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Abstract

Numerous human diseases are caused by mutations in genomic sequences. Since amino acid 

changes affect protein function through mechanisms often predictable from protein structure, the 

integration of structural and sequence data enables us to estimate with greater accuracy whether 

and how a given mutation will lead to disease. Publicly available annotated databases enable 

hypothesis assessment and benchmarking of prediction tools. However, the results are often 

presented as summary statistics or black box predictors, without providing full descriptive 

information. We developed a new semi-manually curated human variant database presenting 

information on the protein contact-map, sequence-to-structure mapping, amino acid identity 

change, and stability prediction for the popular UniProt database. We found that the profiles of 

pathogenic and benign missense polymorphisms can be effectively deduced using decision trees 

and comparative analyses based on the presented dataset. The database is made publicly available 

through https://zhanglab.ccmb.med.umich.edu/ADDRESS.
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INTRODUCTION

Mendelian human disease is often the result of a change in a single amino acid within a 

gene. With the ever-increasing wealth of genomic and structural data, it is possible to 

quantitatively assess, on a genome-wide scale, why some missense mutations result in 

disease, while others are benign. Early studies on few proteins revealed changes in protein 

stability as a causative factor, with buried residues being more common among pathogenic 

variants [1]. Later studies focused also on the important role of protein and ligand binding 

interactions, as well as active sites involved in enzymatic function [2–4]. The overall 

conclusion is that there are multiple routes by which a protein’s function can be deterred 

within the cellular environment, in which it must maintain a sizable folded fraction [5, 6] 

and be able to carry out its function, including binding with proteins and other molecules in 

its interaction network.

Pathogenicity prediction tools often utilize protein evolutionary information, identifying 

homologous sequences and determining whether mutated residues are well or poorly 

conserved [7–9]. Such predictors may also utilize information on changes in amino acid 

sequence identity [10–14]; for instance, a change from a hydrophobic to a charged residue 

may be expected to have a high likelihood of disease association. In recent programs, the 

structural neighborhood of the mutation may also be taken into account. Examples include 

DAMpred [15], which includes many structural contact-related features and builds models of 

unknown structures, RAPSODY [16, 17], which takes into account structural dynamics, and 

Missense3D [18], which considers a variety of potentially disruptive structural changes to 

evaluate whether a given variant is pathogenic. Likewise, predictions of mutation-induced 

free-energy change (ΔΔG) and changes in binding affinity to functional partners could be 

expected to carry useful information relevant to potential loss of protein function, as 

explored in previous database annotations [19]. Efforts to integrate structural information 

with mutation data in database format include COSMIC [20], which, however, only contains 

data on somatic mutations in cancer. Other related resources include Swissvar and MSV3d 

[21], although many servers lack full annotation details and comparison with computational 

predictions [22, 23] or are no longer maintained.

The UniProt Humsavar database (https://www.uniprot.org/docs/humsavar) contains 

information on pathogenicity of more than 70,000 human variants and is often used to 

benchmark tools developed to predict pathogenicity of missense single nucleotide 

polymorphisms. The majority of variants are annotated either as neutral “Polymorphism” or 

disease-associated variants (39.4% and 50.0%, respectively), with a small number of 

unclassified entries (10.6%). While the Humsavar file includes UniProt accession, it does 

not link directly to experimental structures or provide overall insight into the relationship 

between structure and disease. Integration with structural information and stability 

predictions could be useful in assessing which factors are most important to maintaining or 
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disrupting protein functions, as well as facilitating new prediction tools to aid researchers in 

developing results relevant to clinical practice.

In this study, we present a new semi-manually curated database, ADDRESS (Annotated 

Database of Disease-RElated Structures and Sequences), mapping mutation sites annotated 

in UniProt Humsavar to residue numbers in example structural files from the Protein Data 

Bank (PDB). Next to each structure, we provide the number of contacts in which the 

mutated residue participates and the predicted ΔΔG of the mutation, according to the EvoEF 

empirical force field [24, 25]. The database may be searched by the type of variant, by the 

starting/ending amino acid type, the number of contacts, or predicted ΔΔG. Our database 

presents an exploratory interface to pathogenicity data, as well as a useful starting point for 

advanced statistical and machine-learning based method developments.

