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Abstract

To understand driving biological factors for complex diseases like cancer, regulatory circuity
of genes needs to be discovered. Recently, a new gene regulation mechanism called com-
peting endogenous RNA (ceRNA) interactions has been discovered. Certain genes targeted
by common microRNAs (miRNAs) “compete” for these miRNAs, thereby regulate each
other by making others free from miRNA regulation. Several computational tools have been
published to infer ceRNA networks. In most existing tools, however, expression abundance
sufficiency, collective regulation, and groupwise effect of ceRNAs are not considered. In this
study, we developed a computational tool named Crinet to infer genome-wide ceRNA net-
works addressing critical drawbacks. Crinet considers all mRNAs, IncRNAs, and pseudo-
genes as potential ceRNAs and incorporates a network deconvolution method to exclude
the spurious ceRNA pairs. We tested Crinet on breast cancer data in TCGA. Crinet inferred
reproducible ceRNA interactions and groups, which were significantly enriched in the can-
cer-related genes and processes. We validated the selected miRNA-target interactions with
the protein expression-based benchmarks and also evaluated the inferred ceRNA interac-
tions predicting gene expression change in knockdown assays. The hub genes in the
inferred ceRNA network included known suppressor/oncogene IncRNAs in breast cancer
showing the importance of non-coding RNA’s inclusion for ceRNA inference. Crinet-inferred
ceRNA groups that were consistently involved in the immune system related processes
could be important assets in the light of the studies confirming the relation between immuno-
therapy and cancer. The source code of Crinet is in R and available at https://github.com/
bozdaglab/crinet.

Introduction

MicroRNAs (miRNAs) are small RNA types that bind to other RNAs such as mRNA, long
non-coding RNA (IncRNA), and circular RNA to regulate their expression post-transcription-
ally. Recently, a new regulatory layer related to miRNAs has been discovered [1]: certain RNAs
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targeted by common miRNAs “compete” for these miRNAs and thereby regulate each other
indirectly by making the other RNA(s) free from miRNA regulation. Such indirect interactions
between RNAs are called competing endogenous RNA (ceRNA) interactions, which have
important roles in diseases including cancer [2-5]. There is a regulation multiplicity between
miRNAs and RNAs, meaning that a miRNA could have multiple RNA targets, and an RNA
could be targeted by multiple miRNAs. Given the enormous number of RNAs and difficulty of
deciphering miRNA binding targets accurately, identifying ceRNA interactions experimentally
is cost- and labor-prohibitive. Therefore, computational tools are crucial to infer ceRNA inter-
actions in complex genomes like human. For the rest of the paper, “genes” refers to mRNAs,
IncRNAs, and pseudogenes in our analysis.

Despite existing computational tools [6-9], there exists crucial drawbacks. Current tools
compute only pairwise ceRNA interactions or ccRNA modules, however, inferring groupwise
ceRNA interactions should be considered since several ceRNAs could work together to seques-
ter miRNA(s) targeting key ceRNA(s). Also, in the existing tools, a miRNA/gene could be
assigned to many genes/miRNAs without considering the sufficiency of miRNA/gene expres-
sion abundance. Furthermore, since ceRNAs positively regulate each other, two genes having
many common ceRNA partners might be inferred just because of the amplifying effect of regu-
lation by common ceRNA partners. Thus, excluding these false positive ceRNA interactions is
important.

In this study, we developed a computational tool named Crinet (CeRna Interaction NET-
work) to infer genome-wide ceRNA interactions and groups to address the aforementioned
drawbacks. To build our ceRNA network on a proper miRNA-target interaction set, we inte-
grated expression datasets and binding scores for miRNA-target pairs considering expression
abundance sufficiency. We computed ceRNA pairs considering strong regulation jointly. To
cope with the spurious interactions, we excluded ceRNA pairs which were potentially inferred
because they had significant overlapping of common ceRNA partners. We inferred ceRNA
groups and integrated these groups into the ceRNA network. Getting the benefit of multiple
biological datasets and including non-coding RNAs, this approach facilitates a better under-
standing of ceRNA regulatory mechanisms addressing important drawbacks, which would
shed light on the underlying complex regulatory circuitry in disease conditions.

