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Abstract

Purpose of Review—Negative controls are a powerful tool to detect and adjust for bias in 

epidemiological research. This paper introduces negative controls to a broader audience and 

provides guidance on principled design and causal analysis based on a formal negative control 

framework.

Recent Findings—We review and summarize causal and statistical assumptions, practical 

strategies, and validation criteria that can be combined with subject-matter knowledge to perform 

negative control analyses. We also review existing statistical methodologies for the detection, 

reduction, and correction of confounding bias, and briefly discuss recent advances towards 

nonparametric identification of causal effects in a double-negative control design.

Summary—There is great potential for valid and accurate causal inference leveraging 

contemporary healthcare data in which negative controls are routinely available. Design and 

analysis of observational data leveraging negative controls is an area of growing interest in health 

and social sciences. Despite these developments, further effort is needed to disseminate these 

novel methods to ensure they are adopted by practicing epidemiologists.
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Introduction

Despite ongoing efforts to improve study design and statistical analysis of epidemiological 

research, failure to rule out non-causal explanation of empirical findings has prompted 

substantial discussions in health science [1, 2]. A powerful tool increasingly recognized to 

mitigate bias is negative control study design and analysis [3••, 4, 5]. Negative controls have 

a long history in laboratory experiments and epidemiology [3••, 6–8]. However, they have 
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mainly been used to detect bias rather than to remove bias. More recent methodological 

advances that enable both bias detection and bias removal have not been fully recognized. 

As a result, the potential for valid and accurate causal inference leveraging contemporary 

healthcare data with abundant negative controls has to date not been fully realized. This 

paper aims to introduce negative controls to a broader audience and provide guidance on 

principled design and causal analysis based on a formal negative control framework. We 

focus on resolving bias due to unmeasured confounding in observational studies, although 

negative controls have recently also been used to tackle a variety of biases such as selection 

bias [3••, 4, 9], measurement bias [3••, 4], and homophily bias [10, 11] in both observational 

studies and randomized trials [5].

Definition and Notation

A negative control outcome (NCO) is a variable known not to be causally affected by the 

treatment of interest. Likewise, a negative control exposure (NCE) is a variable known not to 

causally affect the outcome of interest. To the extent possible, both NCO and NCE should be 

selected such that they share a common confounding mechanism as the exposure and 

outcome variables of primary interest, although this is not always necessary [12•, 13]. These 

known-null effects have been used to detect residual confounding bias: the presence of an 

association between the NCE and the outcome (or between the NCO and the exposure) 

constitutes compelling evidence of residual confounding bias, while the absence of such 

association implies no empirical evidence of such bias. For example, in a study about the 

effects of influenza vaccination on influenza hospitalization in the elderly (Fig. 1), injury/

trauma hospitalization was considered an NCO as it cannot be causally affected by influenza 

vaccination, but may be subject to the same confounding mechanism mainly driven by 

health-seeking behavior [14]. The authors found that despite efforts to control for 

confounding, influenza vaccination not only appeared to reduce the risk of influenza 

hospitalization after influenza season (risk ratio 0.82, 95% CI 0.73–0.92) but also appeared 

to reduce the risk of injury/trauma hospitalization (risk ratio 0.83, 95% CI 0.75–0.91). This 

was interpreted as evidence of bias due to inadequately controlled confounding. Likewise, 

annual wellness visit history can be considered an NCE as it is unlikely to cause flu-related 

hospitalization. In the following, we adopt the potential outcome framework which we use to 

formally define causal effects as well as to articulate sufficient identification conditions to 

perform valid causal inferences from observational data. We proceed under the fundamental 

assumption that for each subject in the target population, there exists a potential outcome 

variable Y(a) that would be observed if possibly contrary to fact, the subject were exposed to 

treatment value a, for all possible treatment values of a in a set A. In the common setting 

where the treatment is dichotomous A = 0, 1 , the assumption states that each subject has a 

well-defined pair of potential outcomes (Y(0), Y(1)) corresponding to their outcome under 

active treatment a = 1 and control treatment a = 0, respectively [15, 16]. In such a setting, 

our goal is to make inferences about the population average treatment effect (ATE) defined 

as ATE = E [Y(1)-Y(0)]. Now, consider an observational study in which one observes 

independent and identically distributed samples on (Y, A, X), where A is a subject’s 

observed binary treatment assignment, Y is his/her observed outcome, and X is the observed 

confounders of the association between A and Y. We sometimes refer to A as primary 

treatment and Y as the primary outcome. We assume that the treatment is defined with 
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enough specificity such that among subjects with A = a, the observed outcome Y is a 

realization of the potential outcome value Y(a), that is.

Assumption 1 (Consistency).—Y(a)= Y when A = a.

Much of the literature on causal inference in observational studies relies on the strong 

assumption of no unmeasured confounding for the purpose of identification, i.e., A ⊥ Y(a) | 

X, which is sometimes referred to as the ignorability assumption. This assumption 

essentially rules out the existence of unmeasured common causes, denoted as U, of the 

treatment and outcome variables—an untestable assumption which is often at the source of 

much skepticism about causal interpretation of associations found in observational data. We 

do not make such ignorability assumption to establish causation. Instead, we invoke the 

following assumption that describes the relationship between treatment and outcome in the 

presence of both measured and unmeasured confounding.

Assumption 2 (latent ignorability).—A ⊥ Y(a) | U, X

In addition to (A, Y, X), suppose that one has also observed a secondary outcome W and/or 

a secondary exposure Z, and let Y(a, z) and W(a, z) denote the corresponding counterfactual 

values that would be observed had the primary treatment and secondary exposure taken 

value (a, z). W and Z are formally defined as negative control outcome and exposure 

variables provided that the following assumptions hold

Assumption 3 (negative control outcome).—W(a, z)= W and W ⊥ A | U, X

Assumption 4 (negative control exposure).—Y(a, z)= Y (a) and Z ⊥ (Y (a), W) | U, 

X

Assumptions 3 and 4 entail the following: (1) there is no remaining unmeasured common 

cause between (A, Z) and (Y, W) conditional on (U, X); (2) there is no causal effect of Z on 

Y conditional on U, A, and X, and there is no causal effect of A and Z on W conditional on 

U and X, which are referred to as the exclusion restrictions. We refer to a pair of W and Z as 

the double negative control. It is not necessary to have both NCO and NCE, although the 

double-negative control will be sufficient for nonparametric identification of the ATE as 

detailed in the “Bias Reduction and Bias Correction” section.

Figure 1 illustrates a directed acyclic graph (DAG) encoding the above assumptions. 

Consider a study of the effectiveness of flu shot (A) on influenza-related hospitalization (Y). 

A major concern in such studies is potential hidden bias due to unmeasured health-seeking 

behavior (U), a well-known common cause of flu shot status and influenza hospitalization. 

