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Abstract

Background

Unprecedented public health measures have been used during this coronavirus 2019

(COVID-19) pandemic to control the spread of SARS-CoV-2 virus. It is a challenge to imple-

ment timely and appropriate public health interventions.

Methods and findings

Population and COVID-19 epidemiological data between 21st January 2020 to 15th Novem-

ber 2020 from 216 countries and territories were included with the implemented public

health interventions. We used deep reinforcement learning, and the algorithm was trained to

enable agents to try to find optimal public health strategies that maximized total reward on

controlling the spread of COVID-19. The results suggested by the algorithm were analyzed

against the actual timing and intensity of lockdown and travel restrictions. Early implementa-

tions of the actual lockdown and travel restriction policies, usually at the time of local index

case were associated with less burden of COVID-19. In contrast, our agent suggested to ini-

tiate at least minimal intensity of lockdown or travel restriction even before or on the day of

the index case in each country and territory. In addition, the agent mostly recommended a

combination of lockdown and travel restrictions and higher intensity policies than the policies

implemented by governments, but did not always encourage rapid full lockdown and full bor-

der closures. The limitation of this study was that it was done with incomplete data due to

the emerging COVID-19 epidemic, inconsistent testing and reporting. In addition, our

research focuses only on population health benefits by controlling the spread of COVID-19

without balancing the negative impacts of economic and social consequences.

Interpretation

Compared to actual government implementation, our algorithm mostly recommended ear-

lier intensity of lockdown and travel restrictions. Reinforcement learning may be used as a
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decision support tool for implementation of public health interventions during COVID-19 and

future pandemics.

1. Introduction

Coronavirus disease 2019 (COVID-19) was first reported by health authorities in Wuhan,

China on 31st December 2019 [1]. In mainland China, the number of confirmed infections

with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), increased to around

75,000 within a month from the first confirmation date of 20th January 2020 [2]. Korea and

Italy were the next outbreak countries and currently identified cases have been reported in 216

countries and territories. The massive number of patients infected within a short time period

have overwhelmed many countries and territories. The lack of reliable and rapid testing, self-

quarantine facilities, personal protective equipment, hospital and critical care capacity and

effective treatment have created a health crisis for countries and territories that were not ready.

As of 15th April 2021, COVID-19 has caused more than 2,970,000 deaths globally, and this fig-

ure is likely a conservative estimate due to under diagnosis. Furthermore, this COVID-19 pan-

demic and the measures used to control it have resulted in a global crisis affecting across all

economic sectors and disruption to mental and social wellbeing [3–5].

Determining the appropriate type and level of public health policy for each country and ter-

ritory is very challenging. Different countries and territories have their unique population

structure and density, economic resources, healthcare systems, governance, and culture. In

addition, the index case of COVID-19 and initial spread of the virus for each country and terri-

tory is often unknown. Thus, governments were forced to apply policies with incomplete

information about the burden of disease as well as the uncertainty about the biological and

clinical characteristics of the virus [6]. Decision making is further complicated by the response

lag in new infections, hospitalizations, and mortality. In the meantime, studies have investi-

gated the effects of these public health decisions [7–10]. For example, the effect of travel

restrictions on domestic and international spread of SARS-CoV-2 was studied with data from

200 countries and territories using the global epidemic and mobility model (GLEAM) [11, 12].

The model showed that 77% reduction in cases imported to other countries due to travel

restriction out of Wuhan although it only had modest effect on domestic spread in China. Yet

when the efficacy of travel restrictions was assessed at different transmission scenarios, travel

ban was only meaningful if combined with a 50% or higher transmission reduction [8]. Early

or preemptive lockdown has also been shown to be more effective than delayed response in

China [9]. Using simulated data, it was shown that lockdown policy reduces the number of

deaths even when only 5% of population is infected [10]. Taken together, it suggests that fast

intervention, and simultaneously placing nationwide and worldwide travel bans are effective.

However, there is still a lack of effective tools to provide specific decision support for individ-

ual countries and territories with different health care systems and burden of COVID-19.