Crinet was applied to breast cancer dataset to infer ccRNA interactions and groups. We
evaluated Crinet-selected miRNA-target interactions with protein expression-based bench-
marks having increasing performance following filtering steps. Expression change in the
inferred ceRNAs was highly affected following knockdown of their ceRNA partners. Inferred
ceRNAs, hub ceRNAs, and some ceRNA groups were significantly associated with the cancer-
related genes and processes, and consistently involved in the immune system related processes,
thus Crinet-inferred ceRNAs could be important virtues in the view of the studies validating
the relation between immunotherapy and cancer.

Materials and methods

Crinet is a computational tool to infer genome-wide ceRNA interactions and groups (Fig 1).
Briefly, the first step is the data preparation step. In the second step, miRNA-target interactions
are computed by incorporating expression datasets and considering expression abundance
sufficiency. Starting with final miRNA-target interactions, ceRNA interactions are inferred in
the third step. In the last step, ceRNA groups are inferred from the ceRNA network and inte-
grated into the network. In the following, each step of Crinet is explained in more detail.
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Crinet incorporates miRNA-target interactions with binding scores, gene-centric copy num-
ber aberration (CNA), and expression datasets. If binding scores are not available, the same

score for all interactions could be used.

To collect datasets for Crinet, we used TCGADbiolinks R package [10] and obtained the data-
sets from the Cancer Genome Atlas (TCGA) project including gene expression, miRNA
expression, and CNA for totally 1107 breast (BRCA) tumor samples (available at https://www.
cancer.gov/tcga). We preprocessed each datatype separately obtaining normalized expression
values (gene expression as FPKM and miRNA expression as RPM) and filtered lowly expressed
genes (if FPKM <1 and RPM = 0 for at least 15% samples). To get gene-centric CNA from a
segmented dataset, we ran CNTools R package [11].

We obtained all conserved and nonconserved miRNA-target interactions with weighted
context++ scores from TargetScan [12]. To compute pseudogene and IncRNA targets of miR-
NAs, we ran TargetScan separately for IncRNAs and pseudogenes, providing a constant
dummy ORF length and supplying all transcript sequence as 3’'UTR with the assumption that
the entire sequence could be bound by miRNAs. If multiple scores exist for one pair due to the
multiple transcripts, we used the strongest score.
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Since there is a corresponding weighted context++ score in TargetScan results even for
weak miRNA-target interactions, we kept the top 40% of ranked interactions with respect to
weighted context++ scores. To fit different distributions of scores for mRNAs, IncRNAs, and
pseudogenes, we combined z-normalized scores from each and applied min-max normaliza-
tion after having all the scores in the range of -1 and 1. We used these normalized scores as the
weight for each miRNA-target interaction assuming that these scores show the binding
strength between miRNA and its gene target.

Computing miRNA-target interactions

In this step, we computed final miRNA-target interactions leveraging expression datasets and
considering expression abundance sufficiency.

Integrating interactions with expression datasets (correlation filtering). Since miRNAs
are known to repress their target genes, we kept only miRNA-target pairs having negative cor-
relation between their expressions. By default, we used the correlation coefficient threshold of
-0.1, which was the median correlation coefficients of all miRNA-target pairs. We also applied
random sampling with replacement to compute correlation coefficient of each miRNA-target
pair for 1000 times and required that the threshold was satisfied for >99% of the samplings.

Getting interactions with sufficient abundance and binding probabilities (abundance
filtering). In the miRNA-target interaction sets, a miRNA could be assigned to mediate
thousands of RNAs, and similarly an RNA could be assigned to many miRNAs as a potential
target. To quantify the expression sufficiency for our putative interactions, we introduced
Interaction Regulation (IR) formulated as:

Exp(r).Exp(t).score,, Exp(t).Exp(r).score,,
. * .
Zjer’s largetsE‘xp(])'scorerj Zjet’s regulatorsExp(])'Scorejt

IR(r,t) = (1)

where IR(r, t) is the IR of the regulator r and the target ¢ across samples, Exp(.) is the expression
vector across samples, score,, is the normalized binding score for the interaction between the
regulator r and the target . Using this formula, we kept the final miRNA-target interactions
having high IRs (i.e., 80" percentile of log of IR(r, t) > —4.89, which was third quartile of all
IRs through samples).

