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Abstract

Nonmonotone missing data arise routinely in empirical studies of social and health sciences, and 

when ignored, can induce selection bias and loss of efficiency. In practice, it is common to account 

for nonresponse under a missing-at-random assumption which although convenient, is rarely 

appropriate when nonresponse is nonmonotone. Likelihood and Bayesian missing data 

methodologies often require specification of a parametric model for the full data law, thus a priori 
ruling out any prospect for semiparametric inference. In this paper, we propose an all-purpose 

approach which delivers semiparametric inferences when missing data are nonmonotone and not 

at random. The approach is based on a discrete choice model (DCM) as a means to generate a 

large class of nonmonotone nonresponse mechanisms that are nonignorable. Sufficient conditions 

for nonparametric identification are given, and a general framework for fully parametric and 

semiparametric inference under an arbitrary DCM is proposed. Special consideration is given to 

the case of logit discrete choice nonresponse model (LDCM) for which we describe 

generalizations of inverse-probability weighting, pattern-mixture estimation, doubly robust 

estimation and multiply robust estimation.
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1 Introduction

Missing data are of common occurence in empirical research in health and social sciences, 

and will often affect one’s ability to draw reliable inferences whether from an experimental 

or nonexperimental study. Non-response can occur in sample surveys, due to dropout or non-

compliance in clinical trials, or due to data excision by error or in order to protect 

confidentiality. In many practical situations, nonresponse is nonmonotone, that is, there may 

be no nested pattern of missingness such that observing variable Xk implies that variable Xj 

is also observed, for any j < k. Nonmonotone missing data patterns may occur, for instance, 

when individuals who dropped out of a longitudinal study re-enter at later time points; 

likewise, in regression analysis nonmonotone nonresponse may occur if the outcome or any 

of the regressors may be unobserved for a subset of the sample in an arbitrary pattern. 

Missing data are said to be completely-at-random (MCAR) if the nonresponse process is 

independent of both observed and unobserved variables in the full data, and missing-at-

random (MAR) if, conditional on observed variables under a nonresponse pattern, the 
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probability of observing the pattern does not depend on unobserved variables under the 

pattern (Rubin 1976; Little and Rubin 2002, Robins et al, 1994). A nonresponse process 

which is neither MCAR nor MAR is said to be missing-not-at-random (MNAR).

While complete-case analysis is perhaps the most widely-used method to handle missing 

data in practice, the approach is generally not recommended as it can give biased inferences 

when nonresponse is not MCAR. Formal methods to appropriately account for incomplete 

data include fully parametric likelihood and Bayesian approaches (Little and Rubin 2002; 

Horton and Laird 1999; Ibrahim and Chen 2000; Ibrahim et al. 2002, 2005) which are most 

commonly implemented under MAR using the EM algorithm or via multiple imputation 

(MI) (Dempster et al, 1977, Rubin 1977; Schafer 1997). Inverse probability weighting (IPW) 

is another approach to account for selection bias due to missing data (Horvitz and Thompson 

1952; Robins et al. 1994; Tsiatis 2006). While IPW estimation avoids specification of a full-

data likelihood, the approach does require a model for the nonresponse process. However, 

the development of general coherent models for nonmonotone nonresponse has proved to be 

particularly challenging, even under the MAR assumption; see Robins and Gill (1997) and 

Sun and Tchetgen Tchetgen (2016) for two concrete proposals and further discussion.

Despite recent progress in development of MAR methodology, as argued by Gill and Robins 

(1997), Robins (1997) and Little and Rubin (2002), the assumption is generally hard to 

justify on substantive grounds when nonresponse is nonmonotone. Instead, allowing for 

MNAR data seems particularly befitting in the context of nonmonotone nonresponse and has 

received substantial attention, particularly in the context of fully parametric models (Deltour 

et al. (1999), Albert (2000), Ibrahim et al. (2001), Fairclough et al. (1998), Troxel et al 

(1998), Troxel, Lipsitz & Harrington (1998)). MNAR approaches which do not necessarily 

rely on parametric assumptions have also been developed in recent years. Notable examples 

include the group permutation model (GPM) of Robins (1997) and the block conditional 

MAR (BCMAR) model of Zhou et al (2010). Both approaches allow for non-ignorable 

missing data in the sense that the nonresponse process of a given variable may depend on 

values of other missing variables. However, neither BCMAR nor GPM allows the 

missingness probability of a given variable to depend on the value of the variable. Based on 

subject matter considerations, it is often desirable to consider non-ignorable processes where 

the missingness probability of a variable depends on the possibly unobserved value of the 

variable, therefore, methods for non-ignorable missing data mechanisms beyond BCMAR 

and GPM are of interest.

In this paper, we propose a large class of non-ignorable nonmonotone nonresponse models, 

which unlike BCMAR and GPM, do not a priori rule out the possibility that the probability 

of observing a given variable may depend on the unobserved value of the variable. Our 

approach is based on so-called discrete choice models (DCM). DCMs were first introduced 

and are predominantly used in economics and other social sciences, as a principled approach 

for generating a large class of multinomial models to describe discrete choice decision 

making under rational utility maximization. In this paper, DCMs are used for a somewhat 

different purpose, as a means to generate a large class of nonmonotone nonresponse 

mechanisms which are nonignorable. Sufficient conditions for nonparametric identification 

are given, and a general framework for semiparametric inference under an arbitrary DCM is 
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proposed. Special consideration is given to the case of logit discrete choice nonresponse 

model (LDCM). Interestingly, our identification condition in the case of the LDCM, states 

that the conditional distribution of unobserved variables given observed variables for any 

nonresponse pattern, matches the corresponding conditional distribution in complete-cases. 