RESULTS

Descriptive analysis of residue identities

By generating heatmaps displaying the frequency of each possible amino acid change, it is 

clear that pathogenic and benign mutations have distinct profiles (Figure 1A and 1B, 

respectively). The arginine to glutamine or histidine mutations are common in both 

pathogenic and benign cases. Also common in disease are glycine to arginine, leucine to 

proline, arginine to cysteine, and arginine to tryptophan, representing dramatic changes in 

terms of physicochemical properties and/or torsional preference. Common benign mutations 

appear overall more conservative: alanine to threonine, isoleucine to valine, valine to 

isoleucine, alanine to valine, and proline to leucine. Other mutations, such as cysteine to 

tyrosine are found much more often in pathogenic cases (or benign, as for threonine to 

alanine), although they are overall rare. Since the dataset represents a broad range of residue 

changes, such data can be informative towards predicting pathogenicity. While the heatmaps 

are largely symmetric, we find statistical significance for several asymmetries, including 

glycine to arginine being more frequent, in the pathogenic case, than arginine to glycine. A 

full statistical treatment of amino acid changes upon mutation is presented in the 

Supplemental Information (Text S1 and Tables S1–S3).

Next, we develop a rule-based approach using data on pathogenicity. The decision tree in 

Figure 1C shows a data-informed process based on the ADDRESS dataset, generated by 

rpart in R, using only four features: the type of amino acid before and after mutation, the 

stability change predicted by EvoEF, and the number of contacts formed by the mutated 

residue. Here, we chose the decision tree over more powerful supervised machine learning 

algorithms mainly considering the better interpretability of the decision tree results. 

Nonetheless, the simple decision tree method still achieves an appreciable Mathews 

Correlation Coefficient (MCC) of 0.34 in the binary classification of pathogenic versus 

benign mutations.

The first branching of the decision tree is based on the predicted ΔΔG of the mutation, such 

that changes that lead to a sufficiently large decrease in stability (large positive values) 

predict pathogenic consequences. However, the value of 2 kcal/mol is still relatively small in 

comparison to common folding stability values, such that if considering equilibrium 
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thermodynamics alone, in most cases the majority of the protein would still be in the folded 

state. A similar observation was made previously, where selection for kinetics in a crowded 

environment was proposed to be the cause of such a low ΔΔG value, for a small number of 

mutations in a single protein [26]. In the decision tree, when the stability change is small or 

negative, the mutation is still predicted to be pathogenic in the case of mutation to a subset 

of relatively “extreme” residues, including mutation from cysteine or tryptophan. For other 

residues, if the protein is stabilized upon mutation (ΔΔG <0), the mutation is predicted to be 

benign. Otherwise, for intermediate ΔΔG values, the pathogenic versus benign distinction 

depends on the type of residue that is mutated to. Such a decision tree supports intuition 

regarding which changes are likely to be pathogenic, while providing additional insights, 

such as support for the selection for kinetic stability hypothesis on the scale of thousands of 

mutations.

Residue contact information and predicted stability change

Pathogenic and benign variants show distinct distributions of the number of contacts 

surrounding the mutated residue (Figure 2A), in line with the observation that local packing 

density correlates strongly with surface exposure [27] and that solvent exposure in turn is 

strongly correlated with the site specific rate of mutation [28]. For benign variants, results 

are more skewed towards smaller numbers, indicating that residues tend to be more buried in 

the case of disease-causing variants, with a p-value = 3.9×10−295 in Student’s t-test. This is 

consistent with previous results on a smaller set of proteins showing that pathogenic 

mutations tend to be located in the protein interior more often than benign ones [4] and with 

depth and contact information from another former investigation [15]. Overall, the number 

of contacts for the specified cutoff values peaks around four contacts in the case of 

pathogenic mutations and two contacts in the case of benign mutations. The mean is 2.7 

contacts for benign variants and 3.9 for pathogenic; the median values are 2 and 4, 

respectively. Likewise, the change in protein stability, ΔΔG, predicted by EvoEF was 

substantially higher (more positive, with a p-value=2.9×10−253 in Student’s t-test) for 

pathogenic mutations (mean value 16.13 kcal/mol) than benign ones (mean value 4.92 kcal/

mol) (Figure 2B). In comparison, the ΔΔG predicted by another widely used predictor, 

FoldX [29], shows a somewhat less significant p-value for the difference in pathogenic and 

benign distributions of 4.7×10−186 (Figure S1), which is part of the reason that our decision 

tree analysis (Figure 1C) uses EvoEF rather than FoldX. Nevertheless, both EvoEF and 

FoldX ΔΔG data are listed in the ADDRESS database for comparison.