Keeping genes with proper effective regulation. To exclude genes from analysis if they
were not under strong miRNA regulation based on the final miRNA-target interactions, we
introduced Effective Regulation (ER) formulated as:

Exp(r)score,,
ER(t) = ___rr
®) score,; (2)

ret’s regulators Zjer’s targets

To keep genes with proper effective regulation by miRNAs, we filtered out genes without
strong negative correlation (< —0.01) between its expression and ER, assuming that they did
not have strong miRNA regulation for our specific dataset. We also applied random sampling
with replacement to compute correlation for 1000 times and required that the threshold was
satisfied for >99% of the samplings. We used the remained genes (called candidate genes) for
further analysis.

Inferring ceRNA interactions

To infer ceRNA interactions, we generated all possible gene-gene combinations using candi-
date genes and filtered them based on the following criteria:
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Checking significant number of common regulator. Since ceRNAs should have com-
mon miRNAs to compete for, we kept gene pairs having a significant number of common
miRNA regulators (hypergeometric p-value <0.01).

Checking significant expression correlation. Since the ceRNA pairs indirectly positively
regulate each other and CNA considerably affects the expression values, we kept the gene pairs
having significant partial correlation when excluding the CNA effect from the gene expression.
By default, we used the correlation coefficient threshold of 0.55 (p-value <0.01), which was the
third quartile of the positive correlation (S3 Fig in S1 File).

Checking collective regulation. If there exists ceRNA regulation between two genes then
both genes compete for common miRNAs and those miRNAs affect both genes simulta-
neously. We called this regulation Collective Regulation (CR) formulated as:

CR(S) = corr (ZER(S), ZExp(s)) (3)

sES seS

where S is a set of genes having ceRNA interactions and corr() is the Pearson correlation func-
tion. We kept the ceRNA pairs if they had a CR < -0.01.

We applied random sampling with replacement for both partial correlation and CR mea-
surements (last two steps) 100 times separately and kept the interactions when the threshold
was satisfied for >99% of the samplings.

Excluding amplified interactions. Having common ceRNA partners between any two
genes will increase the correlation between their expression. If a gene pair has too many com-
mon ceRNA partners, then some of the ceRNA interactions could be superior due to the high
number of common ceRNA partners. To exclude such spurious interactions from our net-
work, we employed a network deconvolution algorithm [13] and kept the top one-third of
ranked interactions as our pairwise ceRNA network.

Inferring ceRNA groups

In ceRNA regulation, each ceRNA pair compete for common miRNA(s) and act as a decoy to
make the other RNA free from miRNA regulation. However, this competition could occur
among more than two RNAs, or between two groups of RNA. Based on this premise, Crinet
inferred ceRNA groups in addition to ceRNA interactions.

To obtain ceRNA groups, we utilized one of the popular community detection algorithms
named Walktrap [14] on the weighted ceRNA network where weights were normalized partial
correlation coefficient. We kept the groups satisfying all the group conditions, otherwise split
them iteratively. Three group requirements of Crinet are listed as follows:

Common miRNA regulator. To be able to compete for, all the group members were
required to have at least one common miRNA regulator.

Strong regulation effect. CeRNAs in a group were expected to have a stronger miRNA
regulation effect as a group than as individual ceRNAs. Thus, we required that CR of a group
must be stronger (i.e. reduced) than the correlation between expression and ER of >90% of
the group members. Moreover, to ensure that most of the group members would be under
strong collective regulation effect, we required that an average difference between CR of the
group and corr(Exp(g), ER(g)) for each gene g in the group was >0.

Compatibility with the network. To hold inference consistency of the ceRNA network,
for a given group, we called each ceRNA partner of group members as neighbor and expected
the group to satisfy any two of the three conditions for at least 90% of its neighbors. The condi-
tions are i) at least one common miRNA regulator between the group and the neighbor, ii) a
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Table 1. Number of miRNA-target interactions after each miRNA-target interaction filtering step in Crinet.

Step # of Interactions # of miRNAs # of Genes

ALL 8,193,904 888 28,129

ALL40 3,285,523 888 27,999

CORR 535,284 888 23,099
CORR+ABUN 165,937 888 21,261

ALL: All obtained miRNA-target interactions; ALL40: Top 40% of ALL interactions based on weighted context+
+ score; CORR: After correlation-based filtering on ALL40 interactions (< —0.1); CORR+ABUN: After abundance-
based filtering on CORR interactions (log IR > —4.89 for >80% of samples)

https://doi.org/10.1371/journal.pone.0251399.t001

strong Pearson correlation based on expression, and iii) strong collective regulation between
the group and the neighbor.

