of-focus regions, 

and other subtle variations due to the different scanners and scanning parameters used 20,168. 

While the sources of image variability are different for nondestructive 3D pathology 

approaches, there is a similar need to control such variations when it comes to implementing 

AI approaches. For example, factors that can influence the quality of 3D pathology include 

the degree of fixation, cold and warm ischemia times, deparaffinization quality (if FFPE 

blocks are being used), variations in staining and clearing protocols, fluctuations in laser 

intensities, optical alignment, and software post-processing routines (e.g. section 2.6.1). 

Note that with 3D microscopy approaches, images are always “in focus” provided the 

alignment of the microscope is maintained. Image quality is therefore most influenced by 

the many tissue-preparation issues mentioned above. As with slide-based histology, the 

automation of these various steps is of value for reducing variability, but quality-control 

metrics are still needed to ensure that 3D pathology datasets are of adequate quality to 

ensure reliable AI-based results.

Recent work has involved building automated and semi-automated quality-control methods 

for 2D whole-slide images, which can be translated to 3D pathology. These routines aim to 

automatically detect variations in color, staining, and common artifacts present in histology 

images. One such tool is HistoQC 169, which interrogates digital tissue slide images and 

provides a quantitative score of the overall quality of the image. Additionally, the tool 

enables the precise identification of localized regions that have been compromised by 

artifacts such as cracks in the glass, hair shafts, tissue folds, and pen markings. Similar tools 

will need to be extended for quality control of 3D pathology images, in which image 

artifacts include stitching defects and regions of poor staining/clearing.

Ultimately, some level of variation in image quality is unavoidable for both 2D and 3D 

pathology, regardless of the degree of automation and standardization of processes. As 

mentioned in the previous section, a hand-crafted feature-based AI approach towards image 

interpretation offers potential advantages. First, histomorphometric features can be identified 

that are relatively insensitive to image-quality variations, as shown in a recent 2D pathology 

example, where a sensitivity analysis was used to identify a subset of quantitative features 
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that could be integrated into robust clinical classifiers 170. Second, segmentation algorithms 

(for extraction of quantitative features) can be more-easily trained with diverse datasets such 

that they are robust against image-quality variations. While this is also possible with an end-

to-end classification approach if sufficient numbers of patient datasets are available for 

training, the use of a hand-crafted approach allows pathologists to visually inspect the results 

at a critical intermediate step (feature segmentation) and to rely on smaller patient cohorts in 

which each 3D pathology dataset often contains hundreds to thousands of diverse 

“exemplars” to accurately train algorithms to segment well-conserved low-level structures 

(e.g. glands, collagen, broad classes of cells).

4. Translational challenges and clinical acceptance

4.1. Clinical studies with archived tissues

In contrast to clinical trials involving therapeutic agents, where new patients must be 

recruited and followed for response, new technologies in pathology can often be validated 

using already-established slide repositories or tissue biobanks with detailed follow-up data. 

Examples include The Cancer Genome Atlas 171, the Prostate Cancer Biorepository 

Network (http://prostatebiorepository.org/), and many more. These biobanks permit the use 

of a “prospective-retrospective” study design. For instance, the Oncotype Dx Recurrence 

Score (Genomic Health), a 21-gene expression assay using FFPE tissue, was validated using 

archived specimens from NSABP trials B14 and B20 172,173. This randomized clinical trial 

was completed more than a decade before the validation of Oncotype Dx, enabling the use 

of 10-year recurrence-free survival as the primary endpoint, thus reinforcing the value of 

well-characterized archival tissue in translating promising diagnostic technologies to the 

clinic 174.

Banked tissue is not without its problems. Pre-analytic factors, including formalin fixation 

time, cold ischemia time, and freezing methodology, all affect the quality of tissue stored in 

a biobank 175. If the effects of these pre-analytic factors are severe, the assay can be 

negatively impacted, or samples/patients must be removed from the study, introducing bias. 

