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Pairing a high-resolution statistical potential with a
nucleobase-centric sampling algorithm for
improving RNA model refinement
Peng Xiong1,2, Ruibo Wu3, Jian Zhan 1✉ & Yaoqi Zhou 1,2,4✉

Refining modelled structures to approach experimental accuracy is one of the most chal-

lenging problems in molecular biology. Despite many years’ efforts, the progress in protein or

RNA structure refinement has been slow because the global minimum given by the energy

scores is not at the experimentally determined “native” structure. Here, we propose a fully

knowledge-based energy function that captures the full orientation dependence of base–base,

base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric

states and internal energies. A total of 4000 quantum-mechanical calculations were per-

formed to reweight base–base statistical potentials for minimizing possible effects of indirect

interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-

centric sampling algorithm, provides a robust improvement in refining near-native RNA

models generated by a wide variety of modelling techniques.
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Three-dimensional structures of RNAs offer the best clues
for their functions and yet only a few thousand structures
have been determined1, compared to 24 million of non-

coding RNA sequences collected in RNAcentral (as of October 25
2020)2. This huge gap continues to expand exponentially because
sequencing entire transcriptomes is only a fraction of the cost and
time required for structure determination of a single RNA by the
techniques such as X-ray crystallography, nucleic magnetic
resonance, and cryo-electron microscopy.

One possible solution to this growing problem is to predict RNA
structures from their sequences by computational template-based
homology modeling and de novo folding3,4. Homology modeling
such as RNABuilder5 and ModeRNA6 attempts to predict the
structure of a target RNA by mapping the query sequence onto the
template structure(s) of its homologs. However, most RNAs do not
have their respective homologous templates. Thus, method devel-
opment was mainly devoted to predicting structures by de novo
folding from sequences through fragment or motif assembling.
Examples are FARNA7, MC-fold/MC-Sym8, Rosetta-SWM9,
ifoldRNA10,11, Vfold12,13, 3dRNA14,15, and SimRNA16. Evaluation
of these methods by RNApuzzles17–19 indicates that reasonable
predictions are possible only for RNAs with either simple topology
or existing homologous templates. Moreover, reasonable near-
native predictions were often ranked poorly by the predictors.
Clearly both homology and de novo models would greatly benefit
from a structure-refinement technique that can bring the models
closer to native structures locally and globally and improve near-
native ranking.

Structure refinement, however, is challenging with few meth-
ods available for RNAs. Even for protein structure refinement,
despite a long history of method development, only a moderate
local improvement can be made by combining molecular
mechanics force fields and knowledge-based potentials with pre-
defined restraints to prevent large deviation away from the native
basin20,21. For RNAs, most all-atom refinements were performed
after coarse-grained sampling for removing steric clashes and
non-ideal bond lengths, bond angles, or torsional angles. For
example, the QRNAS refinement22 utilizes a modified AMBER
force field with enforced base-pair planarity, explicit hydrogen
bonds, and backbone regularization. FARFAR23,24 improves
model accuracy through all-atom refinement after FARNA
coarse-grained sampling. It employed a Rosetta all-atom force
field that mixes physical and knowledge-based scores with RNA-
specific terms for Watson–Crick (WC) base pairing, base stack-
ing, and torsional potentials25.

Here, we build a knowledge-centric refinement energy score.
Atomic-level knowledge-based energy functions, derived from
known three-dimensional structures, have traditionally focused
on distance dependence in protein structures26 with similar sta-
tistical potentials developed for RNA27–29. Unlike these atomic
knowledge-based scores and previous all-atom RNA refinement
energy scores22,23, the statistical potential in this work is tailored
specifically to RNA interactions that were dominant by
orientation-dependent base-pairing and stacking interactions30

with rotameric backbone31, in contrast to dominant distance-
dependent hydrophobic interactions32 with rotameric
sidechains33 in protein folding. Base–base interactions were
described by fine grids in a six-dimensional orientational space
and scaled by quantum mechanical calculations allowing better
capture of both local and global interactions. This Backbone
Rotameric and Quantum-mechanical-energy-scaled base–base
knowledge-based potential (BRiQ) is integrated with a new
nucleobase-centric tree algorithm that samples backbone con-
formations around predicted or known base pairs. The resulting
refinement technique can consistently improve model structures
for the majority of near-native structural models as demonstrated

by refining Rosetta-SWM motif34, RNA puzzles17–19, and
FARFAR224 models.