Results

We tested Crinet on breast tumor samples from TCGA (Section Data preparation for details).
We computed miRNA-target interactions (Table 1) and used them to infer 17,443 pairwise
ceRNA interactions (Table 2). Using this pairwise ceRNA network, we obtained 81 ceRNA
groups after applying 1508 iterations of Walktrap. Thirty five of these groups were connected
to at least one node in the final network, while the others had interactions only within the
group. After this step, we had our grouped ceRNA network with 4352 nodes (4317 individual
genes and 35 groups of genes) and 17,274 edges between inferred nodes.

To check the scale-free property and specificity of Crinet, we examined the inferred net-
work (A.2 Section in S1 File for details). Since biological networks generally exhibit scale-free
property [15-17], we computed the inferred network’s degree probability distribution func-
tion. Our inferred ceRNA network had a negative slope with high fitness (R* = 0.93), indicat-
ing that the inferred ceRNA network was scale-free (S2 Fig in S1 File). To evaluate the
specificity of Crinet, we checked if our inferred ceRNA pairs existed in different regulatory lay-
ers, namely protein-protein interactions (PPIs) and transcription factor (TF)-gene interac-
tions. We collected 1,663,810 TF-target interactions from TRRUST v2 [18] database and the
ENCODE Transcription Factor Targets dataset [19], and 1,847,774 PPIs from BIOGRID
v3.5.186 [20]. Within all inferred ceRNA interactions, very few interactions were TF-gene

Table 2. Number of remained ceRNA pairs after each ceRNA interaction filtering step in Crinet.

Step # of Pairs # of Genes

ALL 212,994,480 20,640
Stepl 16,082,000 20,640
Step2 247,885 11,910
Step3 209,220 11,726
Step4 52,858 7,263
Step5 17,443 4,494

ALL: All candidate pairs after keeping proper genes with effective regulation; Step1: pairs with a significant overlap
for common miRNAs; Step2: pairs after filtered based on partial correlation between gene expressions excluding
copy number aberration effect; Step3: pairs after filtered based on collective regulation; Step4: pairs after applying
random sampling for Step2 and Step3; Step5: pairs after applying the network deconvolution method to exclude the

spurious ceRNA pairs.

https://doi.org/10.1371/journal.pone.0251399.t1002
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interactions (0.46%) and PPIs (0.51%) indicating that the regulatory relationships between
inferred ceRNA interactions were not due TF or PPI effect.

To check the reproducibility based on different datasets, the robustness to different hyper-
parameters, and the effect of each individual step in ceRNA inference, we conducted more
detailed analysis of Crinet results (A.3 and A.4 Sections in S1 File for details). To check the
reproducibility of Crinet based on different datasets, we ran Crinet on two equal-sized random
samplings of the breast cancer dataset multiple times. To avoid bias in the comparisons, we
ensured that both samplings had similar subtype distribution (namely Basal-like, Normal-like,
Luminal-A, Luminal-B, and Her2-enriched). We observed highly overlapping interactions
and ceRNAs among different runs (S4 Table in S1 File). We checked the distribution of consis-
tently overlapping ceRNAs and observed that the mean degree of these ceRNAs was much
higher as compared to the overall mean degree (p-value <2.107'®) suggesting that consistently
inferred ceRNAs were the hub ceRNAs highly involving in our inferred ceRNA network.
Moreover, to examine the effect of each step in Crinet, we disabled major steps in ceRNA
inference and evaluated the results. Disabling individual steps made a substantial difference in
the inferred results (S1 Table in S1 File). However, when we modified the hyperparameters in
each of these steps, we observed highly overlapping interactions (S5 and S6 Tables in S1 File)
suggesting that Crinet is robust to different choices of hyperparameters.

miRNA-target interaction filtering showed increasing performance on
protein expression-based benchmarks

Since we built a ceRNA network relying on miRNA-target interactions, proper selection of
these interactions is important; therefore, we evaluated each filtering step of miRNA-target
interactions using protein expression-based benchmarks.