This latter assumption is equivalent to the well-known complete-case missing value 

(CCMV) restriction in the pattern mixture (PM) literature which has previously been 

developed for fully likelihood-based inference (Little,1993). Therefore, our approach 

provides a comprehensive treatment of semiparametric inference for MNAR nonresponse 

under Little’s CCMV restriction. Specifically, in addition to reviewing Little’s (i) PM 

likelihood approach, we describe a generalization of (ii) inverse-probability weighting 

(IPW), and (iii) both doubly robust (DR) and multiply robust (MR) estimation, which are the 

nonmonotone MNAR analogues of existing results for monotone MAR nonresponse 

(Tsiatis, 2006). Our doubly robust estimators combine models (i) and (ii) but only require 

one of the two models to be correct. In fact, we establish that whenever J nonresponse 

patterns are observed, the proposed LDCM DR estimators can be made multiply robust 

(more precisely 2J-robust) in the sense that for each nonresponse pattern, valid inferences 

can be obtained if one of two pattern-specific models is correctly specified but not 

necessarily both. As far as we know, our paper represents the first instance of a doubly (2J -) 

robust estimator obtained for a general nonmonotone nonignorable missing data model that 

is just-identified from the observed data alone. We emphasize that our proposed inferences 

under the LDCM are quite attractive as a generic nonignorable approach for arbitrary 

nonmonotone patterns, mainly because they are somewhat easy to implement, have good 

robustness properties, and appear to have good finite sample performance as we illustrate via 

simulation studies and an HIV data application. In closing, we briefly consider IPW 

inference for DCMs outside of the LDCM, which can generally be used to account for 

nonmonotone nonignorable missing data even when Little’s CCMV condition fails and 

therefore the LDCM may not be appropriate.

2 Notation and definitions

Suppose full data consist of n i.i.d. realizations of a random K-vector L = (L1, …, LK)′. Let 

R denote the scalar random variable encoding missing data patterns, and J denote the total 

number of observed patterns. For missing data pattern R = r, where 1 ≤ r ≤ J ≤ 2K, we use 

L(r) and L(−r) to denote observed and unobserved components of L, respectively so that L = 

(L(r),L(−r)). We reserve r = 1 to denote complete cases. Throughout, denote 

Pr R = r |L = πr L = ∏r for all r. For each realization, we observe (R, L(R)). For instance, 

suppose the full data L is a bivariate binary vector (L1, L2) and the following J = 3 

nonmonotone nonresponse patterns are observed in the sample: R = 1, L(1) = L; R = 2, L(2) = 

L1; and R = 3, L(3) = L2.

Throughout, we also make the following positivity assumption,

∏1 > σ > 0 a . s . , (1)

for a fixed positive constant σ, that is, the probability of being a complete-case is bounded 

away from zero almost surely. Assumption (1) will be needed for nonparametric 
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identification of the full data distribution, and its smooth functionals as well as finite 

asymptotic variance of IPW estimators (Robins et al, 1999). As further discussed in Section 

2.3, complete-case IPW relies on obtaining a consistent estimator of π1 L = 1 − ∑r≠1πr L
which in turn requires estimating the nonresponse process πr L : r . The nonresponse 

process clearly fails to be nonparametrically identified under assumption (1) only. In the 

next section, we describe a set of sufficient conditions to identify a model for the complete-

case probability π1(L) under the discrete choice framework when missingness is 

nonmonotone and not at random.

Our first result provides a generic nonparametric representation of the joint law of f (R, L) 

that will be used throughout. The result adapts the generalized odds ratio parametrization of 

a joint distribution due to Chen (2010) to the missing data context; see also Tchetgen 

Tchetgen et al (2010). Let Oddsr L = πr L /π1 L . We have the following result.

Lemma 1 We have that

f R, L =
∏r ≠ 1Oddsr L I R=r f L R = 1

∬ ∏r ≠ 1Oddsr l∗ I r∗ = r f l∗ R = 1 dμ r∗, l∗
,

provided ∬ ∏r ≠ 1Oddsr l∗ I r∗ = r f l∗ |R = 1 dμ r∗, l∗ < ∞, with µ a dominating measure of 

the CDF of (R, L).

Lemma 1 clarifies what the identification task entails, because under assumption (1), f (L|R 
= 1) is just-identified, and therefore f (R, L) is nonparametrically just-identified only if one 

can just-identify Oddsr (L) for all r. Below we describe a sufficient condition for 

identification under the discrete choice model of the nonresponse process.