In such a study, routinely captured information on a person’s annual wellness visit history 

entails a good candidate NCE (Z) satisfying Assumption 4, as it reflects a person’ s tendency 

to engage in healthy behavior, and is unlikely to cause influenza hospitalization. Similarly, 

recorded data on a person’s injury/trauma hospitalization provides compelling candidate 

NCO (W) satisfying Assumption 3, as it is likely associated with health-seeking behavior 

and unaffected by flu shot. In addition, we can view an instrumental variable (IV) as an NCE 

[12•, 17•]. An IV is a pre-treatment variable satisfying the following three core assumptions: 
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(IV relevance) the IV must be associated with the treatment; (exclusion restriction) the IV 

must not have a direct effect on the outcome that is not mediated by the treatment; and (IV 

independence) the IV must be independent of unmeasured confounders. For example, 

physician’s prescribing preference is often taken as an IV in comparative effectiveness 

studies, because it likely induces variation in the choice of treatment, and may not affect the 

outcome other than through its influence on the treatment [18]. A valid IV satisfies 

Assumption 4 and hence is a valid NCE, which is further explained in the “Bias Detection” 

section. Besides the above three IV conditions, a fourth condition is necessary to identify a 

causal effect, such as the monotonicity assumption or the no current treatment interaction 

assumption [19–22]. Alternatively, causal effect identification using IV is also made possible 

by further incorporating an NCO under a double negative control framework introduced in 

the “Bias Reduction and Bias Correction” section. It is important to note that Fig. 1 is not 

the only DAG satisfying the negativecontrol assumptions. For example, a more general DAG 

would allow Z to affect A, corresponding to the case where an annual wellness visit could 

result in flu vaccination during flu season. Moreover, physician preferences are not 

randomized and may be associated with U via physician-patient interactions, potentially 

violating the IV independence assumption. Such an invalid IV violating the IV independence 

assumption is still a valid NCE as long as the exclusion restriction holds, regardless of 

whether the IV relevance assumption holds. In this case, an NCO can be used to repair an 

invalid IV for causal effect identification under a double-negative control framework [12•, 

17•]. Additional DAGs illustrating settings in which Assumptions 2 and 3 hold are provided 

in Table 3 of the Appendix. As demonstrated in [12•, 17•], an NCE can be either pre- or 

post-treatment variable. Unmeasured common causes of the Z–A association and Y–W 
association can also be present without necessarily invalidating Assumptions 3–4. A key 

insight is that a valid NCO does not necessarily need to be an outcome variable and may in 

fact precede the treatment in view, while a valid NCE need not necessarily be a treatment 

and may in fact be ascertained either together with primary outcome of interest or 

subsequently.

Inconsistent Terminology in Literature

In prior literature, NCO has been referred to as falsification outcome/endpoint [23–26], 

control outcome [14, 27, 28], secondary outcome [29, 30], supplementary response [6], and 

unaffected outcome [31]. NCE has been referred to as control exposure [27] and residual 

confounding indicator [32, 33•]. Both NCO and NCE have been referred to as proxies of 

unmeasured confounder [34, 35, 36••]. In addition, an exposure- outcome pair known a 

priori to be unrelated has also been referred to as a negative control pair [37•, 38–41].

The literature reviewed in the current paper is largely limited to papers that use the 

aforementioned nomenclature. Although [3••, 27] review negative control literature, to the 

best of our knowledge, this paper is the first to systematically summarize both formal causal 

and statistical methodology together with applications of negative controls. The rest of the 

paper is organized as follows. The design and validation of negative controls are discussed in 

the “Review of Applications” section. We then review both assumptions and methods for 

using negative controls to detect, reduce, and remove unmeasured confounding bias in the 

“Review of Applications” section. We use a simple example to illustrate double negative 
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control adjustment (i.e., leveraging NCE and NCO when both are available) of confounding 

bias in the “Bias Reduction and Bias Correction” section. We close with a summary in the 

“Conclusions” section.

Review of Applications

Existing applications of negative controls mainly focus on the detection of uncontrolled 

confounding bias. We list in Table 1 selected studies that employed negative controls to 

detect residual confounding and to strengthen causal conclusions. Among these studies, 

eight used NCEs and nine used NCOs. Table 1 is by no means comprehensive, as hundreds 

of studies have leveraged negative control variables as evidenced by the number of recent 

articles that have cited [3••] as the foundational paper on the use of negative control 

exposures and outcomes in epidemiology, but rather a representative set of examples that 

help illustrate strategies for identifying compelling candidate negative controls.

Examples of Negative Control Designs

Effect of Influenza Vaccination on Influenza Hospitalization: Using Injury/
Trauma Hospitalization as an NCO—As detailed in the “Definition and Notation” 

section, to study the effects of influenza vaccination on influenza hospitalization in the 

elderly, injury/trauma hospitalization was taken as an NCO to detect confounding by 

unmeasured health-seeking behavior [14]. Influenza hospitalization before the flu season 

was also used as an NCO, because flu vaccine cannot protect against influenza 

hospitalization when there is little flu virus circulation.

Effect of Maternal Exposure on Offspring Outcomes: Using Paternal Exposure 
as an NCE—A number of publications have used paternal exposure as an NCE to study the 

intrauterine effect of maternal exposure on offspring outcome. Specifically, [42–46] studied 

the association between maternal smoking and offspring outcomes and compared paternal 

and maternal associations to detect potential bias due to unmeasured confounding by family-

level confounding factors or parental phenotypes. Similarly, [47] compared maternal and 

paternal distress and their associations with offspring asthma. The evaluation of the validity 

of paternal exposure as an NCE has also been considered in [48]. They found that the 

cotinine level from exposure to partner smoking was low in non-smoking pregnant women, 

which suggests that using paternal smoking as an NCE for investigating intrauterine effects 

is valid.

Effect of Air Pollution on Health Outcomes: Using Future Air Pollution as an 
NCE—Besides the use of paternal exposures, NCEs are also used in air pollution studies. 

For example, [32,33•, 49,50] studied statistical methods that utilize future air pollution as an 

NCE for bias detection and bias reduction, because the future is not expected to causally 

affect the past. In addition, [51] studied the effect of air pollutants on asthma and leveraged 

two different NCEs: air pollutant level in the future and air pollutant level in a distant city.