Results
BRiQ refinement energy score. The BRiQ refinement energy
score is designed to capture stably stacked bases linked by a more
flexible ribose and phosphate backbone. In particular, the inter-
actions associated with bases and oxygen atoms in backbones are
strongly orientation-dependent. To capture this unique structural
property of RNA chains, the energy score (E) is separated into six
terms: orientation-dependent interactions between two bases
(Ebb), between a base and a main-chain oxygen atom (Ebo), and
between two main-chain oxygen atoms (Eoo), backbone rotameric
energy (Erot), internal energy (Einternal), and atomic clash energy
(Eclash). That is,

E ¼ Ebb þ Ebo þ Eoo þ Erot þ Einternal þ Eclash ð1Þ
where we employed five oxygen atom types including OP for OP1
and OP2 and O2’, O3’, O4’, and O5’ in ribose. To capture the
orientation dependence, the whole nucleobase (A, C, G, and U) is
treated as a single rigid group with a local coordinate system and
the relative position between two bases is described by the dis-
tance vectors and their orientations (Fig. 1A). The densities in the
six-dimensional space were derived from known RNA structures
using kernel density estimations, rather than histogram statistics
(see Methods). This allows a smoother energy landscape (Fig. 1B)
and the near-native local minima are closer to the corresponding
native structure in a fine orientational space. To remove the
impact of indirect base–base interactions, statistical energy scores
are scaled by quantum mechanical calculations according to the
correlation coefficient between representative hydrogen-bonded
base pairs (Fig. 1B, C). Similarly, kernel density estimations were
also employed to obtain base–oxygen (Fig. 1D) and
oxygen–oxygen interactions whereas statistical rotameric states
were obtained for ribose backbones (Fig. 1E). Empirical internal
bond angle, bond length, and atom-crash energies were also
developed to ensure appropriate bond geometry and packing
density (Methods).

NuTree sampling algorithm. The above nucleobase-centric
energy score is coupled with a nucleobase-centric tree (NuTree)
algorithm for conformational sampling, in which each node is a
base and each edge represents the relative position between two
bases (Fig. 1F). Two connected bases in the folding tree could be
sequential neighbors or hydrogen-bonded base pairs. Instead of
sampling in backbone-dihedral angle space, conformations are
sampled according to the pre-defined orientation space of each
edge type because the orientations around more stable bases are
the determinants of backbone orientations. For the same reason,
coordinates of sidechains were built prior to those of the back-
bones. Only local moves were allowed for each node whereas both
local and global moves were allowed for each edge, making both
local and global structural improvements possible. In the process
of Monte Carlo sampling, we only need to calculate the energy
change upon a random structure move, without knowing the first
or second derivative of the energy function. Therefore, this
sampling algorithm could be used for optimizing an RNA
structure with a non-differentiable energy function in atomic
accuracy.

Refining Rosetta-SWM conformations for RNA motifs. We
first test our method using a benchmark of 48 motifs. This
benchmark34 was developed to examine the ability of Rosetta-
SWM to recover the loop region given some of the base pairs and
environment contacts fixed (See Methods and Supplementary
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Data 1). We test our refinement method by refining all 88,352
conformations generated by Rosetta-SWM with the NuTree
algorithm and the BRiQ energy score. The NuTree was con-
structed with the base-pairing information extracted from
Rosetta-SWM model, and the BRiQ energy was optimized by

Monte Carlo sampling at low temperature. The lowest RMSD
values of top 1% predicted models by the Rosetta and BRiQ
energies are compared in Fig. 2A. The majority of predicted motif
conformations (31/48, 64.5%) have an improved RMSD after
BRiQ refinement with a median reduction of 0.2 Å RMSD change

GC pair (-30.39)

AG pair (-13.13)

AU pair (-14.04)

CC pair (-10.20)

Base i

Base j

Backbone rotamer 
and dihedral angles

OP around nucleobase C

O4' around nucleobase A

(A) (B) (C)

(D) (E) (F)

Fig. 1 Nucleobase-centric statistical potential and sampling technique for RNA structure refinement. A Six-dimensional base–base statistical potentials
with relative positions defined by rij and rji vectors along with the rotational angle ωij. B A schematic illustration of the orientation dependence before and
after Quantum Mechanical (QM) energy scaling as labeled. C This QM scaling is based on the correlation between the statistical energy scores of
hydrogen-bonded base pairs (-ln Phb) and QM calculations. Phb is the probability of hydrogen-bonded base pairs. The QM energies for a few base pairs
were illustrated in the insert. D The distribution of OP (red dots) around nucleobase C and the distribution of O4’(red dots) around the nucleobase A as
labeled. E Backbone rotamers defined according to various torsion and improper angles that control the ribose (χ, ν) and phosphate (ε, ζ) backbone.
Dihedral angles α, β, and γ, bond angles θPOC, θOCC and bond length of C5’O5’ were required to calculate the internal energy. F Nucleobase-centric fold-tree
(NuTree) algorithm for refinement by defining bases as the nodes and locally or globally connected bases as the edges, illustrated by the GCAA tetraloop
with the canonical and noncanonical base pairs shown in blue and green colors, respectively.