An additional concern with the use of archival tissue is that standard-of-care treatments for 

the target population could have changed over time, which could potentially confound 

studies in which the primary endpoints are clinical outcomes rather than biologic 

measurements.

The gold standard for validation of a diagnostic test is a prospective, randomized trial that is 

evaluated in a well-defined target population, where evaluation of the diagnostic test is the 

primary purpose of the trial 176. This type of study design minimizes bias, and is considered 

the highest level of evidence - LOE 1. To further extend the example of Oncotype Dx 

Recurrence Score, the assay was further validated by a prospective, randomized trial 

(TAILORx), which reinforced the value of the test 177. The cumulative body of evidence, 

including prospective-retrospective studies and prospective, randomized studies, led to the 

categorization of Oncotype Dx Recurrence Score as the only “preferred” test in the 2018 

NCCN breast cancer treatment guidelines for a specific subset of breast cancer patients 

facing a chemotherapy decision, which is the highest level of clinical acceptance.
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4.2. Regulatory strategies

Regulatory approval is a challenging issue that requires close collaboration with relevant 

regulatory stakeholders (e.g. the FDA in the United States) to develop appropriate strategies 

for various implementations of 3D pathology. In this section, we provide a high-level 

overview of potential regulatory scenarios, along with examples from devices and 

diagnostics that are currently in the market. There are two primary regulatory pathways for 

diagnostic tests in pathology – FDA approval and laboratory developed tests (LDTs) 178.

Diagnostic tests and kits are classified as medical devices by the FDA, and are subject to the 

same regulatory processes as other such devices. Medical devices are categorized according 

to their perceived level risk, from Class I to Class III. Class III devices are of highest risk, 

including implanted devices and those that are used to sustain life. Class II devices are 

considered moderate to high risk, and have a predicate device that can be used for 

comparison. A whole-slide scanner for 2D digital pathology, a technology that was first 

approved by the FDA in 2017 after an extensive clinical study, is an example of a Class II 

device 179,180. Class I devices are the lowest risk devices, which include the analog light 

microscopes used within pathology laboratories. A recent ex vivo tissue microscopy device, 

the Caliber I.D. Vivascope 2500, has been classified as a Class I device.

An alternative regulatory pathway for many diagnostics tests, if provided as a “medical 

service” by a single laboratory, is the LDT pathway. Tests designated as LDTs must be 

performed in a CLIA-certified laboratory with appropriate analytic and clinical validation 

documentation. The FDA does not currently regulate LDTs, but did express its intentions to 

issue an oversight framework for LDTs in recent years 181,182.

The regulatory strategy for 3D pathology will be dependent on the paradigm by which the 

technology is disseminated. If the technology is developed as a device that is marketed to 

pathology laboratories, FDA approval will be necessary for use of the device, and potentially 

for decision-support algorithms based on the device. If individual laboratories develop 

“homebrew” 3D pathology tests, the LDT pathway could be a viable option. Regardless of 

the regulatory pathway for 3D pathology, a strong base of evidence proving clinical utility 

will be crucial for adoption.

4.3. Financial and workflow (process time) considerations for clinical integration

The workflows for conventional pathology and 3D pathology are similar for the 

accessioning, grossing, and initial tissue-processing steps (i.e. fixation and dehydration). The 

differences begin after the tissue is embedded in paraffin (conventional pathology) or placed 

in the clearing solution. In the conventional pathology workflow, the tissue must be 

physically sectioned (by hand), placed on a glass slide, stained, cover-slipped, and scanned 

using a whole-slide imager to produce a digital 2D dataset. Using a set of 12 prostate 

biopsies as an example, this process requires ~40 minutes of hands-on histotechnologist 

time, ~4 hours of total time, and ~$300,000 in capital equipment costs. In the 3D pathology 

workflow, automated tissue scanning using light-sheet microscopy, with similar resolution to 

what is provided by a 10X – 20X objective (NA ~ 0.4) in a standard pathology microscope, 

requires ~30 minutes (10% of sample digitized) to ~4 hours (100% of sample digitized) 123. 
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Since manual sectioning is not required, the 3D pathology workflow can be entirely 

automated, which means it is not dependent on labor shift timing or histotechnologist 

availability. The capital equipment costs are likely to be similar, although no FDA-approved 

devices are currently available for 3D pathology. Thus, the 3D pathology workflow can 

reduce the labor burden on histotechnologists while nondestructively generating orders-of-

magnitude more data than a whole-slide imager.