In this work, we propose a data-driven preliminary approach to discover optimal lockdown

and travel restriction policies for individual countries and territories with the state-of-the-art

deep reinforcement learning (RL) algorithm. Reinforcement learning is one of three basic

machine learning fields along with supervised and unsupervised learning. It is based on the

concept in the human learning process of what to do in a particular situation: how to map the

situation to action. Contrary to the concept of supervised learning to learn the correct action

(label) with a description of situation (example), reinforcement learning seeks an action that

PLOS ONE Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0251550 May 13, 2021 2 / 15

coronavirus-2019; https://github.com/OxCGRT/

covid-policy-tracker; and https://github.com/

CSSEGISandData/COVID-19. Population, GDP, life

expectancy and geological information are available

at: https://apps.who.int/gho/data/view.main.

SDG2016LEXv?lang=en; https://en.wikipedia.org/

wiki/2019%E2%80%9320_coronavirus_

pandemic; https://data.un.org; and https://github.

com/CSSEGISandData/COVID-19. The URLs of the

data sources, minimal underlying processed data,

and analysis files along with scripts to create the

analyses and processed data will be provided on

Github: https://github.com/ucabhkw/

COVID19RL20.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0251550
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://github.com/OxCGRT/covid-policy-tracker
https://github.com/OxCGRT/covid-policy-tracker
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://apps.who.int/gho/data/view.main.SDG2016LEXv?lang=en
https://apps.who.int/gho/data/view.main.SDG2016LEXv?lang=en
https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic
https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic
https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic
https://data.un.org
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/ucabhkw/COVID19RL20
https://github.com/ucabhkw/COVID19RL20


maximizes accumulated reward received through trial-and-error without being told what to

do directly [13–15]. We conducted policy effectiveness studies with deep RL to learn sequential

decision making to maximize rewards over time by accelerations and decelerations in the

number of confirmed COVID-19 infections, deaths and recovered cases. The timing and

intensity of lockdown and travel restriction policies were suggested by the deep RL approaches

and compared to actual public health interventions implemented during this COVID-19

pandemic.

2. Methods

2.1. Data and pre-processing

We included data between 21st January 2020, the first date that the World Health Organiza-

tion (WHO) reported on COVID-19, to 15th November 2020 from 216 countries and territo-

ries. For each country and territory, index case date (date of the first locally confirmed

patient), the numbers tested, confirmed infection, recovered and dead were collected from

Johns Hopkins coronavirus data repository, Centers for Disease Control and Prevention’s

reports and WHO’s case reports [16–18]. We also collected data on timing and intensity of

domestic lockdown and international travel restrictions. This included early actions from

countries and territories implemented before the first local case of infection was confirmed.

Population size, population density, population mid-year (aged 15 to 65 years old), gross

domestic product (GDP), geological information (longitude, latitude) and life expectancy

from the United Nations database, Wikipedia, and official announcements through the news

were used in our algorithm for the country and territory specific population characteristics

and healthcare setting [16–22]. After linear interpolation from the index case date in each

country and territory, data was compiled with an average value over a 3 day period, to reduce

bias from delayed reporting and variable viral testing capacity [23–25]. We chose to use 3 days

rather than daily figures since every time stamp required time sensitive information, but at the

same time, to reduce bias from delayed reporting and variable viral testing capacity over week-

ends. Countries and territories were excluded from analysis if they had fewer than 100 cases of

COVID-19 by 15th November 2020. After unity-based data normalization for feature scaling,

the dataset was divided into a 7:2:1 ratio of training, validation and test sets.

2.1.1. Severity level. The crude death rate due to COVID-19 reported on 15th November

2020, calculated as the number of deaths related to COVID-19 in the total population (per

1,000) was used as an indicator of the country or territory’s overall crisis severity level. The

severity group was divided into four levels (low/medium/high/critical level of severity). Coun-

tries or territories which did not have any deaths were designated as low severity group. The

remaining were evenly divided into 3 groups according to the COVID-19 crude death rate.

Each severity groups’ characteristics and burden of COVID-19 is shown in Table 1.