Fig. 2 Refinement of Rosetta-SWM models and base-pair-restrained prediction of RNA structural motif by BRiQ. A Refining Rosetta-SWM motif
models by BRiQ improves the majority of those model structures with RMSD<2Å as demonstrated by RMSD comparison (lowest RMSD of top 1% before
refinement on Y-axis versus after refinement on X-axis). B Fixing all native base pairs with random initial conformations for all other regions and then
folding the remaining structure leads to more accurate motif models for the majority of the motifs than refining Rosetta-SWM models that have pre-
assigned, partially fixed base pairs (Lowest RMSD of top 1% BRiQ-refined models on Y-axis versus lowest RMSD of top 1% BRiQ models with fixed native
base pairs on X-axis).
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among all 48 motifs. The improvement is more impressive on the
refinement from near-native models (RMSD of Rosetta-SWM
model less than 2 Å), 81% (17/21) predicted conformations have
an improved RMSD after BRiQ refinement. The RMSDs of the
top 1% predicted models for the remaining four motifs (4/21) are
essentially unchanged.

Generate motif structures with base-pairing information. As
the NuTree sampling algorithm is a refinement protocol, near-
native conformations will be difficult to obtain if initial con-
formations contain false base pairs generated by other methods.
Here, we further test whether or not near-native structures can be
generated from the NuTree algorithm if all motif base pairs are
known. Starting from a random backbone conformation with
base pairs fixed, we run Monte Carlo sampling at different tem-
peratures (Methods) to optimize the BRiQ energy score. The
lowest RMSD of top 1% predicted models by the BRiQ score are
compared in Fig. 2B. The majority of predicted conformations
(33/48, 68.8%) have an improved RMSD with correct and com-
plete base-pairing information, compared to partial fixation by
Rosetta-SWM. The median improvement in the best RMSD value
within top 1% predicted models is 0.29 Å.

Five representative motifs were chosen for illustration in Fig. 3.
They are a standard helix made of GC pairs (Fig. 3A), two
tetraloops (GCAA-tetra loop, Fig. 3B, UUCG-tetra loop, Fig. 3C)
commonly used for testing molecular mechanics force fields35,
one example of refinement leading to worse structures (j55a-
P4P6-fixed, Fig. 3D) and an example of internal loop (loopE,
Fig. 3F). In these figures, the top to bottom panels represent the
results from Rosetta-SWM, refinement of Rosetta-SWM con-
formations by BRiQ and the structure prediction by BRiQ with
native base-pairing information. For the GC helix (Fig. 3A),
minimum RMSD sampled by Rosetta-SWM is 0.58 Å, compared
to 0.14 Å by BRiQ. For GCAA-tetra loop (Fig. 3B), near-native

local minimal improved from around 1.5 Å RMSD by Rosetta-
SWM to about 1 Å by BRiQ. UUCG-tetraloop (Fig. 3C) is an
example that <1 Å near-native structure is the global minimum in
BRiQ, whereas the lowest energy conformation in Rosetta-SWM
is around 3.5 Å. For these three motifs, BRiQ refinement of
Rosetta-SWM models leads to an improved backbone fitness to
the native backbone. Motif j55a-P4P6-fixed (Fig. 3D) is an
example of worse RMSD values after refining Rosetta-SWM
conformations. We noticed that this native structure has one base
protruded into the solvent, which may be the reason for the
failure of BRiQ as the solvation effect is only implicitly accounted
for in a statistical potential. For loopE, the best predicted
conformation by Rosetta-SWM is about 2 Å RMSD (panel Ei).
However, these models have an incorrectly folded non-WC pair
that prevented BRiQ to make significant further improvement
over Rosetta-SWM (panel Eii). If native non-WC pairs were
employed, we would obtain 0.4 Å RMSD for the best within top
1% (panel Eiii). We can achieve this high-resolution structure
even without using any non-WC pairs as restraints. We further
found that if native conformations are directly refined by BRiQ,
the lowest energy conformations of the most motifs (45/48, 94%)
remain <2.5 Å away from the native structure. Refining models
from the native structures and the Rosetta-SWM models finds the
same minimum for most motifs with similar energy. As a result,
most motifs have high-quality near-native conformations as the
global minimum.

RNA puzzle refinement. A real-world test of any refinement
techniques is to refine previously predicted models. Here we
refined all submitted models in 24 RNA puzzle experiments
(PZ1-PZ25, Supplementary Data 2). For each submitted model,
we generated 20 refinement models. Then, the lowest energy
model within 20 refinement models is treated as the BRiQ pre-
dicted model. The lowest RMSD model from all BRiQ predicted
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(v)(v) (v) (v)
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(iii)

(iv)
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E

Fig. 3 Comparison of representative motif models from Rosetta-SWM, refinement of Rosetta-SWM models and base-pair-restrained prediction by
BRiQ. Energy versus RMSD values of the conformations sampled by (i) Rosetta-SWM, (ii) refinement of Rosetta-SWM conformations by BRiQ, (iii)
structure prediction by BRiQ with all native base pairs fixed for A CG-helix, B GCAA-tetra loop, C UUCG-tetra loop, D j55a-P4P6-fixed, and E loopE-fixed.
Structure alignment of native (blue) to the best in top 1% predicted models by Rosetta-SWM (panel iv) and BRiQ refinement (panel v) in the bottom panel.
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models for a given RNA puzzle is compared to the lowest RMSD
value among all submitted models in Fig. 4A. As the figure
shown, if initial models contain models with RMSD < 4 Å,
refinement always leads to improvement, with the largest RMSD
reduction of 1.5 Å. Figure 4B further compares the lowest RMSD
value among all submitted models to those lowest RMSD values
among all BRiQ refined models. Essentially all RNAs have better
models sampled after refinement with the largest RMSD reduc-
tion at 2.2 Å.