Summary of Negative Control Designs—In addition to the above examples, various 

negative control designs are also summarized in Table 1. Rather than detailing each study in 

Table 1, we summarize these studies in terms of their respective strategy to identify negative 
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control variables below. A commonly used strategy to select negative controls leverages 

temporal and spatial constraints that essentially guarantee the exclusion restrictions in 

Assumptions 3 and 4. Temporal ordering leverages the universal truth that the future cannot 

causally affect the past. For example, as detailed above, [32, 33•, 49–51] specify future 

measurements of air pollution as an NCE to study the effect of current air pollution on health 

outcomes. Similarly, [46] proposed to look at maternal exposure before and after pregnancy 

in studying the intrauterine effect of maternal exposure on offspring outcome. An essential 

prerequisite for this design is that primary outcome does not cause subsequent exposure (at 

least in the short term), certainly a reasonable assumption in air pollution settings. Prior 

information about timing of exposure also sometimes allows one to leave out an essential 

ingredient [3••]. For instance, [14] defined NCO as the number of hospitalizations prior to 

the influenza season in order to estimate the effect of influenza vaccination on influenza 

hospitalization, as little to no flu circulates prior to flu season for influenza vaccination to be 

protective against. Spatial distancing has also been considered an effective means to enforce 

exclusion restrictions in Assumptions 3 and 4. For instance, [51] took air pollutant level in a 

distant city as an NCE to study the effect of air pollutants on asthma. Others [52, 53] studied 

screening sigmoidoscopy and mortality from colon tumor and selected tumor from the 

proximal colon that is beyond the reach of the sigmoidoscopy as an NCO.

Another strategy is to select as NCO an outcome analogous to the primary outcome however 

resulting from mechanism a priori known to be unrelated to the primary treatment. As an 

illustration of this approach, consider [14] which took hospitalization due to injury/trauma as 

an NCO for the primary outcome, hospitalization due to influenza. Similarly, to evaluate the 

effect of air pollution on hospitalization due to asthma, [55] defined hospitalization due to 

appendicitis as an NCO. In addition, several studies routinely use death from other causes as 

NCO: [56–59] studied the effect of smoking on lung cancer with mortality from other causes 

as an NCO, [60] studied the effect of psychological stress on deaths from cardiac events 

after an earthquake with death from other causes as an NCO, and [54•] selected death from 

causes other than breast cancer and from external causes such as accidents, intentional self-

harm, and assaults as NCO to estimate the effect of mammography screening participation 

on breast cancer mortality.

Validation of Negative Controls by Subject Matter Knowledge—Despite the 

various strategies in the literature to find candidate negative controls, researchers should 

rigorously validate the choice of negative controls and be aware of possible violations of 

negative control assumptions. Similar to the assumptions of no unmeasured confounding, 

negative control assumptions (Assumptions 3 and 4) are causal assumptions that can only be 

established by subject matter considerations and not by empirical tests without additional 

assumptions. In practice, we recommend checking the following criteria in finding a 

candidate negative control.

• “Irrelevant to Y (or A)”: The NCE should not cause the outcome of interest, 

while the NCO should not be caused by the treatment of interest nor the NCE. 

These conditions are formally implied by Assumptions 3 and 4.

Shi et al. Page 6

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• “Comparable to A (or Y)”: In most cases, it is important to have the source of 

bias in mind before designing a negative control study although this is not always 

necessary [12•, 13]. Unmeasured confounding mechanism of negative controls 

should be comparable to that of A and Y in the following sense: the NCE must 

be associated with unmeasured confounders conditional on measured 

confounders and primary treatment; the NCO must be associated with 

unmeasured confounders conditional on measured confounders. Hence, the 

negative control variable is often viewed as a proxy of the unmeasured 

confounders. A variable completely irrelevant to all mechanisms under 

consideration would not provide any useful information. These conditions are 

formally required by Assumptions 5 and 7 in the “Review of Methods” section.

• “Adequate Negative Control Power”: The NCE and NCO are not exceedingly 

rare relative to primary treatment and outcome variables, respectively. For 

example, in the event that the negative control variable is a rare binary variable, 

or if the association between unmeasured confounder and negative control 

variable is weak, then, large sample may be necessary to achieve sufficient power 

for detecting confounding bias.

We list examples of possible violations of negative control assumptions in the Appendix.

Review of Methods

Bias Detection

Key Assumption and Rationale for Bias Detection—Assumptions 3 and 4 give rise 

to formal statistical tests of the null hypothesis that adjustment for observed covariates 

suffices to control for confounding bias, rejection of which indicates the presence of an 

unmeasured confounder U. A key assumption for this bias detection strategy is that the 

negative control exposure or outcome is U-comparable to the primary exposure or outcome:

Assumption 5 (U-comparable).—W⊥ f ⊥ U | X and Z⊥ f ⊥ U | A, X

The U-comparability assumption requires that unmeasured confounders U of A–Y 
association are identical to those of the A–W association and Z–Y association, such that a 

non-null A–W or Z–Y association can be attributed to U. Therefore, the presence of an 

association between primary and negative control variables implies residual confounding 

bias, while the absence of such associations implies no empirical evidence of unmeasured 

confounding. It is important to note that when evaluating Z–Y association, one must also 

adjust for A to rule out the potential association between Z and Y due to the pathway Z–

A→Y (the arrow between Z and A could either be Z→A or Z←A). Examples of such 

relationships are listed in Table 3 of the Appendix. Notably, conditional on X, a valid IV 

independent of U and associated with A satisfies Assumption 5 because of conditioning on a 

collider A on the IV→A←U pathway [12•, 17•]; likewise, an invalid IV that violates the IV 

independence assumption defined in the “Definition and Notation” section woud also satisfy 

Assumption 5 regardless of whether IV and A are associated, as mentioned in the 

“Definition and Notation” section.
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Methods—As detailed in the “Review of Application” section, the majority of existing 

applications used negative controls for bias detection, by testing for an association between 

primary and negative control variables. A review of bias detection methods is presented in 

Table 2. For example, [32] formalized bias detection as a Wald test of the coefficient of NCE 

in a regression model of the outcome on the primary and negative control exposures. 

Moreover, [61, 62] noted that an invalid NCE that violates the exclusion restriction but 

satisfies the U-comparable assumption can nevertheless validate a causal interpretation when 

it does not appear to be associated with the outcome adjusting for the treatment of interest.

Bias Reduction and Bias Correction

Summary of Literature: Beyond bias detection, recent developments have made it possible 

to reduce and sometimes completely remove unmeasured confounding bias using negative 

controls. In air pollution studies, current and future pollutant levels are often positively 

correlated and are associated with unmeasured con- founders in the same direction. In this 

setting, [33•] showed that incorporating future air pollution, an NCE, in the outcome model 

can reduce confounding bias. Further bias attenuation was proposed in [49] by incorporating 

both past and future exposures. Bias reduction using an NCO was considered by [63] in the 

estimation of standardized mortality ratio, where the standardized mortality ratio of the NCO 

was used to reduce bias in that of the primary outcome. In addition, [38, 40] considered 

calibrating p value and confidence intervals by deriving an empirical null distribution from 

the association between primary and negative control variables.