4.4. A staged approach for clinical translation

While a fully-automated diagnostic and decision-support workflow could become a reality, 

the integration of AI will likely occur in a step-wise fashion (Fig. 6). For integration of 3D 

pathology within clinics, at least three stages can be foreseen. The first stage, which requires 

the most time and human effort, is also the least risky, in which a pathologist directly 

interacts with 3D pathology datasets. Datasets would be rendered to mimic the current 

standards of H&E histology and IHC, and would be viewed much like how 2D whole-slide 

images are currently viewed, albeit with the ability to scroll through the depth of a specimen. 

Early studies have shown anecdotally that such a strategy could be highly informative, such 

as for preventing the over-grading (and over-treatment) of disease 21 and for identifying 

regions of malignancy that could be missed or misinterpreted with slide-based 2D histology 
22. Likewise, the sampling limitations and ambiguity of 2D histology are known to lead to 

the misdiagnosis and under-grading of certain patients 183-185, which presents an opportunity 

for 3D pathology to provide significant improvements. Since 3D assessments of tissues 

(entire biopsies, as an example) are more time-consuming than 2D assessments of sparse 2D 

sections, a second stage of AI integration would be to automatically triage specimens that 

are diagnostically unequivocal, and to provide pathologists with only cases that are 

ambiguous. For example, a recent study, based on 2D digital pathology images, showed that 

it may be possible to triage up to 75% of cancer cases based on computational analysis, 

while retaining 100% detection sensitivity 186. Finally, as clinical studies prove their 

effectiveness, fully-automated computational 3D pathology workflows will emerge. A 

challenge to achieving these goals will be to integrate 3D pathology seamlessly into 

laboratory information management systems (LIMS) such that various sources of patient 

data can be integrated both for clinician- and AI-based treatment decisions.

5. Future directions

5.1. Integration with lab medicine / molecular assays

It has become increasingly clear that precision medicine will benefit from adopting a 

multiplexed multi-omics approach that combines diverse diagnostic technologies for patient 

stratification and clinical decision support. In particular, the complexities of the tumor-

immune microenvironment, and various factors that contribute to an individual’s “cancer-

immune setpoint,” is becoming well-appreciated by the multitudes working to improve the 

efficacy and precision delivery of recent immuno-oncology approaches 187. For example, 

various factors that correlate with response to immune-checkpoint blockade include tumor 

mutational burden (TMB) 188, microbiome profiles 189,190, patterns of biomarker expression 

(e.g. PD-1 / PD-L1, CTLA, chemokine receptors, etc.) 14,191,192, and the spatial distribution 

of tumor and immune cells (e.g. tumor infiltrating lymphocytes) 193.
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In order to facilitate the integration of 3D pathology with other clinical assays such as 

DNA/RNA sequencing, a first step is to ensure that 3D pathology methods do not interfere 

with standard laboratory methods. Recent studies have indicated that certain clearing and 

fluorescence labeling methods are relatively gentle, and often utilize reagents that are 

already part of the standard histology workflow (e.g. xylene, ethanol, etc.). Once tissues 

have been formalin fixed per standard clinical practice, most clearing reagents are less harsh 

than the initial fixation step, and standard FFPE processing and histology assays can still be 

performed (see section 2.1). Furthermore, as described in section 2.1, the advent of 

nondestructive 3D pathology offers the opportunity to modernize a pathology workflow that 

dates back nearly a century, for example by developing formalin-free tissue-preservation and 

labeling/clearing protocols that can maintain RNA integrity.