Transfection analysis. We utilized a Reverse Phase Protein Array (RPPA) dataset for
MDA-MB-231 breast cancer cell line from The Cancer Proteome Atlas (TCPA) database
(accession number: TCPA00000001) [21] to assess our miRNA-target interactions as in [9].
We used 104 antibodies, their fold-change for 141 transfected miRNAs, and mock controls.
For each miRNA-target interaction, we measured expression fold ratio of each antibody of the
target for the miRNA transfection relative to the average mock transfections. Table 3 confirms
the preferential down-regulation of predicted miRNA targets, getting higher after each conse-
cutive filtering step showing the positive effect of filtering for each independent interaction.
We also checked the average of all targeting miRNAs per gene relative to average mock trans-
fections and observed a similar down-regulation tendency. Although the ratio did not increase

Table 3. Evaluation of miRNA-target interaction filtering steps for the computed miRNA-target interactions
using miRNA transfection data.

Step # of Interactions Interaction Phase Gene Phase

ALL 8,193,904 6,248/4,932~ 1.3 90/74~ 1.2

ALL40 3,285,523 613/403 =~ 1.5 97/59 ~ 1.6

CORR 535,284 183/112~ 1.6 71/37 ~ 1.9
CORR+ABUN 165,937 179/111=~ 1.6 68/39 ~ 1.7

Interaction phase shows the expression fold reduction of each antibody of target for its transfected miRNA regulator
relative to mock transfection. Gene phase shows average expression fold reduction of each antibody of target for all
transfected miRNA regulators relative to mock transfection. Down-regulated over up-regulated numbers along with
the ratio are shown (ratio is expected to be more than 1 to have down-regulation tendency. Higher is better). See

Table 1’s caption for the definition of row labels.

https://doi.org/10.1371/journal.pone.0251399.t003
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Table 4. Evaluation of miRNA-target interaction filtering steps for the computed miRNA-target interactions
based on miRNA-protein expression anticorrelation.

Step # of Interactions Interaction Phase Gene Phase

ALL 8,193,904 38,505/33,243 ~ 1.2 95/106 ~ 0.9

ALL40 3,285,523 2,720/2,688 ~ 1.0 107/91 ~ 1.2

CORR 535,284 751/370 =~ 2.0 115/50 ~ 2.3
CORR+ABUN 165,937 719/352 =~ 2.0 114/47 ~ 2.4

Interaction phase shows the anticorrelated expressions of miRNA-protein target pairs with respect to positively
correlated pairs. Gene phase shows the anticorrelated expression of target with average of all miRNA regulators with
respect to the one having positive correlation. (Ratio is expected to be more than 1 to have anticorrelation tendency.

Higher is better). See Table 1’s caption for the definition of row labels.

https://doi.org/10.1371/journal.pone.0251399.t004

for the last step, it was due to few genes. ERCCI1, BAK1, CTNNA1, PXN, MSH2, XIAP,
MAPKS3, EEF2K, CAV1, IGFBP2, PRKAAI, PCNA, CASP9, IGF1R, SMAD4, COL6A1,
PIK3R1, CHEK]1, EIF4E, PTK2, CDK1, SMAD1, BCL2L1, BCL2, LCK, DIABLO, NF2, and
EIF4EBP1 some of which are known to be important in breast cancer were consistently down-
regulated by their predicted miRNA regulators. As a negative control, we used non-inferred
interactions and did not observe any strong down-regulation tendency for all the filtering
steps for both phases (S2 Table in S1 File).

Protein expression anticorrelation analysis. Using protein expression dataset from
TCPA matching with breast tumor samples in our analysis, we analyzed the negative correla-
tion between miRNA expression and protein expression of their targets for each applicable
miRNA-target interaction.

While the anticorrelation tendency slightly decreases after selecting top 40% miRNA-target
interactions, our filtering steps substantially increased the ratios showing the anticorrelation
tendency in our selected interactions (Table 4). Also, while considering average miRNAs per
target, we had a slight anticorrelation tendency for top 40% interactions; however, our filtering
steps increased the anticorrelation tendency much more. As negative control, non-inferred
interactions did not show strong tendency, and even the tendency was towards to the up-regu-
lation for the gene phase (S3 Table in S1 File).