Several methods were developed to achieve full bias removal, under certain assumptions 

such as monotonicity [13, 64–66], rank preservation [67], and linear model for unmeasured 

confounding. Specifically, [64, 65] considered bias correction by using a negative control 

time-to-event outcome under a monotonicity assumption that describes the U – Y and U – W 
association. Under a similar monotonicity assumption, [13] generalized the difference-in-

difference method to the NCO method, which is further extended by [66]. In addition, [67] 

developed an outcome calibration approach with a rank preservation assumption under 

which the counterfactual primary outcome can account for the unmeasured confounding 

between the A–W associations. Lastly, [68, 69, 70•] assumed a linear model for the 

unmeasured confounder and proposed to estimate U by factor analysis.

Nonparametric Identification in a Double-Negative Control Design: The above methods 

remove unmeasured confounding bias under relatively stringent assumptions. Sufficient 

conditions are established by [36••] under which the ATE can be nonparametrically 

identified leveraging an NCE and an NCO, i.e., via a double-negative control design [17•]. 

That is, the ATE can be uniquely expressed as a function of the observed data distribution 

without imposing any restriction on the observed data distribution, such that distinct data-

generating mechanisms are guaranteed to lead to distinct ATE values. Further method 

developments include semiparametric estimation under categorical negative controls and 

unmeasured confounding [17•] and alternative strategies to identify the ATE via a so-called 

confounding bridge function [12•].
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Double-negative controls are widely available in health sciences. For example, in air 

pollution studies, [12•] used future air pollution level and past health outcome as negative 

control exposure and outcome, respectively. Two routinely monitored control outcomes are 

taken by [17•] from administrative healthcare data in vaccine safety studies as double-

negative control, in the setting where both control outcomes are independent of the primary 

outcome and satisfy both Assumption 3 and Assumption 4. In influenza vaccine 

effectiveness research presented in Fig. 1, annual wellness visit and injury/trauma 

hospitalization can serve as double-negative control. In addition, when IV is available, 

identification is made possible by further incorporating an NCO such as a pretreatment 

measurement of the outcome.

Below, we will first detail the identification conditions established in [36••] and then 

introduce the identification methods proposed in [12•, 36••].

Assumption 6 (positivity).: 0< P (A = a, Z = z | X) < 1 for all a, z.

Assumption 7 (completeness).: (a) For all a, W ∦ Z | A = a, X. (b) For any square integrable 

function g, if E [g(W)| Z = z, A = a, X] = 0 for almost all z, a, then g(W ) = 0.

Assumption 6 is a regular positivity assumption ensuring that in all strata of X, there are 

always some individuals with A = a, Z = z for all a, z. Assumption 7 is a commonly used 

completeness condition for identification [71]. Specifically, Assumption 7(a) essentially 

requires U-comparability. That is, both Z and W should be associated with U such that 

variation in U can be recovered from variation in Z and W. Assumption 7(b) aims to ensure 

that the underlying unmeasured confounding mechanism in E [Y | A, U ] can be identified 

using Z and W. For example, suppose U is a binary variable. Then, Assumption 7 further 

requires that Z and W have at least two categories, and E [W | A = a, Z =1, X = x] - E [W | 

A=a, Z =0, X = x].

Rationale: In the presence of unmeasured confounding by a latent variable U, an observed 

difference in the outcome between the treatment and control groups is a combination of the 

underlying causal effect and confounding bias. One cannot directly disentangle the variation 

in the outcome due to the treatment from the unwanted variation due to U, as U is not 

measured. We seek to indirectly remove such unwanted variation, i.e., unmeasured 

confounding bias, by leveraging available proxies of U. An important example of such proxy 

is an NCO chosen to be associated with U but not causally affected by the treatment (Figure 

1), such that any difference in the NCO, W, between the treatment and control groups can 

only be attributed to U. Such a difference can uncover the unwanted variation due to U 
assuming that U–Y and U–W associations are the same, and there is no U–A additive 

interaction on Y. An example of such W is the pre-exposure baseline measure of the 

outcome, in which case, bias adjustment reduces to the well-known difference-in-difference 

approach [13]. The above describes the identification of the ATE under assumptions that are 

generally untenable, because the U–Y and U–W associations will often be on different 

scales, and there may be U–A interactions in the model for Y. In order to nonparametrically 

identify unmeasured confounding bias, we make use of the NCE Z. Because Z is associated 

with Y or W only through U, the ratio of Z–Y and Z–W associations captures the ratio of U–
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Y and U–W associations, allowing for U–A interactions. In summary, leveraging a double-

negative control design one can nonparametrically identify the magnitude of unmeasured 

confounding bias via the following mechanism: The NCO uncovers the confounding bias up 

to a scale that reflects the difference between U–Y and U–W associations, while the NCE 

recovers the scale leveraging Z–Y and Z–W associations. This mechanism is further 

illustrated in an example below.

Example: To further illustrate the idea of identification using a double-negative control, 

consider a simple example where we assume the following linear structural equation models 

involving unmeasured confounding U, although the nonparametric identification proposed in 

[36••] does not rely on any restriction about the data generating models. We suppress 

measured confounders X to ease notation—all arguments are made implicitly conditional on 

X.

Had U been measured, we could fit (1) and obtain the true causal effect which is βYA. When 

in fact U is not measured, to leverage double-negative control, we additionally assume the 

U–W relationship in (2) and U–Z relationship in (3).

E[Y ∣ A, U] = βY 0 + βYAA + βYUU (1)

E[W ∣ U] = βW 0 + βWUU (2)

E[U ∣ A, Z] = βU0 + βUAA + βUZZ (3)

Models (1)–(3) indicate the following models that one could actually fit using the observed 

data (Y, A, W, Z). These models are obtained by replacing U with E [U| A, Z] in the primary 

and negative control outcome models (1) and (2).

E[Y ∣ A, Z] =(1) βY 0 + βYAA + βYUE[U ∣ A, Z] (4)

=(3) βY 0 + βYAA + βY UU βU0 + βUAA + βUZZ (5)

E[W ∣ A, Z] =(2) βW 0 + βWUE[U ∣ A, Z] (6)

=(3) βW 0 + βWU βU0 + βUAA + βUZZ (7)

From (1), we know that the true causal effect is βYA. However, if one were to regress Y on A 
and Z without accounting for U such as in [33•], then the coefficient of A would be equal to 

βYA + βYUβUA. Here, βYUβYA is confounding bias, which arises when there exists a U that 

is associated with both Y and A. One cannot directly separate the confounding bias from the 

true causal effect because U is not observed. Nevertheless, the coefficients in the observed 
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models (5) and (7) allow us to infer βYUβYA. To facilitate discussion, we introduce notation 

for the coefficients in models (5) and (7). δA
Y = βYA + βYU βUA and δZ

Y = βYU βUZ denote the 

coefficients of A and Z in the primary outcome model (5), respectively, and let 

δA
W = βWU βUA and δZ

W = βWU βUZ denote the coefficients of A and Z in the negative control 

outcome model (7), respectively.