3 Identification

3.1 The discrete choice nonresponse model

The DCM associates with each realized nonresponse pattern r = 1, …, J ≤ 2K an underlying 

utility function Ur = μr(L)   + εr, where {εr : r } are i.i.d. with cumulative distribution 

function Fε, and μr (L) encodes the dependence of a person’s utility on L (McFadden, 1984, 

Train, 2009). Some common choices of Fε include the extreme value distribution (further 

discussed below) and the normal distribution, although in principle any CDF could be 

specified. It is then assumed that a person’s observed response pattern maximizes her utility, 

that is R = arg maxr.{Ur : r }. Together, these assumptions imply that for each r,

∏r = πr L = Pr R=r|L = ∏
s ≠ r

Fε Δμrs L + ε dFε ε , (2)

where Δ μrs (L) = μr (L) − μs (L) captures the dependence on L of a difference in utility in 

comparing a person’s choice between nonresponse patterns r and s, see Train (2009). The 

integral in (2) is generally not available in closed form for most choices of Fε (with the 
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notable exception of the extreme value distribution, see Section 2.2), but can easily be 

evaluated by numerical integration using say, Gaussian quadrature. Two interesting 

observations about equation (2) are worth noting. Although not immediately apparent from 

the expression in the display, equation (2) gives rise to a proper probability mass function, 

that is ∑rπr l = 1 for all values of l and for any choice of Fε. This remarkable result is a 

direct consequence of utility maximization as a formal principle for generating multinomial 

probabilities {πr : r}. A second interesting observation is that only differences in utility 

matter in determining the choice probabilities; in other words, the absolute level of a 

person’s utility for a given nonresponse pattern is irrelevant and only relative utility drives 

the choice of a nonresponse pattern over another. Clearly, model (2) is not identifiable 

without an additional assumption, even given knowledge of Fε.

For the purpose of identification, we will consider the assumption that the relative utility 

∆μ1r (L) of any nonresponse pattern r ≠ 1 compared with that of complete-case pattern r = 1, 

only depends on data observed under both patterns, that is

Δμ1r L = Δμ1r L r for all r almost surley . (3)

The assumption essentially states that when faced with the choice between nonresponse 

pattern r ≠ 1 versus providing complete data, the excess utility a subject would experience 

choosing one over the other only depends on data observed under both choices. Under the 

assumption, one may write

∏r = ∏
s≠r

Fε Δ μ1s L s − Δ μ1r L r + ε dFε ε (4)

Note that, even under assumption (3), Πr generally depends on unobserved variables for all r, 
and therefore, data are missing not at random, and the corresponding observed data 

likelihood is nonignorable. Nevertheless, as we show in Section 5, given any continuous Fε, 
equation (4) is nonparametrically identified for each r provided (1) holds. We leave the 

detailed discussion of inference under user-specified Fε to Section 5, instead, to fix ideas, we 

further discuss identification and inference under the logit DCM.

3.2 The logit discrete choice model

In the special case where Fε is the extreme value distribution, the integral in equation (2) is 

available in closed-form, and gives the following logit DCM (Train, 2009): 

πr L = Oddsr L / 1 + ∑s ≠ 1Oddss L , where Oddsr L = exp Δ μ1r L  for all r. Under (3), 

Oddsr L = Oddsr L r , and therefore

∏r = Oddsr L r
1 + ∑s ≠ 1Oddss L s

, for all r ≠ 1 . (5)

In order to illustrate (5), briefly consider an example with L = (L1, L2, L3). Suppose that 

there are 4 nonresponse patterns, L 1 = L,   L 2 = (L1, L2),   L 3 = L3, L 4 = ∅. Then, by 

(3) Odds2(L)   = Odds2(L(2)); Odds3(L) = Odds3(L(3)); Odds4(L) = Odds4(L(4)) = Odds4 is a 
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constant. Furthermore, according to (5) ∏2 = Odds2 L 2 /c L ; ∏3 = Odds3 L 3 /c L ; 

∏4 = Odds4/c L , where c L = 1 + ∑s ≠ 1Oddss L s . Therefore, by virtue of c(L), the 

nonresponse probabilities Πj, j = 2, 3, 4 are each a function of L = j=2,3,4 L j , the union set 

of observed variables across all the nonresponse patterns. Since the variable set L\L j  is not 

observed for each of the missing data patterns j = 2, 3, 4, the nonresponse process is clearly 

MNAR. In particular, Π4 is a function of L even though no variable is observed in the fourth 

missing data pattern.

Interestingly, an equivalent characterization of equation (5) is:

L −r R = r,L r L −r R = 1, L r for all r   ≠  1, (6)

which states that the conditional distribution of unobserved variables L(−r) given observed 

variables L(r) for nonresponse pattern r matches the corresponding conditional distribution 

among completecases. Although the LDCM is derived as a particular DCM, one could in 

principle take (6) as primitive identifying condition without necessarily making reference to 

a DCM and the existence of its associated variables {εr : r}. This amounts to nonparametric 

identification under the complete-case missing value restriction of Little (1993). As shown 

in Section 5, adoption of the more general DCM framework is advantageous as it gives rise 

to a richer class of nonresponse models and facilitates identification; in fact, a different 

choice for the distribution Fε corresponds to a nonmonotone not at random nonresponse 

model which does not generally satisfy Little’s CCMV restriction but is nevertheless just-

identified under (1) and (3).