2.2. Model

The goal of reinforcement learning is to train a decision-making agent to seek to achieve its

target (maximizing cumulative rewards) despite uncertainty about its environment [13]. At

each time stamp t, an agent has a combination of action at and state st along with reward rt for

each case. By interacting with its environment, at each time stamp t, an agent receives state st
and reward rt from environment, and then chooses an action at. Subsequently the action at is

sent to the environment. The environment moves to the next state st+1 and finally the agent

receives an evaluative feedback rt+1 from the environment. In this way, a reinforcement learn-

ing agent tries to maximize cumulative rewards with feedback (reward) received after taking

action [13–15]. Reinforcement learning has been widely applied in a variety of fields such as
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robotics, healthcare, finance and games such as AlphaGo and Atari, and has been successful in

achieving human-level performance or even surpassing humans [13–15].

2.2.1. Action and reward. We defined a 3×3 action space for the domestic lockdown and

travel restrictions. The lockdown was divided into three levels: no action (Level 0: L0),

restricted public social gathering (L1) and nationwide lockdown (L2). Likewise, travel policy

covered no action (T0), flight suspension (T1) and full closure of all borders (T2) from each

country or territory. Specifically, travel restrictions refer to measures adopted by each country

or territory rather than travel bans exerted from others. We focused on how to adjust these

interventions on a per-region basis, and also their crucial impact on a country and territory’s

severity level (the crude death rate on 15th November 2020).

Our rewards were designed to punish accelerated increases in cases of infection and death,

and to encourage rapid acceleration of recovery cases with a 2:1:1 ratio. The rationale behind

this reward system was twofold. First, minimizing increases in new infections is associated

with reduced mortality and should receive the highest priority out of the three metrics [26].

Second, there is a significant time lag difference between the onset of new infection and recov-

ery or death, leading to delay in action for governments, which can be considered for action

and reward in reinforcement learning [27]. Therefore, we chose to punish increased accelera-

tion of new infections relatively more than increased acceleration of death or compensate for

increased acceleration of recovered cases. We assigned positive reward stabilization (no

change) or decreasing rates of new infection but negative rewards for increasing rates of new

infection cases despite actions. No change in new infection rates was assigned positive rewards

because a lack of increase in rates of new cases is often the first sign of stabilization during an

outbreak [28]. Fig 1 shows example code for a compensation formula for reward based on con-

firmed cases. More details on actions and rewards can be found in S1–S5 Figs in S1 File.

2.2.2. Model architecture. In this study, our agent was trained to seek an optimal policy

with the Dueling Double Deep Q-Network (D3QN) which is a variant of Deep Q-Network

among deep RL algorithms [29–31]. This network was chosen to distinguish the quality of the

state st (country and territory characteristics and burden of COVID-19) and the chosen action

at (lockdown and travel policy) at each timestamp t without overestimation of high dimension

temporal data [14, 30–32]. We used the D3QN primarily for off-policy learning, dueling archi-

tecture, overestimation, and replay buffer. Off-policy learning technique was needed to seek

an optimal policy from the data generated from other behaviour policies [14]. Double DQN

was required to control overestimation [30, 31]. Dueling DQN has two streams which allow us

to separately estimate (scalar) the state-value and advantages for each action, so that it can

learn the value of states (ex. population density or life expectancy) without considering how

Table 1. Table of population, life expectancy and GDP for each severity group.

Severity level Low Medium High Critical

Population 0.2 (0.1–5.2) 27.6 (9.2–52.2) 8.94 (1.87–31.3) 12.2 (1.9–63.8)

Population (mid-year) 0.1 (0.0–3.2) 15.4 (5.4–31.8) 5.4 (1.1–18.6) 8.5 (1.6–39.3)

Population density 62.0 (20.0–212.5) 79.2 (37.9–270.6) 113.6 (44.0–271.9) 90.5 (46.7–205.9)

Life expectancy 73.6 (70.5–78.6) 66.7 (62.6–76.7) 75.4 (72.1–80.0) 78.7 (76.5–82.2)

GDP (x103) 14.7 (4.4–30.6) 3.8 (2.0–18.6) 15.4 (2.0–18.6) 25.2 (14.3–45.3)

Crude death rate (x10-6) 0 (0–0) 0.3 (0.0–0.5) 2.1 (0.2–3.6) 9.9 (1.2–20.9)