We detail three strategies to identify the unmeasured confounding bias βYUβYA leveraging a 

single NCO, a single NCE, or the double-negative control. First, we note that coefficient of 

A in the primary outcome model, δA
Y , is a combination of both true causal effect and 

confounding bias, whereas the coefficient of A in the negative control outcome model, δA
W , 

reflects pure confounding bias because A does not causally affect W. In fact, if U–Y and U–

W associations are equal on the additive scale, i.e., βWU = βYU, then δA
W  matches the 

confounding bias βYUβUA. That is, under the assumption of equal U–Y and U–W additive 

association, a form of “additive outcome equi-confounding” [13], the treatment effect on 

NCO is equal to the unmeasured confounding bias. Hence, the causal effect can be 

recovered by backing out the association of the treatment with the NCO from the association 

of the treatment with the primary outcome. Note that in this scenario, it is not necessary to 

have an NCE: one can fit the primary and negative control outcome on treatment without 

adjusting for the NCE, and then take the difference in treatment effects. When NCO is the 

baseline outcome, the above reduces to the difference-in-difference method [13].

Second, the coefficient of Z in the primary outcome model, δZ
Y , would be zero if there was 

no unmeasured confounding because Z does not causally affect Y. Therefore, the coefficient 

of Z in the outcome model reflects pure confounding bias. In fact, if U–A and U–Z 

associations are equal on the additive scale, i.e., βUA = βUZ, then δZ
Y  captures the bias 

βYUβYA due to unmeasured confounding. That is, under the assumption of equal U–A and 

U–Z additive association, a form of “additive treatment equi-confounding,” the NCE effect 

on the primary outcome is equal to the unmeasured confounding bias. Hence, the causal 

effect is given by the difference in coefficients of treatment and NCE in the primary outcome 

model. Note that in this scenario, it is not necessary to have an NCO: one can fit the primary 

outcome on treatment and NCE and then take the difference in the effects of treatment and 

NCE on Y.

In both scenarios described above, the “additive outcome equi-confounding” or “additive 

treatment equi-confounding” is a rather strong assumption, as it requires Y and W or Z and 

A, to operate on the same scale. To relax these assumptions, we can leverage the double-

negative control. Specifically, if U–Y and U–W associations are unequal, then δA
W  reflects 

pure confounding bias up to a scale which is equal to βYU/βWU. Because Z–Y (Z–W) 

association is a product of U–Z and U – Y (U – W ) associations, the ratio of Z–Y and Z–W 

associations is equal to the ratio of U–Y and U–W associations. That is, βY U /βW U = δZ
Y /δZ

W . 

The confounding bias is thus equal to δA
W  scaled by δZ

Y /δZ
W , and the true causal effect is 

given by δA
Y − δA

W × δZ
Y /δZ

W . It is important to note that the first two adjustment methods are a 
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special case of the general adjustment method in that the confounding bias is always equal to 

δA
W δZ

Y /δZ
W  across all three scenarios.

To summarize, the confounding bias

βYUβUA = δA
W δZ

Y /δZ
W =

δA
W if βWU = βYU

δZ
Y if βUA = βUZ

δA
W δZ

Y /δZ
W if βWU ≠ βYU and βUA ≠ βUZ

(8a, b, c)

Hence, the true causal effect is identified as.

βYA = δA
Y − δA

W δZ
Y /δZ

W (9)

It is important to note that Eq. (9) is only meaningful when δZ
W  is not equal to zero. If 

δZ
W = 0, then either there is no evidence of the presence of U and βyuβya = 0 or a selected 

negative control variable is not sufficiently associated with U, violating Assumption 7. 

Similar arguments apply to δA
W  and δZ

Y . In fact, as summarized in Table 2, many negative 

control methods detect, reduce, and remove unmeasured confounding bias using analogies 

of scenario (8a) [13, 63–65] and scenario (8b) [32, 33•, 49].

In practice, identification via (9) relies on fitting the primary and negative control outcome 

models E [Y | A, Z] and E [W | A, Z]. Alternatively, one could directly make an assumption 

about the underlying unmeasured confounding mechanism E [Y | A, U] which is proposed in 

[12•]. To illustrate, consider again the example above. Let UW =
W − β0
βW U

 then by (2) UW  is a 

good proxy of U in the sense that E UW ∣ U = U. In particular, let 

ℎ(W , A) = βY 0 + βYAA + βYUUW , then by (1), we have

E[Y ∣ A, U] = E[ℎ(W , A) ∣ A, U] (10)

E[Y ∣ A, Z] = E[ℎ(W , A) ∣ A, Z] (11)

where (11) is obtained by taking expectations on both sides of (10). The above equations 

indicate that h captures the relationship between U–Y and U–W associations via (10), which 

can be identified by the relationship between Z–Y and Z–W associations via (11). Because 

of this key observation, h is referred to as the confounding bridge function in [12•]. The 

functional form of h is implied by (1) and (2). Once h is identified, we have that 

E[Y (a)] =(10) Eu{E[Y ∣ A = a, U]} = E[ℎ(W , A = a)]. In practice, one may assume a familiar 

linear model about the functional form of h that satisfies (10), such as

ℎ(W , A; θ) = θ0 + θAA + θW W (12)
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Then, under Assumption 7, θ can be identified by the population moment equation E [g(A, 

Z){Y-h(A, W; θ)}] = 0 using the generalized method of moments (GMM) method [72]. 

With θ identified, the ATE is given by

ATE = E[ℎ(W , A = 1; θ)] − E[ℎ(W , A = 0; θ)] (13)

A simple version of the above GMM procedure can be realized via a simple two-stage least 

squares procedure as follows [12•]:

Stage I: regress W on A and Z and obtain the fitted value W  as a proxy of U; Stage II: 

regress Y on A adjusting for W , then, the coefficient of A is the true causal effect βYA 

assuming (1) and (2). The two-stage least squares approach given above provides a simple 

implementation of the NC method using existing and widely disseminated IV software 

packages such as the ivregress, ivreg, or ivreg2 command in Stata; the gmm, sem, ivpack, or 

AER package in R; and the SYSLIN procedure in SAS.