It is instructive to compare condition (6) to standard MAR, which states that

L −r R = r,L r L −r L r for all r   ≠  1, (7)

i.e. the conditional distribution for pattern r matches the conditional distribution obtained 

upon marginalizing across all nonresponse patterns. Clearly, conditions (6) and (7) have 

fundamentally different implications for inference. Specifically, it is well known that when 

the nonresponse process and the full data distribution depend on separate parameters, the 

MAR assumption implies that the part of the observed data likelihood which depends on the 

full data parameter factorizes from the nonresponse process. The missing data mechanism is 

then said to be “ignorable” (Little and Rubin, 2002) because it is possible to learn about the 

full data law without necessarily estimating the missing data process, or equivalently, it is 

possible to learn about the missing data process without modeling the full data law (Sun and 

Tchetgen Tchetgen, 2016). No such factorization is in general available under CCMV as the 

missing data process is nonignorable. In spite of possible challenges due to lack of 

factorization, as shown later in the paper, estimation of nonmonotone non-response 

mechanisms under (6) is nevertheless relatively straightforward. Furthermore, assumption 

(6) is invariant to the number and nature of other nonresponse patterns potentially realized in 

the observed data. In contrast, MAR does not enjoy a similar invariance property because 

addition or deletion of a nonresponse pattern from the observed sample changes the 

interpretation of (7) as it implies marginalizing over a different set of nonresponse patterns 
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to obtain the right-hand side of equation (7). Finally, note that assumptions (6) and (7) only 

coincide when there is a single nonresponse pattern, i.e. J = 2.

Remark 2 Sun and Tchetgen Tchetgen (2016) recently proposed an approach tailored 

specifically to model a nonmonotone nonresponse process under MAR restriction (7). 

However, they did not consider the MNAR restriction (3). As restrictions (3) and (7) differ, 

the approach proposed by Sun and Tchetgen Tchetgen (2016) cannot be used under 

restriction (3).

Lemma 3 Suppose that assumptions (1) and (2) hold with Fε being the extreme value 

distribution, then if (3) holds, the joint distribution f (R, L) is nonparametrically just-

identified from the observed data (LR, R), with

f R, L = ∏r ≠ 1Oddsr L r
I R = r f L R=1

∬ ∏r ≠ 1Oddsr l r*
I r∗ = r f l∗ R=1 dμ r∗, l∗

, (8)

where μ is a dominating measure of the CDF of (R, L).

Lemma 2 gives an explicit expression for f (R, L) which appears to be new, and can be used 

to compute the full data density f L = ∑rf r, L . In addition, equation (8) can be used for 

maximum likelihood estimation. Specifically, let f (L|R = 1; η) denote a parametric model 

for f (L|R = 1) with unknown parameter η. Likewise, consider a parametric model for 

nonresponse process ∏r α = Oddsr L r ; αr / 1 + ∑s ≠ 1Oddss L s ; αs  with unknown 

parameter α = {αr : r},where αr indexes a parametric model for Oddsr (L(r); αr). Let f (R, L; 

θ) denote the corresponding model for f (R, L), where θ = (η,α). The maximum likelihood 

estimator (MLE) θmle maximizes the observed data log-likelihood 

ℙn log f R, L; θ dμ L −R , where ℙn ⋅ = n−1∑i ⋅ i. The full data likelihood 

f L; θmle = f r, L; θmle dμ r  can then be used to make inferences about a given full data 

functional of interest according to the plug-in principle. By standard likelihood theory, the 

MLE is asymptotically efficient in the model Mlik corresponding to the set of laws {f (R, L; 

θ) : θ}. A major drawback of maximum likelihood inference is lack of robustness to model 

mis-specification, because θmle is likely inconsistent if either Πr (α) or f (L|R = 1; η) is 

incorrectly specified. Below, we consider four semiparametric estimators which are 

potentially more robust than direct likelihood maximization.

4 Semiparametric Inference

4.1 Inverse-probability weighting estimation

Suppose the parameter of interest β0 is the unique solution to the full data population 

estimating equation E U(L; β0) =   0, where expectation is taken over the distribution of the 

complete data L. Note that in principle, no further restriction on the distribution of L is 

strictly required;in fact, estimation is possible under certain weak regularity conditions (van 

der Vaart, 1998) as long as a full data unbiased estimating function exist. In the presence of 

missing data, the estimating function can only be evaluated for complete-cases, who might 
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be highly selected even under MAR. This motivates the use of IPW estimating functions of 

complete-cases to form the following complete-case population estimating equation

E 1 R = 1
∏1

U L; β0 = 0, (9)

which holds by straightforward iterated expectations. We note that the IPW estimator β ipw
which solves the empirical version of this equation will in general be inefficient especially 

when the fraction of complete-cases is relatively small, since incomplete cases are discarded 

(except when estimating Π1). In the next section we will describe a strategy to recover 

information from incomplete-cases by augmenting estimating function shown in equation 

(9) to gain efficiency and potentially robustness. The IPW estimating equations framework 

encompasses a great variety of settings under which investigators may wish to account for 

non-monotone missing data. These include IPW of the full data score equation, where the 

score function is such an unbiased estimating function, given a model f (L; β0) for the law of 

the full data, in which case (9) reduces to E 1 R = 1 ∂logf L; β / ∂β|  β0 /∏1 = 0

We now describe a straightforward approach to obtain a consistent estimator of Π1 in the 

semiparametric model which specifies a parametric LCDM {Πr (α) : r}, but allows f (L|R = 

1) to remain unrestricted. We denote this model MR. The approach follows from the fact that 

(5) implies that:

Pr R = r L, R ∈ 1, r = ∏r, c =
Oddsr L r

1 + Oddsr L r
, for all r;

which also gives the following equivalent representation of the CCMV restriction:

R  ╨ L − r R ∈ r, 1 , L r for each r .