Protein expression analysis with ESR1. To evaluate predicted miRNA-target interactions
in [9], the authors focused on the ESR1 protein, showing that ESR1 protein expression in
TCGA breast cancer tumors (profiled by RPPA using the antibody ER.alpha.R.
V_GBL.9014870) had a strong negative correlation with the expression of predicted miRNA
regulators. Ranking samples based on miRNA expression, the top 10% and bottom 10% sam-
ples were compared based on ESR1 protein expression. Similarly, we generated a heatmap
showing protein expression for Crinet-selected miRNAs regulating ESR1. Fig 2 shows nine
Crinet-selected and 12 Cupid-selected miRNAs regulating ESR1, having five miRNAs as com-
mon. We quantified the anticorrelation between miRNA and protein expression by measuring
fold-change of mean protein expression for the top 10% samples with respect to the bottom
10%. Our results indicated that the expression of Crinet-selected miRNAs for ESR1 had high
anticorrelation with protein expression with high fold-change consistently while Cupid had
some low fold-change such as hsa-mir-381.

Fig 2 also illustrates nine regulators eliminated by Crinet following expression correlation
and sufficient abundance filtering of miRNA-target selection. These interactions did not show
strong anticorrelation between miRNA and protein expression with respect to fold-change for
the majority of miRNAs, showing the strength of Crinet filtering approach. As a negative
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Fig 2. Heatmap showing protein expression of ESR1 for the top and bottom 10% ranked samples with respect to miRNA expression. Protein
expression is shown for the top and bottom 10% samples ranked with respect to miRNA expression regulating ESR1 by Cupid-selected, Crinet-selected,
Crinet-eliminated, and negative control along with the mean difference of log fold-change of protein expression for the bottom 10% with respect to the
top 10% samples. Each row is independently ranked by miRNA expression. (*Common miRNA regulators with Cupid).

https://doi.org/10.1371/journal.pone.0251399.9002

control, we added the average of 100 random miRNAs which were not selected as ESR1’s regu-
lator by Cupid and Crinet, and they exhibited a low fold-change.

Inferred ceRNA interactions were able to predict gene expression change

To assess the accuracy for ceRNA inference, we used the Library of Integrated Network-based
Cellular Signature (LINCS) [22] L1000 shRNA-mediated gene knockdown experiment in
breast cancer cell line as in [6] and checked whether ceRNA interactions can predict the effects
of RNAi-mediated gene silencing perturbations in MCF?7 cells. Since Crinet starts with a high
number of genes, it was not computationally feasible to run many tools with our dataset. How-
ever, Hermes [6] runs any given ceRNA pair independently, therefore we ran Hermes for the
genes in the knockdown assays using the same expression datasets and Crinet-selected
miRNA-target interactions. LINCS database is a rich resource having an expression change of
nearly 1000 genes as a response to a silenced gene. When a gene is silenced then its ccRNA
partner will be affected since more miRNA regulators will be available to suppress the ccRNA
partner. Thus, given a ceRNA pair, expression level should be lower in response to the silenced
ceRNA partners in comparison to the genes that are not ceRNA partners. Based on this
assumption, we evaluated the Crinet- and Hermes-inferred networks. The accuracy of this
assessment is shown in Table 5. Since Hermes was not selective in terms of the number of
ceRNA interactions by inferring many significant interactions, we evaluated several networks
from Hermes till having similar number of genes with Crinet in the knockdown assessment.
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Table 5. Evaluation of the accuracy of Crinet- and Hermes-inferred ceRNA interactions based on the shRNA-
mediated gene knockdown experiment.

96h Timepoint 144h Timepoint Overall

Crinet 48/77 ~ 62% 44/77 ~ 57% 92/154 ~ 60%
Hermes 1.run 412/897 ~ 46% 441/913 ~ 48% 853/1810 ~ 47%
Hermes 2.run 199/466 ~ 43% 217/481 =~ 45% 416/947 =~ 44%
Hermes 3.run 109/269 ~ 41% 121/273 =~ 44% 230/542 ~ 42%
Hermes 4.run 65/143 ~ 45% 68/144 ~ 47% 133/287 ~ 46%
Hermes 5.run 33/69 ~ 48% 39/71 =~ 55% 72/140 =~ 51%

Analysis to check the accuracy of inferred ceRNA interactions using LINCS-L1000 shRNA-mediated gene
knockdown experiment in breast cancer cell line. Based on the ratios of gene expression fold-change following the
knockdown of its ceRNA partners to following the genes that are not its ceRNA partners for each perturbagen
ceRNA, the accuracy of a ceRNA network was accepted as the percentage of ceRNAs whose ratios were smaller than
1 with respect to all ceRNAs. We calculated the accuracy separately for each different timepoint (96h & 144h) and

combined timepoints as the overall. Hermes’s x.run had 10~**" for the significance of the common miRNA size and

10"%*? for the significance of conditional regulation.

https://doi.org/10.1371/journal.pone.0251399.t005

Based on these results, Crinet outperformed Hermes at predicting gene expression change of
ceRNA partners for each timepoint and for overall accuracy.