All values are expressed in median and interquartile range unless specified; Population: Population estimates (millions); Population (mid-year): Population mid-year

estimates (millions); Population density (/km2); Life expectancy (years); GDP: GDP (PPP) per capita (USD); Crude death rate: the number of deaths related to COVID-

19 in the total population reported on 15th November 2020.

https://doi.org/10.1371/journal.pone.0251550.t001
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each action for each state affects the environment [30, 31]. Finally, replay buffer with Double

DQN is more advantageous, since real world data can lead the model in only one way, espe-

cially when well-distributed quality data is insufficient [14, 30, 31]. After unity-based data nor-

malization, experiments were conducted up to 100,000 episodes using a mini-batch size of 8,

all 13 variables mentioned in Data and pre-processing section and section 6.1 in S1 File, and

the final result was selected at the stabilized convergence point with the squared error loss

function for the main network and target network. During training, the importance of imme-

diate and future rewards was balanced by maximizing the expected discount return using the

discount factor γ, and each parameter was updated based on mini-batch and optimal policy

was evaluated with samples [31, 33]. For implementation, we used Scikit-learn 0.20.3 library

for data pre-processing, and D3QN was adapted from previous research works and optimized

for this paper with Keras 2.3.1 and Tensorflow 1.15.0 in Python [31, 32] (More details of the

proposed architecture and comparison of architectures can be found in sections 6.3 and 7.1 in

S1 File).

2.2.3. Comparison of actual policy to agent decisions. After training the agent to learn

the implemented policies and the associated rewards, we derived the suggested initiation date

and intensity level of lockdown or travel restriction for each country and territory. Difference

in timing of public interventions implemented by governments and those suggested by our

agent was assessed by comparing the earliest date of either lockdown or travel restriction. We

performed the comparisons twice using two different reference dates. First we used local index

case date to reflect each country’s action relative to the start of the local health crisis with

COVID-19. Second, we used 31, December 2019 as reference date to assess relative timing of

each country or territory’s actions against the start of the global COVID-19 pandemic. In addi-

tion, we compared the overall timing and intensity level of these interventions by governments

and the deep RL approaches over the duration of the pandemic up to 15th November 2020.

We used Susceptible-Infectious-Recovered-Dead (SIRD) model to simulate scenarios to evalu-

ate how reinforcement learning may help reduce burden of COVID-19 [34].

3. Results

3.1. Timing of policies

The actual timing of lockdown and travel restriction policies for each severity level relative to

31st December 2019 and the index case date for each country and territory are shown in Figs 2

and 3. Even prior to their local index case, some countries and territories applied initial

Fig 1. Example for a compensation formula of the confirmed case. If each country and territory had positive or

negative acceleration in growth of case, it was rewarded accordingly; For conditions where there was no change in

growth rate, positive reward was considered only if there was at least one action or one or more confirmed cases were

found to reduce long-term no action impact before the first confirmed case was reported.

https://doi.org/10.1371/journal.pone.0251550.g001
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Fig 2. Distribution (kernel density estimate) of lockdown policy date. A. Any lockdown policy date from the index

case date for each country and territory and B. from 31st December 2019; C. Full lockdown policy date from the index

case date for each country and territory and D. from 31st December 2019.

https://doi.org/10.1371/journal.pone.0251550.g002

Fig 3. Distribution (kernel density estimate) of travel restriction policy date. A. Any travel restriction policy date

from the index case date for each country and territory and B. from 31st December 2019; C. Full travel restriction

policy date from the index case date for each country and territory and D. from 31st December 2019.

https://doi.org/10.1371/journal.pone.0251550.g003
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lockdown measures in their community or some form of travel restrictions (Figs 2A and 3A).

Some of them reported their first COVID-19 patient before mid-March. Full lockdowns (L2)

and closure of all borders (T2) were always only applied after index case date in each country

or territory. Overall, early implementation of any or full lockdown and travel restriction poli-

cies were associated with progressively lower levels of crisis severity. These relationships were

only apparent when considering timing relative to local index case date in each country or ter-

ritory (Figs 2A and 2C and 3A and 3C) and were not present when using 31st December 2019

as the reference date (Figs 2B and 2D and 3B and 3D).