Conclusions

Negative controls are innovative and important tools in observational studies. The 

development of negative control methods will encourage researchers to routinely check for 

evidence of confounding bias and rigorously adjust for residual confounding bias. Negative 

control variables are widely available in routinely collected healthcare data such as 

administrative claims and electronic health records data, because information on secondary 

treatments and outcomes beyond the primary treatment and outcome of interest is often 

recorded and such secondary treatments and outcomes can potentially serve as negative 

controls. Therefore, the development of negative control methods is critical to unlocking the 

full potential of contemporary healthcare data and ultimately improve the validity of 

research findings. It is important to note that other sources of bias, such as selection bias and 

misclassification bias, are typical in routinely collected healthcare data. Developing negative 

control methods accounting for bias beyond residual confounding is thus an important area 

of future research. We have specified statistical assumptions, practical strategies, and 

validation criteria that can be combined with subject-matter knowledge to design negative 

control studies in the “Review of Applications” section. We also illustrated identification of 

the ATE by either fitting the observed primary and negative control outcome models or 

through assumption on the unmeasured confounding mechanism followed by a simple two-

stage least squares procedure in the “Review of Methods” section. We believe that these 

examples can provide practical guidance on the use of negative control methods to a broader 

audience.

Appendix 1.: Examples of invalid negative controls that violates some 

assumption

Violation 1: no arrow between U and W. There must be an arrow between U and W, because 

an NCO is a proxy of unmeasured confounder. It recovers the confounding bias by reflecting 

variation due to U.
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Violation 2: no arrow between U and Z and Z↛A. The only scenario that Z does not need to 

be associated with U is when Z is an instrumental variable (see first cell of Table 3 of the 

Appendix). In this case, A is a collider between Z and U, such that Z and U are marginally 

independent. Conditioning on a collider will create collider bias such that Z and U become 

conditionally dependent. The requirements about Z in Assumptions 5 and 7 are all made 

conditioning on A. Therefore, an instrumental variable is a valid NCE.

Violation 3: Y → W. If the outcome causes the NCO, then the treatment directly causes the 

NCO via the path A→Y→W, which violates Assumption 3.

Violation 4: Z→U⟵W. The direction of the arrow between U and the negative control 

does not always matter. For example, we can have Z→U, U→Z, W→U, or U→W. 
However, if both Z and W cause U, then U is a collider in the path Z→U⟵W. In this case, 

conditional on U, Z and W will become associated. This violates Assumption 2.

Appendix 2.: Example of causal graphs encoding the negative control 

assumptions

Below, we enumerate the possible relationships among Z, A, U and among Y, W, U in 

Appendix Table 3. These partial graphs can be combined into a directed acyclic graph that 

encodes the negative control assumptions. Grey-colored graphs are invalid because of 

violation of key assumptions.

Table 3

Examples of graphs for Z, A, U relationships and for W, Y, U relationships. The two pieces 

of graphs can be combined in to a directed acyclic graph that encodes the negative control 

assumptions. Gray-colored graphs are invalid because of violation of key assumptions

Examples of graphs for Z, A, U relationships

Z → A (pre-treatment) A → Z (post-treatment) Z ⫫ A

No arrow between U 
and Z (may violate 

Assumption 5 and 7)

U → Z

Z → U

May violate Assumption 4 if there is W → U

Examples of graphs for W, Y, U relationships
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W → Y (a) Y (a) → W (violate Assumptions 3 
and 4)

Y (a) ⫫ W | (U, X)

No arrow between U 
and W (violate 

Assumption 5 and 7)

U → W

May violate Assumption 4 if there is Z → U

W → U

References

Papers of particular interest, published recently, have been highlighted as:

• Of importance

•• Of major importance

1. Ioannidis John PA. “Why most published research findings are false”. In: PLOS Medicine 2.8 
(2005), pp. 696–701.

2. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not 
available. In: Am J Epidemiol. 2016;183(8):758–64. [PubMed: 26994063] 

3. Lipsitch M, Tchetgen Tchetgen EJ, Cohen T. Negative controls: a tool for detecting confounding 
and bias in observational studies. In: Epidemiology. 2010;21.3:383–8 [PubMed: 20335814] •• This 
paper is the first to formally define negative control exposure and outcome with conditions for bias 
detection as well as examples in epidemiology.

4. Arnold BF, Ercumen A, Benjamin-Chung J, Colford JM Jr. Brief report: negative controls to detect 
selection bias and measurement bias in epidemiologic studies. In: Epidemiology. 2016;27.5:637. 
[PubMed: 27182642] 

5. Arnold B, Ercumen A. Negative control outcomes: a tool to detect bias in randomized trials. In: J 
Am Med Assoc. 2016;316(24): 2597–8.

6. Rosenbaum PR. The role of known effects in observational studies. In: Biometrics. 1989;45(2):557–
69.

7. Weiss NS. Can the “specificity” of an association be rehabilitated as a basis for supporting a causal 
hypothesis? In: Epidemiology. 2002;13(1):6–8. [PubMed: 11805580] 

8. Glass DJ. Experimental Design for Biologists. Cold Spring Harbor Laboratory Press, 2014.

9. Cai Z and Kuroki M. “On identifying total effects in the presence of latent variables and selection 
bias”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. 
2008, pp. 62–69.

10. Liu Lan and Tchetgen Eric Tchetgen. “Regression-based negative control of homophily in dyadic 
peer effect analysis”. In: arXiv preprint arXiv:2002.06521 (2020).

11. Egami N “Identification of Causal Diffusion Effects Under Structural Stationarity”. In: arXiv 
preprint arXiv:1810.07858 (2018).

12. Miao W, Shi X, and Tchetgen Tchetgen EJ. “A Confounding Bridge Approach for Double 
Negative Control Inference on Causal Effects”. In: (2020). In progress, a prior version can be 

Shi et al. Page 15

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



found at https://arxiv.org/abs/1808.04945.• This paper introduces the confounding bridge function 
that links primary and negative control outcome distributions for identification of the average 
treatment effect leveraging a negative control exposure.

13. Sofer T, Richardson DB, Colicino E, Schwartz J, Tchetgen Tchetgen EJ. On negative outcome 
control of unobserved confounding as a generalization of difference-in-differences. In: Stat Sci. 
2016;31(3):348–61. [PubMed: 28239233] 

14. Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of 
influenza vaccine effectiveness in seniors. In: Int J Epidemiol. 2006;35(2):337–44. [PubMed: 
16368725] 

15. Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to 
agricultural experiments. Essay on principles. Section 9. In: Stat Sci. 1990:465–72.

16. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. In: 
Journal of Educational Psychology. 1974;66.5:688.

17. Shi X, Miao W, Tchetgen Tchetgen EJ. Multiply robust causal inference with double negative 
control adjustment for categorical unmeasured confounding. In: J Royal Stat Soc: Series B 
(Statistical Methodology). 2020;82.2:521–40• This paper provides a general semiparametric 
framework for obtaining inferences about the average treatment effect under categorical 
unmeasured confounding and negative controls.