3D analogs to existing pathology practices, such as laser-capture micro-dissection and 

manual slide-based macro-dissection of tissues, would also be of value. Such tissue-

enrichment techniques could generate orders of magnitude more material for downstream 

assays than slide-based tissue shavings and laser-captured regions, which could result in a 

significant leap in sensitivity and accuracy for detecting rare mutations. For rare cell types, 

3D micro-aspiration of individual cells or cell contents within thick specimens is also a 

possibility, as previously demonstrated in the context of neuroscience investigations 194-196. 

The ability to extract lysates from tens to hundreds of individual rare cells, such as 

aggressive tumor cells exhibiting lymphovascular invasion, followed by low-input 

sequencing of those lysates, could enable the discovery of new biomarkers of aggressive 

disease (for prognostication), druggable targets, and mechanistic insights.

5.2. Radiomics as a model and precedence for the value of 3D imaging

Radiomics or the quantitative interrogation and subsequent mining of pixel-level, sub-visual 

data from standard medical imaging methods (ultrasound, CT, PET, MRI) has recently been 

shown to be a non-invasive method to answer clinically relevant questions pertaining to 

diagnosis, prognosis and treatment response across the oncology spectrum 197,198. 

Radiomics has traditionally relied on analyzing multiple 2D images across a region of 

interest, with interpolation being used to extend the analysis in 3D. 3D pathology resembles 

radiomics, but differs in a few key aspects. Unlike a conventional CT slice which is 512x512 

pixels, a whole slide image at 20x magnification is often 40,000 x 40,000 pixels, or 4 orders 

of magnitude larger. 3D pathology can add an additional 4 orders of magnitude, which 

introduces a big-data problem but also an opportunity since it provides abundant fuel for 

data-hungry AI approaches. In addition, unlike reconstructed radiographic images, 3D 

pathology images contain large numbers of highly-repetitive micro-scale features, such as 

cells, glands and stromal structures, which can allow for efficient training and use of AI 

methods (both end-to-end and multi-stage hand-crafted approaches, as discussed in section 

3.1). As one example, radiomic and pathomic features from 2D pathology images were used 

to create a unified predictor of early recurrence in early stage lung cancers 199.

Pathology is often utilized to validate or follow up on an observation that is first seen with 

radiology (e.g. mammography leading to breast biopsy). However, except for a few 

specialized multiscale animal studies 200,201, there have been few efforts to gain a multiscale 
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spatial understanding of tissue composition in disease. Modern 3D pathology, when 

deployed with the type of computational tools that radiography has pioneered, could provide 

a cell-to-organ view not possible with any other currently available clinical imaging strategy. 

This need for both microscopic and “mesoscopic” imaging (over larger fields of view) is 

starting to be appreciated by researchers 202. As an example, light-sheet microscopes have 

now been developed for highly diverse applications ranging from single-cell investigations 

with advanced high-resolution systems to large-volume studies of intact organs (e.g. mouse 

brains) 126,203-205.

5.3. Co-registration of multi-scale imaging data (pathology and radiology)

Extensive research has been carried out to co-register conventional 2D pathology with 

medical images for improved characterization of diseases over a large range of spatial scales 
206-209. A driving motivation has been to use the gold standard method of pathology to 

elucidate changes seen at more macroscopic tissue scales with standard medical imaging 

methods 210. For example, in current clinical practice, radiology techniques are often used 

for the early detection of various diseases, where histopathology is subsequently relied upon 

to provide diagnostic, prognostic, and predictive insights. Pathology and radiology 

approaches are also often used for cross validation. For example, numerous recent studies 

have correlated PET imaging results with histologically determined metrics such as 

proliferative index (Ki-67 expression), micro-vessel density, and immune phenotype (e.g. 