Note that L(r) is fully observed for observations R ∈ {1, r}. Thus, in order to estimate the 

parametric model Πr, c α :r , for each nonresponse pattern r one may fit the following 

logistic regression ∏r, c αr = Oddsr L r ; αr / 1 + Oddsr L r ; αr  by maximum likelihood 

estimation restricted to the subset of data containing complete-cases and incomplete-cases of 

pattern r only. Thus, we define the restricted MLE

αr = argmax
αr

ℙnllikr, c αr

= argmax
αr

ℙn I R = r log∏r, c αr + I R = 1 log 1 − ∏r, c αr .

Under assumption (1), the restricted MLE α is consistent and asymptotically normal under 

model MR. The resulting estimator of the complete-case probability Π1 under MR is

∏1 α = 1
1 + ∑s ≠ 1Oddss L s ; αs

,
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which in turn, provides the IPW estimator β ipw of β which solves

ℙn Uipw L R , R;β ipw, α = 0, (10)

where Uipw L R , R; β ipw, α = 1 R = 1 U L; β ipw /∏1 α . Under standard regularity 

conditions, one can show that under MR the IPW estimator β ipw will in large sample be 

approximately normal with mean β0 and asymptotic variance Γipw
−1 Ωipw Γipw

−1 ,where

Γ ipw
−1 = − ∂

∂βT ℙn Uipw L R , R;β, α β ipw
;

Ωipw = n−1ℙn Uipw L R , R;β ipw, α + ∂
∂αT ℙn Uipw L R , R;β ipw, α

α
IFα

⊗ 2
;

IFα = − ∂2

∂α∂αT ℙn ∑
r ≠ 1

llikr, c αr
α

−1
∂

∂α ∑
r ≠ 1

llikr, c αr
α

.

For inference about a component of β0, one may report the corresponding Wald-type 95% 

confidence interval.

4.2 Pattern-mixture LDCM estimation

In this Section, we consider an alternative approach for obtaining inferences about the full 

data parameter β0 defined in the previous Section. The approach is a slight generalization of 

the well-known pattern-mixture approach due to Little (1993). To proceed, note that

E U L; β0 = E E U L; β0 R, L R ,
= E E U L; β0 R=1, L R

= E ∑
r

I R = r E U L; β0 R = 1, L r

= 0

(11)

where the second equality follows from (6). Now, consider the semiparametric model ML 

which posits parametric model f (L|R = 1; η) while allowing the nonresponse process {Πr : 

r} to remain unrestricted. Let η denote the restricted MLE of η in ML obtained using only 

complete-case data, i.e. η = argmax
η

ℙnllikl, c η = argmax
η

ℙnI R = 1 logf L |R = 1; η . An 

empirical version of equation (11) can then be used to obtain the following pattern mixture 

estimator βpm of β0,

0 = ℙn Upm L R , R;βpm, η , (12)

where

Upm L R , R; βpm, η = ∑
r

I R = r E U L; βpm R=1,L r ; η , (13)
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and E U L; βpm R = 1, L r ; η = U l −r , L r ; βpm f l −r L r R=1;η dμ l −r . Note that in 

order to ensure that models f l −r L r R=1;η , r ≠ 1  are compatible, one may need to 

specify a model for f (L|R = 1) ; this is effectively the approach followed by Little (1993). 

Also note that in the pattern mixture approach, the model for f (L) which is of primary 

scientific interest is indirectly specified via models for the various conditional densities 

f l −r L r R=1 , r ≠ 1  and the marginal densities f L r |R = r , r ≠ 1  according to the 

following mixture: f L = ∑rf l −r L r R = 1 f l r R = r Pr R = r  (Little, 1993). Under 

standard regularity conditions, one can show that in large samples, βpm will be 

approximately normal with mean β0 and asymptotic variance consistently estimated by 

Γpm
−1 Ωpm Γpm

−1 where

Γpm
−1 = − ∂

∂βT ℙn Upm L R , R;β, η βpm;

Ωpm = n−1ℙn Upm L R , R; βpm, η + ∂
∂ηT ℙnUpm L R , R; βpm, η

η
IFη

⊗ 2
;

IFη = − ∂2

∂η∂ηT ℙn llikl, c η
η

−1 ∂
∂η ∑

r ≠ 1
llikl, c η

η
.

4.3. Doubly robust and multiply robust LDCM estimation

We have now described two separate approaches for estimating the full data functional β0 

under the LDCM, IPW and PM estimation, each of which depends on a separate part (i.e. 

variation independent parameter) of the joint distribution of f (R, L) given in Lemma 2. As 

previously discussed, validity of IPW estimation relies on correct specification of the 

nonresponse model MR, while PM estimation relies for consistency on correct specification 

of ML. Because when L is sufficiently high dimensional, one cannot be confident that either, 

if any, model is correctly specified, it is of interest to develop a doubly robust estimation 

approach, which is guaranteed to deliver valid inferences about β0 provided that either MR 

or ML is correctly specified, but not necessarily both. That is, we aim to develop a consistent 

estimator of β0 in the semiparametric union model MDR = MR ∪ ML.