The overall intensities level of lockdown and travel restriction policies implemented by gov-

ernments and suggested by our agent through the reinforcement learning over the course of the

pandemic are shown in Fig 4. In general, the agent proposed lockdown or travel restriction policy

at level one earlier than when it was actually implemented by governments (Fig 4C). Our agent

suggested to initiate at least minimal intensity of lockdown or travel restriction even before or on

the day of the index case in each country and territory (S6 Fig in S1 File). For examples, in some

countries and territories, the agent recommended that the first policy at any level should be

implemented in late January or early February, even if the index case date was in mid- or late

March (Fig 5A). Interestingly, this coincides with the travel ban from Wuhan, China on 23rd Jan-

uary 2020 [8]. In addition, proposed action timing from the agent did not deviate from the actual

implementation dates for some countries and territories (Fig 5B). In contrast, for some countries

and territories, the agent suggested to delay policy implementation whereas governments took

early action even though the number of cases did not grow exponentially (Fig 5C).

3.2. Intensity of restrictions

In general the intensity of both lockdown and travel restriction polices suggested by our agent

were higher than government policies until April 2020 (Fig 4). Of note, during the early days

Fig 4. Lockdown and travel restriction policy intensity from government and agent over time. A. Lockdown policy;

B. Travel restriction policy; C. Total policy which is the sum of lockdown and travel restriction policies (the mean and

95% confidence interval).

https://doi.org/10.1371/journal.pone.0251550.g004
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of the pandemic, the 95% confidence intervals were wide for our agent whilst government had

narrow intervals. This corresponded to the time period when many governments have not ini-

tiated any policies. This difference in variance of policy intensity between government and

agent was reduced over the course of the pandemic. Overall, the agent opted for an earlier and

shorter maximum lockdown and travel restriction (L2, T2) than governments.

3.3 Significance of policy differences

For policy validation, we used an evaluation technique to estimate how the differences between

the government and agent policies relate to accelerated infection, death and recovery cases [32,

33]. The total acceleration was calculated and derived in relation to the difference at the policy

level. In general, earlier agent lockdowns when compared to government lockdown policy was

related to a more rapid acceleration in cases (Fig 6A and 6B). In contrast, earlier government

closure of border compared to agent was not necessarily associated with slower acceleration of

cases. This may be a reflection of local transmission having greater influence on burden of dis-

ease when compared to imported cases.

3.4 Policy comparison using different learning period data

We trained the proposed network and analyzed the results based on three different periods of

pandemic data (first 3 months, full period, most recent 3 months). In Fig 7, when we trained

only using data from the first three months, the agent initially proposed to maintain high regu-

lation of local and international policies, but from mid-March the intensity of the proposed

policies was reduced. Policies at the minimum level were proposed at the end of March. Mean-

while, the policies proposed in the most recent three months have reached some degree of

agreement with the policies proposed by the governments in Fig 8. Specifically, the level of

Fig 5. Number of cases over time according to difference between agent and government policy. A. First agent

policy before government policy; B. First government and agent policy after index case; C. First government policy

before agent policy.

https://doi.org/10.1371/journal.pone.0251550.g005
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proposed lockdown policy was slightly lighter than government policy, and travel restriction

was slightly higher than government policy.

4. Discussion

In this study we used deep RL on country and territory population data and serial local

COVID-19 epidemiological data to develop an algorithm to train an agent to determine the

optimal timing and intensity of lockdown and travel restriction for individual countries and

territories. We performed timing analysis of policy implementation for each crisis severity and

Fig 6. Relationship between acceleration in COVID-19 burden and the difference in policy levels between the

government and agent. Between 21st January 2020 to 15th November 2020, the difference between the government

and agent at any time (recommended policy level by agent minus the given policy level by government) was calculated.

We plotted the association between the difference and the COVID-19 burden, defined as acceleration of new infected

cases, acceleration of death cases, and deceleration of recovery cases (with a 2:1:1 ratio) in the total population per

1,000,000 progressed. Overall, acceleration of COVID-19 burden at any time occurred when government policies were

less intense than suggested by agent; A. lockdown policy; B. travel restriction policy.

https://doi.org/10.1371/journal.pone.0251550.g006

Fig 7. Lockdown and travel restriction policy intensity from government and agent over time (first three months).