Another metric for describing structural difference is deforma-
tion index (DI) proposed by Parisien et al.36, which emphasized
on similarity in the base–base interaction network. Supplemen-
tary Data 2 also showed the results based on DI. Indeed, we found
that more RNAs showed the improvement in DI after refinement
than in RMSD. For example, 20/25 predicted DI values in RNA
puzzles were reduced, compared to only 13/25 in
predicted RMSD.

MolProbility37 is a tool for checking the quality of RNA
structures. We calculated MolProbity scores for all RNApuzzle
models. Supplementary Fig. S1 shows that the clash scores of 75
or larger are all decreased to less than 50 after BRiQ refinement.
The average clash score reduced 40% from 20.87 to 12.58. Except
a few outliers, the clash scores are less than 30 after refinement.

In addition to the whole motif, we further analyzed the
refinement results of RNA puzzles at the base-pair level. Here, we
employed DDM to measure the relative orientational difference

between predicted and native base pairing structures according to
four pseudo atoms employed for representing each base (see
Methods). As Supplementary Data 3 shows, the average DDM
values from native base-pairing structures of Watson–Crick pairs,
non-Watson–Crick pairs, and base-stacking decreased 30% from
0.545 to 0.384, 17% from 0.687 to 0.570, and 22% from 0.834 to
0.650, respectively. The improvement in base pairing structures
after BRiQ refinement is found for essentially all RNA puzzles
(except for non-Watson–Crick pairs in PZ02, PZ03, and PZ05),
regardless whether or not there is an improvement of the overall
RMSD or not. More improvement at the base-pair level indicates
that the BRiQ refinement occurred at the detailed atomic
resolution.

It is interesting to know what happens if BRiQ is applied to
refining native structures. We examined the deviation from the
native structure at the base-pair structural level. Supplementary
Fig. S2 shows the change of base pair structures in DDM as a
function of X-ray structure resolution after refinement of native
structures by BRiQ. Overall changes to the native base pairing
structures are small. There is a trend that larger changes in base
pair conformations were observed for lower resolution structures,
suggesting more uncertainty for low resolution structures as
expected.

Comparison to FARFAR2. We also test our refinement method
starting from the recently developed FARFAR2 predicted

Fig. 4 Refinement of RNA puzzle models and FARFAR2 models by BRiQ. BRiQ refinement achieves consistent improvement over the best-submitted
models for RNA puzzles containing model structures with RMSD <4 Å (A), over all RNA puzzles in conformational sampling (B), over FARFAR2 models for
10 out of 12 RNA puzzles in top 1% (C) and top 5% (D) predicted models.
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models24 but only for those 12 RNA puzzles with RMSD of best
FARFAR2-predicted models less than 6 Å as shown in Fig. 4C.
This is because it is not possible to refine those models that are far
from native. For each puzzle, we select 2000 lowest energy models
according to FARFAR2 (1547 models for PZ20) to run BRiQ
refinement, and compare the best RMSD values of top 1% and 5%
predicted models by FARFAR2 and BRiQ energy scores, respec-
tively. As shown in Supplementary Data 4 and Fig. 4C, D, almost
all (10/12) have reduced RMSD values after refinement with a
median RMSD reduction of 0.48 Å for top 1% prediction and
0.45 Å for top 5% prediction. The only two RNA puzzles with
increased RMSD values after refinement have very small changes
(<0.08 Å for top 1% and <0.19 Å for top 5% predictions). When
structural difference measured by DI (Supplementary Data 4), DI
after BRIQ refinement were improved or maintained at the
similar level for all 12 cases investigated. These results further
indicate the consistency of BRiQ refinement.

As illustrative examples, Fig. 5 compares the conformations
sampled by FARFAR2 and those further refined by BRiQ for
Puzzles 4 and 18, respectively. Both show significant moves
toward native structures of RNAs by comparing the dependence
of energy scores on RMSD shown in Panels i and ii. Similar to the
motif cases, BRiQ refinement yields improved backbone con-
formations over FARFAR2 models as shown in structural
comparisons in Panels iii and iv of the figures.