CD8 expression) 211-213. However, these correlative studies would benefit from increased 

standardization between medical imaging and histopathology. Prior efforts to standardize the 

co-registration of radiology and pathology approaches include placing fiducial markers to 

guide ex vivo mold-based tissue slicing 214. 3D reconstructions of 2D pathology data have 

also been generated to improve registration accuracy 207. The emergence of nondestructive 

3D pathology, which can enable visualization of large tissue volumes, has the potential to 

greatly facilitate and improve co-registration with radiographic images in addition to 

improving genomics assays. In addition, intermediate imaging modalities such as preclinical 

micro-CT/MRI/PET, may be helpful to bridge the large gap in spatial resolution and 

volumetric field between microscopy and whole-body imaging techniques 202.

5.4. Opportunity to study and mitigate health disparities across populations

Recent work has suggested that 2D computational pathology features of cancer from H&E-

stained whole slide images exhibit population-level differences. In particular, Bhargava et al 
215 showed that stromal features of prostate cancer differed significantly between African 

American (AA) and Caucasian American (CA) men, in which a computational prognostic 

model trained with these stromal features was strongly associated with risk of recurrence in 

two validation datasets of AA men. Interestingly, this prognostic model for prostate cancer, 

which was trained with data from AA men alone, was nearly twice as accurate compared to 

a model trained with a combination of AA and CA men. Considering that significant 

morphometric differences have been identified in the stroma between AA and CA men with 

prostate cancer, there is optimism that the computational interrogation of 3D stromal and 

epithelial morphology can further improve the treatment of disparate populations. This 

includes those who have traditionally been underserved, such as AA men with prostate 

cancer, whose mortality rate is nearly 2.5 times higher than CA men 216.
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5.5. Developing holistic decision-support algorithms (imaging, sequencing, health 
records, etc.)

Recent research has expanded from interrogating a single source of information (e.g. 

radiology, pathology, genomics, metabolomics) towards multi-modality approaches to 

improve prognostication and prediction. This is especially attractive when it comes to AI-

based methods that thrive on large amounts of orthogonal and complementary data. AI 

approaches integrating these multiple data types have already been used in cancers of the 

lung 199,217, breast 218,219, brain 220, and prostate 221, as well as for cardiovascular 222 and 

neurological diseases 223. These prior examples foreshadow the use of holistic decision-

support systems (Fig. 6) that combine data from multiple diagnostic modalities and patient 

records to build accurate models for diagnosis, prognosis and prediction of therapeutic 

response.

6. Summary and outlook

Unlike radiology, in which many of the imaging technologies have been developed and 

refined over the last half-century, the field of pathology is rooted in over a century of 

tradition. This extensive history behind current pathology practices will make change 

difficult. However, the fact that pathology is still regarded as the “gold standard” for clinical 

diagnosis attests to the wealth of insight that microscopy offers, even when obtained from 

small numbers of thin 2D sections. The recent FDA approval of digital pathology solutions 

indicates that pathology is entering into a phase of modernization and change that will likely 

evolve over the next half century. In many ways, this recent advent of 2D slide-based digital 

pathology will pave the way for nondestructive 3D pathology, for example by establishing 

the clinical IT infrastructure and resources needed to support a digital 3D pathology 

workflow. An optimistic viewpoint is that nondestructive 3D pathology would represent the 

ultimate fulfillment of the vision for digital pathology that is currently being pursued with 

2D whole-slide imaging (WSI). For example, a significant factor in the success of digital X-

ray imaging at the end of the 20th century was the economic benefits of replacing analog 

films with reusable X-ray panels 224. Likewise, nondestructive 3D pathology offers the 

potential to bypass glass slides, as well as associated tissue-sectioning processes, in favor of 

a simple digital approach that requires less human labor and consumables.