In order to describe the DR approach, let

V β, α, η = v L R , R; β, α, η
= 1 R = 1

∏1 α U L; β

− 1 R = 1
∏1 α ∑

r ≠ 1
∏r α E U L; β L r , R=1;η

+ ∑
r ≠ 1

I R = r E U L; β L r , R = 1; η

and let βdr denote the solution to the equation

0 = ℙnV βdr, α, η . (14)

We have the following result.
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Theorem 4 Suppose that assumptions (1) and (2) hold with Fε the extreme value 

distribution. Then, under standard regularity conditions, we have that βdr is consistent and 

asymptotically normal in the union model MDR with asymptotic variance consistently 

estimated by Γdr
−1 Ωdr Γdr

−1, where

Γdr
−1 = − ∂

∂βT ℙn V β, α, η
βdr

;

Ωdr = n−1ℙn V βdr, α, η

+ ∂
∂ηT ℙn V βdr, α, η

η
IFη + ∂

∂αT ℙn V βdr, α, η
α

IFα
⊗ 2

.

The above theorem formally establishes the DR property of βdr. Instead of the above 

estimators of asymptotic variance, one may use the nonparametric bootstrap to obtain 

inferences based on either βdr, β ipw or βpm.

Remark 5 Equation (8) of Lemma 2 implies that f (R = 1|l) (which only depends on 
Oddsr l r :r  and f (l|R = 1) are variation independent under the CCMV restriction. This 

variation independence is important as double robustness is meaningful only if it is possible 
a priori for both of the nuisance models to be correctly specified, see Robins and Rotnitzky 
(2001) and Richardson et al (2016, Remark 3.1). Note however, that in general f (l|r) and f (r|
l) are variation dependent even under CCMV.

Interestingly, it is possible to make the estimator βdr even more robust by the following 

modification to estimation of the nuisance parameter η. Specifically, suppose that for each r, 
the conditional density f L −r L r , r;η = f L −r L r , r;ηr = f L −r L r , R = 1;ηr  only 

depends on the subset of parameter ηr ⊂ η, where there may be parameter overlap across 

patterns ηr ∩ ηr' ≠ ∅ for distinct patterns r and r′. Let ML (r) denote the semiparametric 

model which only specifies f L −r |L r , R = 1; ηr , allowing the density of f L r |R = 1  and 

the missing data process to remain unspecified. Note that ML ⊆ ∩
r ≠ 1

ML r . Let ηr denote 

the complete-case MLE under ML r :ηr = argmax
ηr

ℙnI R = 1 f L −r |L r , R = 1; ηr . Likewise, 

let MR (r) denote the semiparametric model that specifies the nonresponse model Πr,c (αr), 

and is otherwise unspecified. Note that MR = ∩
r ≠ 1

MR r . Consider the following pattern-

specific union model MDR r = MR r ∪ ML r , which is the set of laws with either MR (r) or 

ML (r) correctly specified. The intersection submodel of these laws 

MMR = ∩
r ≠ 1

MDR r = ∩
r ≠ 1

MR r ∪ ML r  is the set of laws such that the union model for 

each r holds. Note that MDR ⊆ MMR since the first union model requires that either the entire 

nonresponse process is correctly specified, i.e. ∩
r ≠ 1

MR r  holds, or the joint complete-case 

distribution of L is correctly specified, i.e. ∩
r ≠ 1

ML r  holds; in contrast, MMR requires only 

correct specification of one of the two models for each pattern. An estimator of β0 that is 

consistent in model MMR is said to be multiply-robust, or more precisely 2J −robust 
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(Vansteelandt et al, 2007) for a J non-monotone missing data patterns. We have the 

following result:

Corollary 6 Suppose that assumptions (1) and (2) hold with Fε the extreme value 

distribution. Then, under standard regularity conditions, we have that βmr is consistent and 

asymptotically normal in the union model MMR, where βmr is defined as βdr with ηr used to 

estimate ηr.

The above corollary describes an estimator with the MR property which states that given J 
nonresponse patterns, the analyst would in principle have (under our identifying 

assumptions) 2J opportunities to obtain valid inferences about β0. This is to be contrasted 

with the single chance to valid inferences offered by IPW or PM approaches respectively, or 

the two chances offered by the DR estimator. For inference, one may readily adapt the large 

sample variance estimator given in Theorem 3, or alternatively use the nonparametric 

bootstrap.

4.4 Simulation Study

We perfomed a simulation study to investigate the performance of the various estimators 

described above in finite sample. We generated 1000 samples of size n = 2000. We 

implemented the following data generating mechanism. Independent and identically 

distributed (Y, X) is generated from a normal mixture models: Y , X ∑k=1
3 πkN μk, ∑ , 

where π1=1/2, π2=e/(2+2e), π3=1/(2+2e), μ1 =(0,0)T, μ2 =(1,1)T, μ3 =(1,2)T and ∑=(σij), 

where σ11 = σ12 = 1, σ22 =2. We consider four missing data patterns L(R): L(1) = L, L(2) = 

X, L(3) = Y, L(4) = ∅. Conditional on the generated full data, the missing data pattern is then 

generated under the following mechanism:

P R = 1 X, Y = 1
1 + exp X + exp 2Y + exp −1 ;

P R = 2 X, Y = exp X
1 + exp X + exp 2Y + exp −1 ;

P R = 3 X, Y = exp 2Y
1 + exp X + exp 2Y + exp −1 ;

P R = 4 X, Y = exp −1
1 + exp X + exp 2Y + exp −1 .