Discussion
This work presents a protocol for refining RNA model structures
produced by other modeling tools. The protocol is nucleobase-
centric in its knowledge-based energy score as well as the sam-
pling algorithm. The fully knowledge-based score (BRiQ) cap-
tures the orientation dependence of base–base and base–oxygen,
and oxygen–oxygen interactions by using a local coordinate
system for each nucleobase, whereas the structures of ribose and

A B
(i) (i)

(ii) (ii)

(iii) (iii)

(iv) (iv)

Fig. 5 Comparison of representative FARFAR2 models and their refinement by BRiQ. Energy versus RMSD values of the conformations sampled by (i)
FARFAR2, (ii) refinement of FARFAR2 conformations by BRiQ for A RNA Puzzle 4 and B RNA Puzzle 18. Structure alignment of native (blue) to the best in
top 1% predicted models by FARFAR2 (iii) and BRiQ refinement (iv) in the bottom panel.
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phosphate backbones were governed by rotameric statistical
potentials and empirical internal energies. Moreover, the domi-
nant base–base interaction was scaled by quantum mechanical
calculations for removing possible indirect interactions contained
in structural statistics. This statistical potential was coupled with
the NuTree algorithm that samples the conformations around
pre-determined base pairs. This refinement protocol improves
81% Rosetta-SWM models with less than 2 Å RMSD, 100% RNA
puzzle models with RMSD < 4 Å, and 83% FARFAR2 models
with RMSD < 6 Å. The CPU time cost of refining a single RNA
puzzle model is around 40 min for a model of 50 nt, and 2 h for a
model of 100 nt on Intel Xeon Gold 6242 CPU 2.80 GHz, and the
RAM requirement is about 2.9 G.

The BRiQ statistical energy score is built on the knowledge that
backbone conformations are determined by more stable stacked
base pairs. This was done by focusing on base–base, base–oxygen,
and oxygen–oxygen interactions while treating the backbone as
rotameric states around the bases. The robustness of the scoring
function is illustrated by the consistent improvement in refining a
diverse set of RNA models produced from different methods
participated in RNA puzzles including ModeRNA6, FARNA7,
MC-Fold/MC-Sym8, ifoldRNA10,11, Vfold12,13, 3dRNA14,15, and
SimRNA16.

In order to secure as many RNA structures as possible, we
included all RNA structures with resolution higher than 3.0 Å to
collect base and backbone statistics for our BRiQ knowledge-
based score. Although X-ray refinement at resolutions between
2.5 and 3.0 Å may contain errors and cryo EM structures may
have poor density fitting, using 2.5 Å cut off and a limitation to X-
ray structures will lead to 1225 structures with only 10.5% bases, a
dataset that is too small to capture useful all-atom statistics. It is
also noted that even for high-resolution structures, there are
regions which have poor R-factor values or high clash scores.
Structural regions with clashed atoms were automatically exclu-
ded from our statistics. Structural regions with poor R-factors
simply reflect the regions that are more dynamic and the con-
formations of the regions are probable conformations among
many. Thus, it is reasonable to incorporate these conformations
as a part of statistics as commonly done for statistical potentials of
proteins26.

Another issue of the structural database is that the RNA
structures included were dominated by rRNA and tRNA with
about 89% base pairs from rRNAs. This raises the question
whether or not our BRiQ energy function is biased toward rRNA
and tRNA so that it would not be generalizable to other RNAs. In
fact, RNA puzzles all are made of noncoding RNAs that are not
involved in protein synthesis. Despite of this, BRiQ can con-
sistently refine these noncoding RNAs, indicating that BRiQ is
not an energy function limited to rRNA or tRNA.

The above demonstrated transferability is achieved because the
statistics was made at base and atom levels, not at the structural
motif level. Moreover, we are only interested in detailed energy
surfaces around the local minima. That is, subtle or large con-
formational changes due to different ligands and crystallization
conditions are useful to increase the resolution of the energy
surface. In Supplementary Fig. S3, we plot the probability as a
function of the pair orientation distance contributed by the
structures of same sequences and by other structures. It is clear
that the structures of same sequences can fill the conformational
space missed by other structures, generating a more refined
energy surface. To understand the potential impact of homo-
logous structures to the refinement results of RNA puzzles, we
removed all homologous structures of RNA puzzles with 70%
sequence identity (the sequence similarity for the RNA “twilight
zone” is 80%)38. We found that the homologous structures from
RNA puzzles contributed only to 0.1% of all structural data. The

changes to the BRiQ energy score are negligible. Refinement
results with the new BRiQ score are essentially the same (except
those caused by stochastic nature of Monte Carlo sampling). For
example, the difference before and after removing homologs for
the refined FARFAR2 structures is only 0.02 Å for rp04 and 0.2 Å
for rp18 for the best in top 1%, respectively. We will update the
BRiQ energy score when more non-redundant RNA structures
become available.

The NuTree algorithm samples the RNA conformations
around predetermined base pairs from a given model. These
preformed base pairs serve as the nucleus to speed up the folding
of the rest of an RNA chain. However, if a base pair was incor-
rectly modeled, it will be energetically difficult to correct the
mistake. This is the main reason why the current refinement
protocol works best for those near-native structures, in which the
majority of base pairs were correctly identified. Unlike Rosetta,
the NuTree algorithm can fix both nested and non-nested
(pseudoknot) base pairs. In other words, this algorithm will
become more useful as secondary and tertiary base pairs are
increasingly more accurately predicted by employing co-
variational analysis of RNA homologous sequences39–42 and
deep learning techniques43,44.