As with any diagnostic method, clinical value must be demonstrated through large-scale 

randomized studies. The ability to perform studies on 3D pathology with archived FFPE 

tissue specimens will facilitate and accelerate this process, but studies with prospective 

patient specimens will be of value as well. Convenience and cost savings for pathologists 

may not be sufficient to drive rapid adoption of 3D pathology, but studies showing clear 

advantages for improving clinical outcomes will cause oncologists and patients to demand 

these new services. As discussed in this article (Fig. 2), initial studies will likely focus on the 

ability of 3D pathology to improve disease prognostication and prediction of treatment 

response through: (1) the characterization of complex structures (e.g. vessels, glands, 

collagen); (2) the quantification of complex spatial relationships (e.g. the tumor-immune 

microenvironment); and (3) the analysis of rare cells that are challenging to identify on 2D 

sections. A more-concrete example of the first scenario would be to show that 3D 
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characterization of glandular architecture in prostate biopsies provides superior classification 

of indolent vs. aggressive prostate cancers in comparison to traditional Gleason grading (2D 

pathology). For moderate-risk patients, this could help urologists and prostate oncologists to 

determine which patients to place on active surveillance (watchful waiting) versus curative 

treatments (surgery or radiation), the latter of which carries risks for significant side effects 

(e.g. incontinence and impotence). An example of the second scenario would be to show that 

3D quantification of the tumor-immune microenvironment (e.g. lymphocytes, neutrophils, 

tumor cells expressing specific checkpoint receptors, etc.) within large volumes of biopsy or 

surgical tissue is superior to traditional 2D histology and IHC for predicting patient response 

to various immuno-oncology regimens, especially when combined with complementary 

assays such as genomics. Again, the goal is to assign the right patients (likely responders) to 

appropriate pharmacologic treatments while sparing others (including insurers) from the 

financial costs and side effects of ineffective treatments. Finally, an example of the third 

scenario would be to show that identification and quantification of rare events such as 

lymphovascular invasion (LVI) in large surgical specimens (e.g. prostatectomies or breast 

lumpectomies) is feasible with high-throughput 3D pathology methods – due to orders of 

magnitude increased sampling compared to traditional 2D pathology – and is of value for 

prognostication and guiding adjuvant therapies.

In this Perspective article, we have reviewed some of the key technologies that will underlie 

the emergence of nondestructive 3D pathology as a clinical diagnostic method in the decades 

to come. Rapid advances in high-throughput 3D microscopy, data-processing, and AI-based 

image interpretation are currently being coordinated, along with clinical-validation studies to 

demonstrate the value of this diagnostic paradigm. We have discussed how 3D pathology has 

the potential to form a bridge between anatomic pathology and other diagnostic disciplines 

such as genomics and radiology, all of which should ideally be integrated to support accurate 

clinical decision-making.
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Figure 1. Conventional pathology vs. nondestructive 3D pathology.
(A) The conventional histology workflow was developed over a century ago and involves the 

use of harsh fixatives and dehydration reagents (e.g. xylene) followed by wax embedding, 

destructive sectioning, and staining of slide-mounted sections with chromogens such as 

H&E. In addition to being time consuming and destructive, only a small fraction of a clinical 

specimen is viewed in 2D. (B) Recent advances in optical clearing and fluorescence 

labeling, along with high-throughput volumetric microscopy, enable entire specimens (e.g. 

core-needle biopsies) to be imaged in 3D with minimal tissue processing or mounting 

requirements. This method provides rich 3D structural (and molecular) information of large 

intact specimens, and preserves valuable clinical specimens for downstream assays (e.g. 

DNA and RNA sequencing).
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Figure 2. Examples in which 3D pathology could outperform 2D pathology.
(A) For convoluted 3D structures, 2D cross sectional views can be misleading. (B) For 

distributions of cells and other structures, 2D cross sectional views might preclude accurate 

quantification of complex spatial relationships. (C) Finally, for rare cells and 

microstructures, 2D sections might not provide adequate sampling to identify and quantify 

such targets. (D) Clinical examples are provided corresponding to the three categories above.
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Figure 3. A comparison of selected imaging methods for 3D pathology.
(A) Knife-edge scanning microscopy (KESM) and micro-optical sectioning tomography 

(MOST) are destructive methods in which 2D images are acquired as a specimen is serially 

sectioned. These stacks of adjacent 2D images are used to reconstruct a 3D image of the 

specimen. (B) With confocal and multiphoton laser-scanning microscopy, a single point is 

typically imaged within a thick specimen, and is spatially scanned in three directions to 

nondestructively generate a 3D image over time. (C) With light-sheet microscopy, a 2D 