As a case study, we examine in Figures 2C and 2D the frequency of benign and pathogenic 

variants occurring on Lysine which is an amino acid with both hydrophobic properties and 

positive charge. Here, we consider differences in the frequency of mutations to different 

types of residues and their benign or pathogenic state, when the number of contacts in the 

crystal structure of the original protein is small vs. when it is large. As shown in the plots, 

mutation to a charged or polar residue is more often benign rather than pathogenic when the 

number of contacts with the mutated residue is small.

Woodard et al. Page 4

J Mol Biol. Author manuscript; available in PMC 2022 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Online database setting

The webserver of ADDRESS mainly consists of three parts: a top banner for view 

switching, a JSmol [30] applet to display the PDB structure, and a main table that lists the 

database entries (Figure 3). First, the view switching banner allows the user to select one of 

the five views: “Browse by structure” lists one PDB chain per row in the main table; 

“Browse by mutations on structure” lists one mutation mapped to a PDB chain row in the 

table; “Browse all mutations” displays all mutations, regardless of whether each can be 

mapped to a structure. Since it is difficult to load all data in a web-browser due to cache size 

limit, all online tables are split into multiple pages to facilitate browser rendering. If a user 

would like to view all data contained within ADDRESS, an Excel spreadsheet can be 

downloaded at the bottom of the “Statistics and download” page, which also includes the 

data analysis figures (Figure 1 and 2) for general statistics of ADDRESS. Finally, the 

“Search” page performs database search using PDB IDs, gene names, UniProt accessions, 

diseases, amino acid types, or range of contact numbers and free-energy change. The 

database contains information on both the residue number in UniProt, in the column 

“Mutation on UniProt sequence,” and the residue number mapped to in the PDB structure, 

under “Residue index in PDB,” which was obtained through sequence alignment as 

described in the Methods section.

The JSmol applet displays the 3D structure of the PDB chains together with any non-water 

ligands and the mutation sites, as selected by the first column of the main table. The main 

table also includes columns for PDB ID (linked to the RCSB PDB website), UniProt 

accession (linked to the UniProt database) and Gene name (linked to the neXtProt [31]), 

mutation amino acid types and residue index on the UniProt sequence and on the PDB 

structure, a link to dbSNP database, number of contacts per residue, EvoEF estimated free 

energy change upon mutation, and disease association of the mutation. For disease-

associated mutations, the disease symbol and disease ID in the OMIM database [32, 33] are 

displayed in the last column of the table.

CONCLUSION

A better understanding of which mutations lead to disease can be useful in prioritizing 

experimental study of variants and understanding protein evolution from a theoretical 

perspective. We have introduced a new database of human variants with each entry enriched 

with various types of structural bioinformatics information including residue mutation 

identity, numbers of contacts, and predicted change in protein stability. As an illustration of 

an application, we have approached data analyses from a descriptive and exploratory 

perspective, gaining insight into why mutations may be pathogenic or benign. Our results 

provide data relevant to future prediction tools and permit a variety of comparisons on this 

sizable dataset.

We anticipate our database to be more useful in generating aggregate statistics and 

comparisons, rather than predicting results for individual proteins, for which further 

modeling and predictors with more features may be necessary. With the rapid accumulation 

and availability of various sequence and structure data, ADDRESS is in active development. 

Currently, we are working on extending our database to combine literature search and other 
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primary human variance datasets such as the Clinvar [34]. We also plan to provide additional 

features that are highly discriminatory, such as protein-protein and protein-ligand interaction 

information, as well as 3D structure models from the start-of-the-art modeling pipelines [35, 

36]. We plan to later add information from the ProTherm experimental database on protein 

stability, for mutants that map to the Humsavar database. However, upon preliminary 

consideration, we believe that such a task will require substantial additional effort beyond 

the scope of the initial database (including some manual effort due to labeling errors and 

inconsistencies in the ProTherm database) and will also cover only a small fraction (about 

80) of the proteins in the ADDRESS database. We believe that a high-quality and up-to-date 

human variance database featured with enriched structural bioinformatics data will have 

critical importance in facilitating investigations relevant to early diagnosis and treatment of 

human genetic diseases.