This work is limited to RNA structural refinement. Another
question is whether or not the RBiQ statistical energy function
coupling with the NuTree algorithm can serve as an effective
method for ab initio structure prediction. Initial studies suggest
that a new sampling algorithm is likely required because ab initio
folding requires more frequent breaking and forming of base
pairs than what are typically involved in the NuTree algorithm.
The work in this area is in progress.

Methods
BRiQ energy score
Base–base interaction energy (Ebb). Relative orientation between two bases. The
planar shaped bases make the orientation dependence a must for base–base
interactions. Here, we consider each base i as a rigid body with a local coordinate
system CSi whose origin is located at atom C1’. The x-axis is in the direction of
C1’N9 and the z-axis is in the direction of C1’N9×N9C4 for A and G whereas the
x-axis is in the direction of C1’N1 and the z-axis is in the direction of C1’N1×N1C2
for U and C. As shown in Fig. 1A, the orientation and distance between bases i and
j can be described by (1) the distance rij between the origins of CSi and CSj, (2) the
rotational angle ωij around rij, (3) the directional vector rij in CSi, and (4) the
directional vector rji in CSj (a total of 6 dimensions). The distance rij has a range of
0–15 Å with a uniform grid space of 0.3 Å. The rotational angle ωij varied from
−180° to 180° with a uniform grid of 8°. We represent the orientation of the
directional vector rji by 2000 uniformly distributed points on a sphere from Monte
Carlo simulated annealing of points with repulsive interactions proportional to the
inverse of squared distances between the points. Thus, the space between the two
bases is separated into 50 × 45 × 2000 × 2000 discrete regions. Once the energy
values for all these regions are known, the energy value at a given distance and
orientation can be linearly interpolated. The above coordinate system for repre-
senting the base–base relative orientation was similar to but is more sophisticated
than what was proposed for a coarse-grained two-particle representation of RNA
chain45. The 6-dimensional base–base interactions were pre-calculated and stored
in a table and only negative values were loaded into computer memory for quick
access.

Base-orientation representation. To define an orientation-dependent density,
it is necessary to measure the structural similarity first. One common measure is
the root-mean-squared distance (RMSD) between two base pairs. However, it is too
time-consuming to calculate RMSD. To speed up the calculation, we assumed that
four fixed points (T1, T2, T3, T4) in the local coordinate system of a base
(Supplementary Fig. S4a) are sufficient to represent the orientation of each base
and the mean squared distance between these points in two bases A and B (DDM)
can approximate RMSD with DDM defined by

DDM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑4

i¼1∑
4
j¼1dðTAi;TBjÞ2=16

q
ð2Þ

We have optimized T1, T2, T3, T4 so that DDM has the highest correlation
coefficient to RMSD. The final four points in each base coordinate system are: T1
= (2.158, 3.826, 1.427), T2= (−0.789, −0.329, −1.273), T3= (4.520, −3.006,
1.586) and T4= (6.018, 1.903, −1.638). The resulting correlation coefficient is
0.974 (Supplementary Fig. S4b).

Orientation distribution density. We employed a modified radial basis
function kernel h(d) to calculate the orientation distribution of one base around
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another base f(x) by the following equations:

hðdÞ ¼ 1; ifd ≤ 0:15

e�0:5ððd�0:15Þ=0:1Þ2 ; if ðd>0:15Þ

�
ð3Þ

and

f xð Þ ¼ ∑
N

i¼1
hðDDMðx; xiÞÞ ð4Þ

where N is the number of base pairs in the database of RNA structures and DDM
(x,xi) is the distance between a target base pair and a base pair in the database. If
DDM x; xi

� �
between two bases is less than 0.15 Å, we consider two bases shared

the same orientation. Here and below, we have employed an empirical value (0.1)
for defining the spread of the kernel based on statistics from the PDB structures
and a few trials. An example is shown in Supplementary Fig. S5.

The orientation distribution densities of base pairs with different sequence-
separation distances (1, 2 or >2) were calculated separately. For non-local base
pairs (separation >2), the density was re-weighted by quantum mechanical energy.