“optical section” within a transparent thick specimen is illuminated. Fluorescence generated 

within that light sheet is imaged in the orthogonal direction onto a sensitive high-speed 

camera. Scanning the 2D light sheet through the sample (or vice versa) allows for rapid 

generation of a 3D image in a plane-by-plane fashion.
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Figure 4. Example data-processing and image-analysis workflows.
(A) In contrast to conventional microscopes, light-sheet microscopes acquire data at up to 1 

GB/sec and require specialized hardware, such as a local 10 Gbit networked server, or a 

cloud-based storage and analysis solution. (B) Machine-learning tools will be necessary to 

assist with the analysis of large 3D pathology datasets for clinical decision support. 

Strategies include a multi-stage “hand-crafted-feature”-based approach, in which intuitive 

and well-understood microstructures are segmented and quantified as inputs for prognostic 

and predictive classifiers. Alternatively, an “end-to-end” approach can be used for direct 

classification based on raw 3D pathology images through a deep-learning model. Note that 

deep-learning techniques can also be utilized for certain steps within the multi-stage hand-

crafted approach, for example to assist with segmentation tasks as described in section 3.2. 

These topics will be further examined in sections 3 and 4.

Liu et al. Page 35

Nat Biomed Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Examples of nondestructive 3D pathology of clinical specimens.
(A) 12 core-needle biopsies from the prostate of a single patient are imaged 

comprehensively in 3D with an open-top light-sheet (OTLS) microscopy system 123. A 

fluorescent analog of H&E staining is used to label the specimen, and is false-colored to 

mimic the appearance of standard H&E histology. (B) Benign and malignant glands are 

easily identified, with signification variations in appearance as a function of depth, which 

suggests that 3D pathology may improve diagnosis and grading of prostate carcinoma 21,22. 

(C) A bladder cancer specimen (FFPE) is deparaffinized, cleared, fluorescently labeled for 

nuclei and N-cadherin, and then imaged with light-sheet microscopy 43. Scale bars: 80 μm 

(yellow) and 1,600 μm (cyan). (D) A number of vascular features (tortuosity, kurtosis, and 

density) are plotted for 45 bladder specimens (human), showing significant differences 

between normal patients, those with non-muscle-invasive tumor (<pT2) and those with 

muscle-invasive tumor (>pT2). These quantitative vascular features were obtained after 

segmenting out the vessel network (E). Scale bars: 80 μm. (F) An ROC analysis was 
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performed for the ability to detect muscle-invasive vs. noninvasive tumor, showing that 3D 

vascular features outperform 2D features, and that combining all 3D features yields the best 

performance. (G) Multiplexed 3D immunofluorescence imaging, with confocal microscopy, 

of intact core-needle biopsies of cancer 45. Scale bar at the top left: 500 μm. (H) Normalized 

densities of CD3+CD8+ cytotoxic lymphocytes (CTLs), and CD31+ microvasculature in 

EGFR+ parenchyma, are used to cluster human tumors into inflamed and noninflamed 

phenotypes. (I) 3D spatial distance mapping of an inflamed patient sample reveals that over 

54% of CD3+CD8+ CTLs are located within 10 μm from microvessels.
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Figure 6. Staged approach for translation of 3D pathology into clinical practice.
3D pathology datasets, generated by reference labs or in-house pathology labs, may initially 

provide additional visual information for pathologists as they seek to improve their 

diagnostic determinations. Early incorporation of AI analysis will likely be for triaging 

unequivocal cases, in order to reduce pathologist workloads, and to guide their efforts 

towards regions of ambiguity and/or diagnostic importance. As AI algorithms are 

increasingly validated and trusted by clinicians, they may eventually be utilized for fully 

automated analysis of 3D pathology datasets, with pathologist oversight if necessary. The 

vision for 3D pathology is to provide clinical decision support (prognostication and 

prediction) to guide treatment decisions, likely in conjunction with other molecular and 

imaging assays.
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