METHODS

Data collection and alignment

The UniProt Humsavar database (version 2020_04 as of this manuscript) was downloaded 

from Humsavar, where labeled benign “Polymorphism” and pathogenic “Disease” variants 

were considered. Protein sequences were downloaded from UniProt. For each mutation, the 

experimental structure containing this mutation in its residue range which had the greatest 

overall sequence coverage was chosen as a representative structure. The UniProt sequence 

was aligned with the string of residues contained in the protein structure, using NW-align 

[37], with adjusted gap penalties to determine the position of the mutated residue in the 

experimental structure. Cases where the mutated residue aligned with a gap before or after 

the sequence were discarded. This procedure results in 14,148 pathogenic variants and 7,648 

benign variants that are mapped to 3,589 PDB chains.

Feature extraction

Initial and mutated residue identities were extracted from the Humsavar data file. To remove 

redundant coordinates from a PDB structure, only atoms with the alternative location 

indicator ‘A’ or ‘ ’ (space) were kept. For the entries with multi-model NMR structures, only 

the first model was selected. Residues were considered in contact with the residue to be 

mutated if there were six or more pairwise atomic contacts within five Å.

Folding stability change calculation

The mutation-induced folding stability change, ΔΔG, is estimated by EvoEF [24], which is 

an empirical force field and has been shown to have a strong correlation with the 

experimental ΔΔG measurements [25]. Preceding EvoEF calculation, the amino acid types 

in the PDB are first standardized by removing non-standard amino acids and by mapping 

selenomethionine (MSE) to methionine (MET), as MSE is commonly engineered to replace 

MET to facilitate X-ray structure determination. In the case of inconsistent amino acid type 

between UniProt sequence and PDB structure, the EvoEF BuildMutant subroutine is used to 

make convert amino acid on a PDB structure to that of the UniProt sequence. EvoEF 

RepairStructure function is applied to fill in missing atoms such as hydrogens, and EvoEF 

BuildMutant is performed used to build mutant structure. The folding free energies of wild-
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type and mutant structures (ΔGwt and ΔGmut, respectively) are estimated by EvoEF 

ComputeStability function. The stability change is therefore ΔΔG = ΔGmut ―ΔGwt, in the 

units of kcal/mol.

As FoldX and EvoEF use almost identical function names, ADDRESS also predicts ΔΔG by 

FoldX following essentially the same protocol as above. The folding free energies of wild-

type and mutant structures (ΔGwt and ΔGmut, respectively) are estimated by FoldX Stability 

function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Many missense-associated diseases stem from protein structure and stability 

changes

• Development of a new database to associate pathogenic mutations with 

structures

• Quantitative association of human variance with folding free energy changes

• Pathogenic mutations are found to lead to lower stabilities and have more 

contacts

• ADDRESS is useful for investigating detailed mechanisms of mutation 

pathogenicity
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Figure 1. 
Summary of sequence and pathogenicity information from the ADDRESS database. A-B) 

Amino acid identity change represented in a two-dimensional histogram, for pathogenic (A) 

and benign (B) variants. Brighter colors indicate higher frequencies. 2) A simple decision 

tree predicting whether a variant is pathogenic or benign. Stability change ΔΔG is the EvoEF 

predicted value.
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Figure 2. 
Local structural information from missense SNPs. A) Histogram of number of contacts (at 

least six atom-atom contacts less than five angstroms), for benign and pathogenic variants, 

with the mutated residue within a known crystal structure. B) ΔΔG in kcal/mol, predicted by 

EvoEF. C-D) Stacked bar plots indicating the number of benign and pathogenic variants 

mutated from lysine to the specified residue for C) number of contacts greater than or equal 

to five, D) number of contacts less than five.
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Figure 3. 
A screenshot of the ADDRESS online database interface. The interface contains three parts. 

The view switching banner is the top under the database logo, switched to “Browse by 

structure” page 1 in this screenshot. A JSmol structure applet is at lower left, displaying 

PDB structure 1a7a Chain A for human Adenosylhomocysteinase protein AHCY (yellow 

cartoon) in complex with the NAD and ADC ligands (magenta sticks) and mutation sites 

(red and blue lines of pathogenic and benign mutations, respectively). The main table at the 

lower right displays all entries sorted by PDB IDs, where 1a7a Chain A for AHCY is 

currently selected. At the upper right corner of the database interface is the “Search” button, 

with which users can search database entries by protein names, PDB IDs, mutations, 

diseases, and structural features (e.g., contact numbers and free energy changes).
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