18. Alan Brookhart M, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative 
safety and effectiveness research. In: Pharmacoepidemi- ology and Drug Safety. 2010;19(6):537–
54.

19. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. 
In: J Am Stat Assoc. 1996;91 (434): 444–55.

20. Hernán MA and Robins JM. “Instruments for causal inference: an epidemiologist’s dream?” In: 
Epidemiology (2006), pp. 360–372. [PubMed: 16755261] 

21. Robins JM. Correcting for non-compliance in randomized trials using structural nested mean 
models. In: Commun Stat-Theory and methods. 1994;23(8):2379–412.

22. Wang L, Tchetgen Tchetgen EJ. Bounded, efficient and multiply robust estimation of average 
treatment effects using instrumental variables. In: J Royal Stat Soc: Series B (Statistical 
Methodology). 2018;80.3:531–50.

23. Prasad V, Jena AB. Prespecified falsification end points: can they validate true observational 
associations? In: J Am Med Assoc. 2013;309(3):241–2.

24. Markovitz AA, Hollingsworth JM, Ayanian JZ, Norton EC, Yan PL, Ryan AM. Performance in the 
Medicare shared savings program after accounting for nonrandom exit: an instrumental variable 
analysis. In: Ann Int Med. 2019;171(1):27–36. [PubMed: 31207609] 

25. Bijlsma MJ, Vansteelandt S, Janssen F, Hak E. The effect of adherence to statin therapy on 
cardiovascular mortality: quantification of unmeasured bias using falsification end-points. In: 
BMC Public Health. 2016;16.1:303. [PubMed: 27067123] 

26. Lin C-K, Lin R-T, Chen P-C, Wang P, De Marcellis-Warin N, Zigler C, et al. A global perspective 
on sulfur oxide controls in coal-fired power plants and cardiovascular disease. In: Sci Rep. 
2018;8(1): 1–9. [PubMed: 29311619] 

27. Dusetzina SB, Brookhart MA, Maciejewski ML. Control outcomes and exposures for improving 
internal validity of nonrandomized studies. In: Health Serv Res. 2015;50(5):1432–51. [PubMed: 
25598384] 

28. Rosenbaum PR. Design of observational studies. New York, NY: Springer-Verlag, 2010.

29. Munafo MR, Tilling K, Taylor AE, Evans DM, Smith GD. Collider scope: when selection bias can 
substantially influence observed associations. In: Int J Epidemiol. 2018;47(1):226–35. [PubMed: 
29040562] 

30. Mealli F, Pacini B. Using secondary outcomes to sharpen inference in randomized experiments 
with noncompliance. In: J Am Stat Assoc. 2013;108(503):1120–31.

31. Rosenbaum PR. Detecting bias with confidence in observational studies. In: Biometrika. 
1992;79(2):367–74.

Shi et al. Page 16

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1808.04945


32. Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, et al. A method for 
detection of residual confounding in time-series and other observational studies. In: Epidemiology. 
2011;22.1:59. [PubMed: 21068669] 

33. Flanders WD, Strickland MJ, Klein M. A new method for partial correction of residual 
confounding in time-series and other observational studies. In: Am J Epidemiol. 2017;185.10:941–
9 [PubMed: 28430842] • This paper develops a regression-based method taking future air pollution 
as a negative control exposure to reduce residual confounding bias in a time-series study on air 
pollution effects.

34. de Luna X, Fowler P, Johansson P. Proxy variables and nonparametric identification of causal 
effects. In: Econ Lett. 2017;150:152–4.

35. Kuroki M, Pearl J. Measurement bias and effect restoration in causal inference. In: Biometrika. 
2014;101(2):423–37.

36. Miao W, Geng Z, Tchetgen Tchetgen EJ. Identifying causal effects with proxy variables of an 
unmeasured confounder. In: Biometrika. 2018;105.4:987–93 [PubMed: 33343006] •• This paper 
establishes sufficient conditions for nonparametric identification of the average treatment effect 
using double negative control.

37. Madigan D, Stang PE, Berlin JA, Schuemie M, Overhage JM, Suchard MA, et al. A systematic 
statistical approach to evaluating evidence from observational studies. In: Annu Rev Stat Appl. 
2014;1:11–39• This paper provides a systematic review of challenges in observational studies and 
describes a data-driven approach to calculating calibrated p values leveraging negative controls.

38. Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational 
studies: why empirical calibration is needed to correct p-values. In: Stat Med. 2014;33(2):209–18. 
[PubMed: 23900808] 

39. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Robust empirical calibration of p-
values using observational data. In: Statistics in Medicine. 2016;35.22:3883. [PubMed: 27592566] 

40. Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Empirical confidence interval 
calibration for population-level effect estimation studies in observational healthcare data. In: Proc 
Natl AcadSci. 2018;115(11):2571–7.

41. Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. Improving reproducibility by 
using high-throughput observational studies with empirical calibration. In: Philos Trans Royal Soc 
A: Math Phys Eng Sci. 2018;376.2128:20170356.

42. Yerushalmy J The relationship of parents’ cigarette smoking to outcome of pregnancy- 
implications as to the problem of inferring causation from observed associations. In: Am J 
Epidemiol. 1971;93(6):443–56. [PubMed: 5562717] 

43. Mitchell EA, Ford RPK, Stewart AW, Taylor BJ, Becroft DMO, Thompson JMD, et al. Smoking 
and the sudden infant death syndrome. In: Pediatrics. 1993;91(5):893–6. [PubMed: 8474808] 

44. Howe LD, Matijasevich A, Tilling K, Brion M-J, Leary SD, Smith GD, et al. Maternal smoking 
during pregnancy and off- spring trajectories of height and adiposity: comparing maternal and 
paternal associations. In: Int J Epidemiol. 2012;41(3):722–32. [PubMed: 22407859] 

45. Brion M-JA, Leary SD, Smith GD, Ness AR. Similar associations of parental prenatal smoking 
suggest child blood pressure is not influenced by intrauterine effects. In: Hypertension. 
2007;49(6): 1422–8. [PubMed: 17404184] 

46. Smith GD. Assessing intrauterine influences on offspring health outcomes: can epidemiological 
studies yield robust findings? In: Basic Clin Pharmacol Toxicol. 2008;102(2):245–56. [PubMed: 
18226080] 

47. Brew BK, Gong T, Williams DM, Larsson H, Almqvist C. Using fathers as a negative control 
exposure to test the developmental origins of health and disease hypothesis: a case study on 
maternal distress and off- spring asthma using Swedish register data. In: Scand J Public Health. 
2017;45.17(suppl):36–40. [PubMed: 28683663] 

48. Taylor AE, Smith GD, Bares CB, Edwards AC, Munafo MR. Partner smoking and maternal 
cotinine during pregnancy: implications for negative control methods. In: Drug Alcohol Depend. 
2014;139:159–63. [PubMed: 24726428] 

Shi et al. Page 17

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Wang M, Tchetgen Tchetgen EJ. Invited commentary: bias attenuation and identification of causal 
effects with multiple negative controls. In: Am J Epidemiol. 2017;185(10):950–3. [PubMed: 
28430847] 

50. Yu Y, Li H, Sun X, Liu X, Yang F, Hou L, et al. Identification and estimation of causal effects 
using a negative control exposure in time-series studies with applications to environmental 
epidemiology. Am J Epidemiol. kwaa172. 10.1093/aje/kwaa172.