A. Lockdown policy; B. Travel restriction policy; C. Total policy which is the sum of lockdown and travel restriction

policies (the mean and 95% confidence interval).

https://doi.org/10.1371/journal.pone.0251550.g007
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deep RL with continuous state space and rewards to find the suitable action for each state at a

particular point in time. When compared to actual government implementation during the

COVID-19 pandemic, our algorithm mostly recommended earlier intensity of lockdown and

travel ban.

During an emerging pandemic, it is a challenge to implement timely and appropriate public

health interventions with limited data. Early on during the pandemic, SARS-CoV-2 transmis-

sion kinetics were unknown. Furthermore, the efficacy and principal of social distancing, lock-

downs, and international travel restrictions have been questioned [35]. The results in this

paper are consistent with previous studies which suggests lockdown and travel restrictions are

effective in reducing the transmission of SARS-CoV-2 [8, 9]. We have shown that adoption of

the proposed policies using reinforcement learning may help reduce burden of COVID-19

through scenario simulator results with SIRD model (S7 Fig in S1 File) [34].

During the early phase of the pandemic, our agent suggested earlier and higher intensity of

lockdown to control the pandemic (Fig 4A). However, over time the agent agreed with the gov-

ernment policies. Furthermore, it agreed with governments to lower lockdown policy intensities

in the later stage of the pandemic. This is important because adopting policies early to reduce

burden of COVID-19 has to be balanced against the economic, social and health concerns [3,

36–41]. Even with punishment such as fines and imprisonment for contravening public health

policy, it is difficult to sustain lockdowns and border closures over long periods. In addition, for

some countries and regions, the agent suggested to warn the citizens with an early low intensity

lockdown such as public gathering limits or encouraging online e-learning, but not always rec-

ommending a full lockdown overall. Similarly, the agent recommended at least level 1 travel

restrictions (T1) early when compared to government implantation (Fig 4B). Interestingly, gov-

ernments implemented and maintained higher intensity of travel restrictions compared to

agent’s recommendations that it may be relaxed over time. The algorithm and results of this

study suggests that high intensity lockdown and travel restrictions do not need to be applied to

Fig 8. Lockdown and travel restriction policy intensity from government and agent over time (most recent 3

months). A. Lockdown policy; B. Travel restriction policy; C. Total policy which is the sum of lockdown and travel

restriction policies (the mean and 95% confidence interval).

https://doi.org/10.1371/journal.pone.0251550.g008
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all countries and territories over sustained periods. However, whilst this is encouraging, this

may be because some countries and territories have low floating populations or other defense

strategies from other countries or territories have an effect on these countries and territories.

To further analyze the results from the proposed algorithm, the results were compared and

evaluated by using pandemic data from three different training periods (first 3 months, full

period, most recent 3 months) in Section 3.4 with Figs 4, 7 and 8. Fig 7 showed that when the

algorithm training was derived from data obtained during the first three months, agents ini-

tially proposed to maintain high regulation policies, and then reduce the intensity from mid-

March. In Fig 8, using the pandemic data from the most recent three months, agents have

reached some degree of agreement with the decisions made by the governments, similar to the

proposed policies trained over the entire period (Fig 4), but there were contradictions regard-

ing travel restrictions. The travel restriction policy learned over the entire period was slightly

lower than that of the government during the second half of the study period. But when only

data from the last three months is considered (no action was taken initially), the travel restric-

tion policy proposed by agent was slightly stronger than the government (Fig 8). This is related

to the fact that in the case of Fig 4, the lockdown and travel restriction policies learned over the

entire period were given a faster and higher level in the early days of the pandemic, and the

policies were mostly maintained thereafter. In conclusion, these results (Figs 4 and 8) and the

results of the first three months (Fig 7) all suggest that initiating a policy in the first place can

reduce many kinds of losses. It also shows that countries and territories can start with similarly

strong policies even now and return to a minimum level in a short time.