Since for each missing data pattern r, P(R = r | X, Y) depend on all the full data (X, Y), the 

missing data mechanism is MNAR. The identifiability of normal mixture models in the 

MNAR setting has previously been considered in Miao et al. (2016). The full data target 

parameter of interest is β = E Y = ∑rprE Y |R = r = 2 + exp 1 / 2 + 2exp 1 , with full data 

estimating equation U(β)   = Y − β.

We implemented Little’s PM approach as well as our IPW and DR estimators. In doing so, 

correct specification of the nonresponse process entailed matching the data generating 

mechanism described above, i.e. Odds2 L 2 = α20 + α21X, Odds3 L 3 = α30 + α31Y , 

Odds4 L 4 = α40. Misspecification of these models occured by instead fitting 

Odds2 L 2 = α20 + α21X2 and Odds3 L 3 = α30 + α31Y 2. Likewise, correct specification for 
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the PM approach entailed defining E(Y |R =   2, X) = E(Y |R =   1, X) = γ20 + γ21X, while 

the incorrect model E(Y |R =   1, X) = γ20 + γ21X2 was used to assess the impact of model 

mis-specification of the complete-case distribution. Note that as U (β) does not depend on 

X, E U   β |R =   3, L 3 = U β . We explored four scenarios corresponding to (1) correct f 

(R|L) and f (L|R = 1), (2) correct f (R|L) but incorrect f (L|R = 1); (3) correct f (L|R = 1) but 

incorrect f (R|L); finally (4) incorrect f (R|L) and f (L|R = 1).

Results in Table 1 confirm our theoretical results, and clearly show that as expected IPW has 

small bias in scenarios (1) and (2) only, PM has small bias in scenarios (1) and (3), and DR 

has small bias in scenarios (1)-(3). In scenario (4) where all models are incorrect, as 

expected all estimators are significantly biased. When as in the first scenario, model 

misspecification is absent, IPW has larger root mean squared error (RMSE) than PM, 

however DR is comparable to PM, at least in this simulation setting. Interestingly, the RMSE 

of DR follows closely that of PM in scenarios (1) and (3) suggesting that the potential 

efficiency loss incurred to obtain DR inference relative to PM inference may not be 

substantial in practice. Table 1 of the Supplemental Appendix summarizes simulation results 

assessing the performance of our estimators of asymptotic variance and coverage of Wald 

confidence intervals using estimated standard errors for the three estimators under 

consideration. The results largely indicate that our standard error estimators are consistent in 

all scenarios where the point estimators are also consistent, including under partial model 

misspecification for the DR estimator (see comparison to Monte Carlo standard errors in 

Table 1 of the Supplemental Appendix). However, our standard error estimators appear to 

break down severely whenever model mis-specification induces bias in parameter estimates. 

Interestingly, the performance of the nonparametric bootstrap closely follows that of our 

estimators in all instances and also appears to break down under bias inducing model 

misspecification. We do not view this as a serious limitation given that inferences are in such 

cases unreliable even with a consistent estimator of standard error.

4.5 A data application

The empirical application concerns a study of the association between maternal exposure to 

highly active antiretroviral therapy (HAART) during pregnancy and birth outcomes among 

HIV-infected women in Botswana. A detailed description of the study cohort has been 

presented elsewhere (Chen et al. 2012). The entire study cohort consists of 33148 obstetrical 

records abstracted from 6 sites in Botswana for 24 months. Our current analysis focuses on 

the subset of women who were known to be HIV positive (n = 9711). The birth outcome of 

interest is preterm delivery, defined as delivery < 37 weeks gestation. 6.7% of the outcomes 

are not observed. The data also contain the following risk factors of interest that are also 

subject to missingness (Table 2): whether CD4+ cell count is less than 200 cells/μL and 

whether a woman continued HAART from before pregnancy or not.

Our goal is to correlate these factors with preterm delivery using a logistic regression. In 

other words, the parameter of interest is the vector of coefficients of the corresponding 

logistic regression. We implemented the complete-case (CC) analysis together with three 

proposed estimators that account for MNAR nonresponse: LDCM IPW, PM and DR 

estimators. Estimation of the nonresponse process used the fairly generic specification log 
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Oddsr L r ; αr = αr' qr L r , where qr (L(r)) included all main effects and two-way interactions 

of components of L(r) while PM specified the log-linear model Pr L |R = 1 ∝ exp η'L .

Table 3 summarizes resuls for the complete analysis (CC) together with Little’s PM analysis 

and our two semiparametric estimators (IPW and DR). The results suggest that the 

association between CD4 count and preterm delivery may be subject to selection bias to a 

greater extent than that of HAART and preterm delivery. In fact, the estimated odds ratio for 

CD4 count is about 20% larger for IPW, PM and DR compare to the CC odds ratio, whereas 

the odds ratio for HAART is quite similar for all four estimators. Although PM generally 

appears less variable, there are no notable differences between inferences obtained using 

IPW, PM or DR, providing no evidence that either IPW or PM might be subject to 

misspecification bias.