Inferred ceRNAs were significantly associated with the known cancer genes
and cancer-related processes

To analyze the biological significance of the inferred ceRNA network, we applied enrichment
analysis for the inferred ceRNAs. We used ClusterProfiler R package [23] for all enrichment
analysis. The inferred ceRNAs were significantly enriched in 398 GO terms from biological
process ontology and 39 KEGG pathways. To associate enriched terms to broader categories,
we analyzed GO Slim terms (S8 Table in S1 File). Inferred ceRNAs were mostly involved in
biological processes including immune system process, cell differentiation, cell death, cell
cycle, response to stress, and cell-cell signaling. These suggest that ceRNA interactions could
have important role in biological processes in cancer.

To check if the inferred ceRNAs were associated with the cancer-related genes, we collected
3078 known cancer genes obtained from Cancer Gene Census in COSMIC v91 [24], Bush-
man’s cancer gene list v3 [25], human oncogenes from ONGene [26], Network of Cancer
Genes 6.0 [27], and LncRNADisease database from the Cui Lab [28]. In our inferred ceRNAs,
we had significant overlap (hypergeometric test p-value 9.107'%) between the known cancer
genes and the inferred ceRNAs having 789 out of 3078 known cancer genes in our inferred
network. When we repeated the same analysis for non-inferred genes, they did not show sig-
nificant p-value (almost 1). We also had 54 breast cancer-related genes from LncRNADisease
and Network of Cancer Genes 6.0 databases, 14 out of 54 breast cancer-related genes were
inferred in our network. These results indicated that inferred ceRNAs were significantly asso-
ciated with known cancer genes.

Moreover, we analyzed the hub ceRNAs in our network. The degree distribution of our net-
work had a median of three with a maximum of 152 and a minimum of 1. We got the top 81
ceRNAs having a degree of 50 or more in our network as hub genes. The hub genes were sig-
nificantly enriched in 58 GO terms and eight KEGG pathways. We investigated the GO Slim
terms from biological processes ontology for hub genes, and enriched terms included immune
system process, cell death, cell differentiation, cell motility, and cell cycle. Also, these hub
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genes were among the known cancer genes with a hypergeometric p-value of 0.0009. Specifi-
cally, 15 out of 81 genes were involved in the known cancer genes, while three of them were
breast cancer-related. These suggest that hub ceRNAs in the inferred network were involved in
the important biological processes in cancer.

Among hub genes were some IncRNAs with known involvement in cancer. For instance,
MAGI2-AS3 had a degree of 89 being highly connected for ceRNA regulation in our network,
and it is known as suppressor involving in cell growth [29]. MALAT1, which had a degree of
51, contributes significantly to cancer initiation and progression in breast cancer [30]. Some
other IncRNAs had also important functionality: MIRI00HG as an oncogene involving in pro-
liferation [31], ITGB2-AS1 as an oncogene involving migration and invasion [32], and MEG3
as a suppressor involving in proliferation and EMT [33].

Inferred ceRNA groups included known cancer-related genes and were
enriched in cancer-related processes

To evaluate the inferred ceRNA groups, we performed enrichment for four of 81 inferred
ceRNA groups that have more than three members (S4 Fig in S1 File). CeRNA groups had a
significant overlap with the cancer-related genes (hypergeometric p-value <0.0006). Group 1
genes were enriched with 82 GO terms from biological process ontology and 5 KEGG path-
ways, while group 3 were enriched with 35 GO terms and group 4 with 17 GO terms. More-
over, group 1 was highly enriched with GO Slim terms including cell cycle, response to stress,
DNA metabolic process, chromosome segregation, and cell division. Although group 2 had
limited mRNAs, all the remaining groups (groups 2, 3, and 4) were consistently enriched with
GO Slim term immune system process. Additionally, group 3 had GO Slim terms including
cell death, cell adhesion, and cell motility, while group 4 included response to stress (S7

Table in S1 File for details). CeRNA groups were significantly overlapped with known cancer-
related genes and significantly enriched in biological processes suggesting that ccRNA groups
could have important roles as a group in cancer including the immune system and cell repair.