The contributions of this study include the use of deep RL to evaluate the effects of public

interventions on spread of COVID-19 using real world epidemiological and population data.

This approach utilizes reward based on targets to “flatten the curve” to learn the optimal tim-

ing and intensity of policies. Optimizing the particular timing and intensity of policies using

reinforcement learning approaches have been previously studied [32, 42, 43]. Specifically, rein-

forcement learning has been used to simulate effect of lockdown in COVID-19 [10, 14, 15].

Instead of using supervised learning which depends on reliably labelled data, we used deep

reinforcement learning to learn sequential decision-making with successive steps. Although it

is not the most recent ‘state-of-the-art’, the reinforcement learning architecture provides an

agent that learns the values of states, and balances the importance of immediate and future

rewards by maximizing the expected discount return using the discount factor γ [31]. The

algorithm also performs updates on each parameter based on mini-batch and evaluates the

recommended policy using samples [31, 33]. Despite neighbouring countries and territories

reporting cases, many governments chose to enact lockdown or travel bans only after the first

local confirmed case. Instead, our agent suggested the policy timing even before the first local

case by considering what has happened in other countries and territories, near and afar. The

differences in policies are likely due to significant political and economical consequences of

travel bans and lockdowns versus doubts on efficacy of these policies on controlling local

transmission during the early phase of the pandemic. Conversely, our off-policy learning

based algorithm is impartial, objective, and proactive, trying to find an out-of-the-box optimal

approach to control the pandemic for both the near and far future. Hence, reinforcement

learning is particularly useful in a developing global pandemic, when the resolution is not

clear. Countries which do not have reported cases can learn from other countries’ timing and

intensity of public interventions, and the efficacy of these actions. As shown in Fig 6, reinforce-

ment learning found the optimal policies according to the temporal and population character-

istics unique to each country and territory that minimized the burden of COVID-19. The

result is an individualized recommendation on timing and intensity of lockdown and travel

restriction for each country and territory based on global burden of disease.
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The limitation of the current paper is that it was carried out with imperfect data due to the

emerging COVID-19 pandemic. Inconsistent reporting of confirmed cases underestimates

local burden of COVID-19, whilst increased testing capacity over time will cause an apparent

rise in confirmed cases even though community spread may be stagnant. It is expected that

more solid results will be obtained as we learn more about the transmission kinetics of the

virus, the clinical characteristics of COVID-19, and have consistent testing and higher fidelity

population data. In addition, in some countries there was additional provincial data collected,

but country-level data had to be used to maintain consistency and avoid problems caused by

incomplete data. We were also unable to analyze the impact on individual travel restrictions

on other countries and territories. With more detailed data on travel restrictions it may be pos-

sible to separate instances where travel bans between countries and territories have influenced

each other. Only the official lockdown policies were available, and the official policy may differ

from those practiced in the community. Also, policy evaluation in this paper requires credibil-

ity in clinical decision making for the proposed policy decision, which is difficult [33, 44, 45].

With an emphasis on exploring policy interpretation possibilities and application directions,

evaluation methods were adopted in previous studies [32, 33, 46, 47]. Implementation of the

newly proposed interpretable reinforcement learning and further simulation studies on rein-

forcement learning to examine parameters (ex. reward function) that balance economic and

population health impacts should be considered as research directions [48, 49]. Lastly, we were

not able to strike a balance between policy decisions for public health and negative impacts

such as economic consequences as these remain to be determined. This was because we were

unable to separate the economic and social costs related to COVID-19 pandemic from the

consequences of public policies used to control the virus spread. Our research focuses only on

the population health benefits of controlling the spread of COVID-19. Nevertheless, we have

shown that reinforcement learning may be used to learn the effect of public health

interventions.

5. Conclusion

In this study, we used deep RL to learn efficacy of lockdown and travel restrictions in control-

ling the COVID-19 crisis. Using local population and COVID-19 epidemiological data, we

showed that the algorithm can be trained to have an agent to find the optimal strategy in spe-

cific countries and territories to maximize the expected value of total rewards over time. Com-

pared to actual government policy implementation, the agent mainly proposed to have earlier

lockdown and travel restrictions to reduce the burden of COVID-19.
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