Quantum-mechanical-energy-weighted orientation distribution density. One
issue associated with a statistical energy function is that a high population of
specific orientation between two bases may not be due to a strong direct interaction
at this specific orientation but due to the orientation preference of the interaction
with another base. Here, we minimize the possibility of this type of indirect
interactions by a weighting factor w(xi) according to quantum calculations. The
assumption is that the strength of the directional interaction is related to the
strength of the quantum interaction energy. Here,

w xi
� � ¼ e�

EQM exi� �
4:32kcal=mol=f exi� � ð5Þ

where exi is the nearest representative configuration to xi, EQM exi� �
is the quantum

energy. The modified orientation distribution f 0 xð Þ satisfies

f 0 xð Þ ¼ ∑
N

i¼1
wðxiÞhðDDMðx; xiÞÞ ð6Þ

Here, quantum mechanical (QM) calculations were performed by using
Guassian 0946. We investigated all possible ten pairs of bases (AA, AU, AG, AC,
UU, UG, UC, GG, GC, and CC). That is, both canonical (AU, GC, GU) and all
other possible noncanonical pairs were included in the statistics. Moreover, for
each base-pair type, we generated 80 orientation cluster centers by minimizing the
root mean square distance between all data points to the nearest cluster center.
That is, not only base pairs, but base–base stacking and other base–base polar
interactions were included in the statistics. For each representative configuration in
a structural cluster, we employed 5 nearest base-pairing conformations with the
highest-resolution PDB structures as the initial configurations for QM calculations.
The initial structure from the PDB was further optimized quantum mechanically so
as to minimize the effect of potentially inaccurate conformations. The steps for
calculating QM base–base interactions are as follows: (1) remove all backbone
atoms, (2) replace the C1’ atom with a H atom, (3) optimize the position of the H
atom by ab initio Hartree–Fock calculations with the basis set 6-31 G* and (4)
calculate the base–base interaction energy by E(AB)=H(AB) –H(A) –H(B) with
the density-functional theory method M06-2X47 and the basis set 6-31+G(d,p).
The average value of five QM calculations is considered as the QM energy for the
representative configuration. A total of 4000 QM calculations for 10 possible base
pairs (80 × 10 × 5) were performed. Figure 1C shows some examples of the
calculation results. The scaling parameter (4.32 kcal/mol) in Eq. (5) between QM
calculations and statistical energy functions is obtained from the slope of the
regression analysis of hydrogen-bonded base pairs (Fig. 1C).

Base–base interaction energy. The final energy function for base–base
interactions is calculated by the following equations:

E0 x; sep
� � ¼ �lnf 0ðxÞ=f ref ðsepÞ ð7Þ

and,

Ebb x; sep
� � ¼ E0 x; sep

� �
; if E0 x; sep

� �
<0

0; if E0 x; sep
� �

≥ 0:

(
ð8Þ

where sep is the sequence separation distance, its value could be 1, 2 or 2+. fref(2+)
was employed to scale the lowest energy value of non-local base pair to ‒8.0 based
on the lowest energy from QM calculations and the scaling between statistical and
QM calculations (Fig. 1C). fref(1) and fref(2) were employed to scale the lowest
energy value of local base pair to ‒4.0. Here, we also set the maximum base–base
interaction energy to zero because repulsive interactions from the above six-
dimensional statistical analysis are not reliable. Figure 1B shows a schematic
example of before and after QM scaling.

Interaction energy between a base and a main-chain oxygen atom Ebo xð Þ. The
interaction energy between a base and a main-chain oxygen atom is the interaction
between a polar group and a polar atom. The orientation of a base is still repre-
sented by 4 points obtained previously. The relative orientation and position
between an oxygen atom and a base can be described by the distance between the
oxygen atom and the four points representing the base. The kernel function h dð Þ

and the density f xð Þ for Ebo xð Þ are given by

hðdÞ ¼ e�0:5ðd=0:16Þ2 ð9Þ
and

f xð Þ ¼ ∑
N

i¼1
hðdðx; xiÞÞ ð10Þ

where x and xi represent the target base–oxygen and a base–oxygen pair in the
database, respectively, and d x; xi

� �
are the RMSD between the two base–oxygen

pairs. Unlike Ebb, the repulsive (positive) interaction was not set to zero but

reduced by a decaying weighting function wbo dmin
bo

� � ¼ 1� 1=ð1þ eð3:7�dmin
bo Þ=0:08Þ,

where dmin
bo is the minimum distance between an oxygen atom and any atoms in a

base, 3.7 Å is the approximate interaction distance between a mainchain oxygen
atom and a base and 0.08 is an empirical parameter to control the rate of decay. We
also impose an orientation dependence for the hydrogen bonding between an
oxygen atom and the corresponding atoms in a base according to the θ angle
between the base atom N or O, the main chain atom O (O2’, OP1, OP2) and the
main chain atom C or P bonding to O. This was done by locating the angle range in
RNA structures after removing top 3% angles from each side and defining s(θ)=0
for outside the angle range, s(θ)=1 when θ=θM, the median value of θ, and

sðθÞ ¼
1� θ�θM

θL�θM

� �2
; if θL<θ<θM

1� θ�θM
θU�θM

� �2
; if θM<θ<θU

8><>: ð11Þ

where θu and θL are the upper and lower bounds for θ, respectively. The final
expression for Ebo xð Þ is

EboðxÞ ¼ �wboðdmin
bo ÞsðθÞlnf ðxÞ=f ref ð12Þ

where f ref is employed to scale the lowest energy value empirically to −3.0, which
we set to be about one-third strength of GC pairs. As an example, Fig. 1D shows
the distribution of a nucleobase C and an oxygen atom in a phosphate group and
that of a nucleobase A and O4 in ribose.