51. Lumley T, Sheppard L. Assessing seasonal confounding and model selection bias in air pollution 
epidemiology using positive and negative control analyses. In: Environmetrics. 2000;11(6):705–
17.

52. Selby JV, Friedman GD, Quesenberry CP Jr, Weiss NS. A case- control study of screening 
sigmoidoscopy and mortality from colorectal cancer. In: N Engl J Med. 1992;326(10):653–7. 
[PubMed: 1736103] 

53. Zauber AG. The impact of screening on colorectal cancer mortality and incidence: has it really 
made a difference? In: Digest Dis Sci. 2015;60(3):681–91. [PubMed: 25740556] 

54. Lousdal ML, Lash TL, Flanders WD, Brookhart MA, Kristiansen IS, Kalager M, et al. Negative 
controls to detect uncontrolled confounding in observational studies of mammographic screening 
com- paring participants and non-participants. In: Int J Epidemiol. 2020;• This paper uses both 
negative control exposure and negative control outcome to detect residual confounding in an 
observational study of mammographic screening comparing participants and non-participants.

55. Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ. Effects of ambient air pollution on 
nonelderly asthma hospital admissions in Seattle, Washington, 1987–1994. In: Epidemiology. 
1999:23–30.

56. Cuyler Hammond E, Horn D. The relationship between human smoking habits and death rates: a 
follow-up study of 187,766 men. In: J Am Med Assoc. 1954;155(15):1316–28. [PubMed: 
13174399] 

57. Doll R, Bradford Hill A. The mortality of doctors in relation to their smoking habits. In: Br Med J. 
1954;1(4877):1451–5. [PubMed: 13160495] 

58. Doll R, Bradford Hill A. Lung cancer and other causes of death in relation to smoking. In: BrMed 
J. 1956;2(5001):1071–81. [PubMed: 13364389] 

59. Cornfield J, William H, Cuyler Hammond E, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking 
and lung cancer: recent evidence and a discussion of some questions. In: J Natl Cancer Inst. 
1959;22(1):173–203. [PubMed: 13621204] 

60. Trichopoulos D, Zavitsanos X, Katsouyanni K, Tzonou A, Dalla-Vorgia P. Psychological stress and 
fatal heart attack: the Athens (1981) earthquake natural experiment. In: Lancet. 1983;321 
(8322):441–4.

61. Smith GD. Negative control exposures in epidemiologic studies. Comments on “Negative controls: 
a tool for detecting confounding and bias in observational studies”. In: Epidemiology. 2012;23(2): 
350–1. [PubMed: 22317815] 

62. Weisskopf MG, Tchetgen Tchetgen EJ, Raz R. Commentary: on the use of imperfect negative 
control exposures in epidemiologic studies. In: Epidemiology. 2016;27(3):365–7. [PubMed: 
27035687] 

63. Richardson DB, Keil A, Tchetgen Tchetgen EJ, Cooper GS. Negative control outcomes and the 
analysis of standardized mortality ratios. In: Epidemiology. 2015;26(5):727–32. [PubMed: 
26172862] 

64. Richardson DB, Laurier D, Schubauer-Berigan MK, Tchetgen Tchetgen EJ, Cole SR. Assessment 
and indirect adjustment for confounding by smoking in cohort studies using relative hazards 
models. In: Am J Epidemiol. 2014;180(9):933–40. [PubMed: 25245043] 

65. Tchetgen Tchetgen EJ, Sofer T, and Richardson D. “Negative outcome control for unobserved 
confounding under a Cox proportional hazards model”. In: (2015). Available at https://
biostats.bepress.com/harvardbiostat/paper192/.

66. Glynn A, Ichino N. “Generalized nonlinear difference-in-difference-in-differences”. In: V-Dem 
Working Paper 90 (2019). Available at https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3410888.

Shi et al. Page 18

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biostats.bepress.com/harvardbiostat/paper192/
https://biostats.bepress.com/harvardbiostat/paper192/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3410888
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3410888


67. Tchetgen ET. The control outcome calibration approach for causal inference with unobserved 
confounding. In: Am J Epidemiol. 2014;179(5):633–40. [PubMed: 24363326] 

68. Gagnon-Bartsch JA, Speed TP. Using control genes to correct for unwanted variation in microarray 
data. In: Biostatistics. 2012;13(3): 539–52. [PubMed: 22101192] 

69. Jacob L, Gagnon-Bartsch JA, Speed TP. Correcting gene expression data when neither the 
unwanted variation nor the factor of interest are observed. In: Biostatistics. 2016;17(1): 16–28. 
[PubMed: 26286812] 

70. Wang J, Zhao Q, Hastie T, Owen AB. Confounder adjust- ment in multiple hypothesis testing. In: 
Ann Stat. 2017;45.5:1863–94 [PubMed: 31439967] • This paper unifies unmeasured confounding 
adjustment methods in multiple hypothesis testing and provides theoretical guarantees for these 
methods.

71. Newey WK, Powell JL. Instrumental variable estimation of nonpara- metric models. In: 
Econometrica. 2003;71(5):1565–78.

72. Hansen LP. Large sample properties of generalized method of moments estimators. In: 
Econometrica. 1982:1029–54.

Shi et al. Page 19

Curr Epidemiol Rep. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
An example of different types of negative controls: consider studying the causal effect of flu 

shot (A) on influenza hospitalization (Y), subject to confounding by unmeasured health-

seeking behavior (U). Annual wellness visit history (Z) is an NCE which does not causally 

affect Y. Injury/trauma hospitalization (W) is an NCO which is not causally affected by A. 

Both Z and W are proxies of health-seeking behavior. Physician’s prescribing preference 

(IV) is an instrumental variable which likely induces variation in the choice of treatment and 

may not affect the outcome other than through its influence on the treatment. As discussed in 

“Definition and Notation” and “Bias detection” sections, both a valid instrumental variable 

and an invalid instrumental variable associated with U are valid NCE. All arguments are 

made implicitly conditional on measured covariates X. Independence between A and Z (or Y 

and W) conditional on U is not necessary. See more examples in Table 3 of the Appendix.
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