5 Inference for general DCM

Consider a DCM with user-specified Fε, a well-defined continuous CDF. Local 

identification under assumption (3) is best understood with discrete data. In this vein, 

suppose that L(r) takes on Mr levels, then ∆μ1r (L(r)) depends at most on Mr unknown 

parameters. However, note that for user-supplied Mr-dimensional function Gr = gr L r . Let 

W r Gr = Gr × 1 R = r − 1 R=1 ∏r /∏1 . It is straightforward to verify that

E W r Gr = 0 for r = 2,… (15)

yielding the Mr restrictions needed to identify each ∆μ1r. Naturally, components of Gr 

should be chosen appropriately to avoid redundancy and linear dependence. A similar 

argument could in principle be carefully crafted to establish local identification if L contains 

continuous components. However, this is not further pursued in this paper. Interestingly, 

equation (15) motivates a simple approach for estimating Πr in practice. Suppose that one 

posits a parametric model Δ μ1r L r ; αr  for ∆μ1r (L(r)) with finite dimensional unknown 

parameter αr, for all r. Then, the following empirical version of (15) would in principle 

deliver an estimator α = αr:r  of α={αr :r}.

ℙn W r Gr; α = 0 for r = 2,…

where W r Gr; α = Gr × 1 R = r − 1 R = r ∏r α /∏1 α . A convenient choice for 

Gr = ∂ Δ μ1r L r ; αr / ∂αr. Under mild regularity conditions, α will be consistent and 

asymptotically normal provided that Δ μ1r L r ; αr  is correctly specified for all r.

Given a consistent estimator of Π1, IPW inferences about β0 may be obtained as described in 

previous sections. Likewise, maximum likelihood estimation is straightforward by 

maximizing a model for the likelihood given in Lemma 1. Unfortunately, outside of the 

LDCM, to the best of our knowledge, it does not appear possible to obtain DR and MR 

inferences for DCMs.

The above analysis requires evaluation of the integral defining Πr. Thus, let
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Qr ε = ∏
s≠r

Fε Δμ1s L s − Δμ1r L r + ε .

A reliable approximation of ∏r = Qr ε fε ε dε can effectively be achieved numerically by 

Gauss-Hermite Quadrature (Liu and Pierce, 1994). For instance, suppose that fε is standard 

normal, then the approximate Gaussian Discrete Choice Model is given by 

∏r ≈ ∑m = 1
M Qr εm wm, where the nodes εm are the zeroes of the mth order Hermite 

polynomial and wm are suitably defined weights (Davis & Rabinowitz, 1975)

6 Conclusion

In this paper, we have described the DCM as an all-purpose, flexible and easy-to-implement 

general class of models for nonmonotone nonignorable nonresponse. The LDCM has several 

advantages including giving rise to four distinct strategies for inference: IPW, PM, DR and 

MR estimation. Simulation studies and an application suggest good finite sample 

performance of IPW, PM and DR estimation; although not directly evaluated, we expect the 

same to apply to MR estimation.

Identification conditions such as CCMV are not empirically testable and therefore, it is 

important that inferences are assessed for sensitivity to violation of such assumptions. Such 

an approach for sensitivity analysis for violation of CCMV restriction is outlined in the 

Supplemental Appendix.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Monte Carlo results of the IPW, PM and DR estimators: accuracy of standard deviation estimator and coverage 

probabilities. The sample size is 2000

bth
* nrm ccm bad

Estimated SD / Monte Carlo SD

IPW 0.951 0.951 0.438 0.438

PM 0.993 0.979 0.993 0.979

DR 0.995 0.995 0.886 0.725

Estimated SD / Bootstrapped SD

IPW 0.994 0.994 0.932 0.932

PM 1.000 1.002 1.000 1.002

DR 0.999 0.990 0.973 0.951

Coverage**

IPW 0.938 0.938 0.080 0.080

PM 0.954 0.001 0.954 0.001

DR 0.948 0.947 0.953 0.030

*
: bth: both models correct; nrm: nonresponse model correct; ccm: complete-case model correct; bad: both models incorrect.

**
: Nominal level = 95%.
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Table 2:

Real data analysis: tabulation of missing data patterns. The total sample size is 9711. Missing variables are 

coded by 0. The first row represents the complete case

Pattern (R) Preterm Delivery Low CD4 Count Cont. HAART percentage

1 1 1 1 10.5%

2 0 1 1 0.7%

3 1 0 1 18.3%

4 0 0 1 1.6%

5 1 1 0 33.9%

6 0 1 0 1.5%

7 1 0 0 30.6%

8 0 0 0 2.9%
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Table 3:

Real data analysis: estimated odds ratios of preterm delivery associated with various risk factors. The 95% 

confidence intervals are estimated based on bootstrap samples

Low CD4 Count Cont HAART

CC 0.782 (0.531,1.135) 1.142 (0.810,1.620)

IPW 0.924 (0.631,1.338) 1.180 (0.847,1.638)

PM 0.963 (0.704,1.318) 1.175 (0.881,1.598)

DR 1.020 (0.742,1.397) 1.158 (0.869,1.560)
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