Discussion

In this study, we developed a computational tool named Crinet to infer pairwise and group-
wise ceRNA interactions and applied it to the breast tumor samples. Leveraging multiple types
of biological datasets, considering expression abundance between miRNA and their targets,
and excluding amplifying effect of ceRNA regulation, we inferred a ceRNA network including
17,274 ceRNA interactions between 4352 ceRNAs/ceRNA groups.

Unlike the existing tools, we filtered the miRNA-target interactions considering abundance
sufficiency and binding scores. We introduced Interaction Regulation (IR) score, and con-
firmed that the miRNAs with the highest number of targets and low expression levels were
successfully filtered out (A.1 Section and S1 Fig in S1 File). Since ceRNAs positively regulate
each other, expecting positive correlation between expression of ceRNAs is a common
approach [1]. While some studies use additional metrics in addition to simply calculating cor-
relation [7, 34], we measured the partial correlation excluding the CNA effect since expression
values are highly affected by copy number amplification and deletion.

Different from the studies that analyze only differentially expressed (DE) genes in order to
have a computationally manageable number, we included all IncRNAs and pseudogenes in
addition to all coding RNAs (including non-DE mRNAs) to understand comprehensive
ceRNA regulation. We had the known IncRNA oncogenes and suppressors as highly con-
nected in the inferred ceRNA network indicating that the IncRNAs could have an important
role in ceRNA regulation. When the expression profiling of other data types such as circular
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RNAs is available, including them into the pipeline could be worthy of further investigation to
improve ceRNA inference [35].

We also started with a large set of miRNA-target interactions since we utilized weighted
context++ score as a proxy for binding probability. This enabled us to include all possible
gene-gene interactions based on common regulators especially for the measurements like our
collective and effective regulation. Our carefully designed miRNA-target interaction filtering
steps were able to eliminate high likely false-positive interactions confirmed by the protein
expression-based benchmarks. As a negative control, we analyzed non-inferred interactions in
addition to the inferred ones in our evaluations based on miRNA transfection and protein
expression data. Especially for the gene phase, we observed that the the number of down-regu-
lated non-inferred interactions to up-regulated ones were less than 1 (S2 and S3 Tables in S1
File).

There are important studies to eliminate indirect interactions as an alternative to the net-
work deconvolution approach such as the network enhancement [36]. When we applied the
network enhancement method to our network, we had many new edges ranked at the top of
the final network ranking better than the existing ones. Therefore, we preferred to use the net-
work deconvolution method [13], which eliminates indirect interaction contribution from the
direct ones for the existing edges. Applying the network deconvolution method to ceRNA
inference, we eliminated the amplifying effect of ceRNA pairs, which was not addressed by the
previous studies.

Crinet inferred ceRNA groups holding the inference consistency in the ceRNA network.
We defined the ceRNA group as a group of two or more ceRNAs that have strong and collec-
tive relationships and we replaced the individual pairwise edges of the group members with
the group edges that affect the whole group collectively. In that way, we did not find only a
group of closely related genes, but we had a ceRNA network in which the groups and individ-
ual ceRNAs had ceRNA interactions showing the comprehensive regulation. Computational
inference of ceRNA interaction is based on the local topologic information because the infer-
ence starts with a miRNA-RNA interaction set. However, we grouped ceRNAs even though
they do not have inferred pairwise interaction; thus, we were able to add global signals into the
inferred network.

Delving into the biological significance, inferred ceRNAs, ceRNA groups, and hub ceRNAs
were significantly enriched in the known cancer-related genes and processes suggesting that
ceRNAs could serve important processes in cancer. We consistently had immune system pro-
cess as the significantly enriched GO term for the inferred ceRNAs, some ceRNA groups, and
the hub ceRNAs. There are studies confirming that the weakness in the immune system func-
tion is closely related to tumorigenesis [37]. In [38], authors investigated ceRNA networks in
Papillary Thyroid Carcinoma and disclosed the combined regulation of immune responses
from these networks. In [39], authors unraveled the prognostic significance of ceRNA interac-
tions among immune response genes in glioblastoma multiforme. Considering the immuno-
therapy as an emerging field in cancer with its potential to provide a strong response in cancer
patients, novel Crinet-inferred ceRNA interactions and groups significantly enriched in
immune-related processes could be important assets.

Supporting information

S1 File. Supplementary file of Crinet. This file includes supplementary methods, tables, and
figures of Crinet.
(PDF)
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