Hydrogen-bonding energy between main-chain oxygen atoms Eoo xð Þ. We consider
hydrogen bonding interactions between O2’-O2’, O2’-OP and OP-OP. The con-
figuration of hydrogen bonds is determined by four atoms (two oxygen atoms and
their connecting C or P atoms). The distance d between two hydrogen-bonding
configurations is calculated by RMSD between the four atoms. Similar to Ebo xð Þ, we
have

Eoo xð Þ ¼ �woo doo
� �

ln
f xð Þ
f ref

ð13Þ

with f ðxÞ ¼ ∑N
i¼1e

�0:5ðdðhb;hbi=0:1Þ2 , f ref is employed to scale the lowest energy value
empirically to -3.0 for O2’-O2’, -2.0 for O2’-OP, -1.5 for OP-OP and the decay
function wooðdooÞ ¼ 1� 1=ð1þ eð3:3�dÞ=0:07Þ with 3.3 Å is the typical hydrogen
bond length between two oxygen atoms and 0.07 is the empirical parameter to
control the decay rate. Here the angle dependence is implicitly accounted for by
using 4 atomic coordinates (e.g., atoms C2’-O2’-OP-P for the hydrogen bond
between O2’ and OP) to define RMSD.

Energy for atomic clashes (Eclash). Due to lack of adequate statistics for hard-core
exclusion in all statistical energy functions, we have set repulsive terms to 0 in
Ebb xð Þ or quickly decay to 0 by weighting functions wbo dmin

bo

� �
and woo doo

� �
in

Ebo xð Þ and Eoo xð Þ; respectively, when the distance is less than a preset value. To
avoid direct atomic clashes, we introduce an empirical energy function as below.

Eclash dð Þ ¼
ðkclash*0:4Þ4 � 4ðkclash*0:4Þ3 d � r0 þ 0:4

� �
; ifd ≤ r0 � 0:4;

ðkclash*0:4Þ4; if r0 � 0:4<d<r0;

0; ifd>r0;

8><>: ð14Þ

where d is the atomic distance between two atoms, r0 is the shortest statistical
distance from RNA structures between the two atoms and kclash is an empirical
parameter to control the increasing rate of repulsion when two atoms approach to
each other. We set kclash ¼ 3 after the energy minimized structure does not change
much for kclash between 2 and 5. r0 is orientation independent for atoms in SP3

hybridization but is orientation-dependent for atoms in SP2 hybridization. That is,
r0 is orientation-dependent between any atom with an atom in a base but is
orientation-independent between two main-chain atoms. For orientation-
independent r0, it is set as the top 5% shortest distance between two atoms found in
RNA structures. For orientation-dependent r0 between a given atom a and an atom
b in base B, the atomic position of a is transformed to the local coordinate system
of the base B and clustered around the atom b. The top 5% shortest distance in
different orientations is set as r0 in different orientations. The functional form of
the clash energy is shown in Supplementary Fig. S6.

Main-chain rotameric energy (Erot). For protein structure prediction, the sidechain
conformational space is discretized into rotamers. Here, we introduce main-chain
rotameric states because stacked bases are more rigid than the main chains. The
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conformational space of a ribose rotamer is mainly determined by two dihedral
angles (Fig. 1E). The first is the rotational angle χ rotating around the chemical
bond connecting the base and ribose (N9-C1’ for bases A and G and N1-C1’ for
bases U and C). The second is the improper angle ν between the C2’-C4’-O4’ plane
and the C2’-C4’-C3’ plane within the connected ribose. Each dihedral angle can be
separated into two regions, and each region into 300 to 500 rotamers, and a total of
1500 rotamers is employed to describe a ribose rotameric state.

The ribose rotamers are clustered according to RMSD. This is done by
transforming atomic coordinates of eight ribose atoms to the local coordinate
system for the base. RMSD is the average distance of ribose atoms in the local
coordinate system. Once RMSD is known, we can use the kernel density estimation
method to calculate the density of each rotamer, and then take the negative
logarithm and convert it to the rotamer energy Erot xð Þ as below.

Erot xð Þ ¼ �ln
f xð Þ
fmax

ð15Þ

where xð Þ ¼ ∑
N

i¼1
e�0:5ðdðx;xiÞ=0:15Þ2 , xi denotes a rotamer in the database and the

summation is over all the rotamers in the database.

The internal energy Einternal. We introduce the following internal energies ðEinternalÞ
between a phosphate group and two connecting riboses to account for energetics
associated to changes in bond lengths Ebond, bond angles Eangle, and dihedral angles
Etorsion

Ebond uð Þ ¼
�2u� 1; ifu<� 1;

u*u; if � 1≤ u≤ 1;

2u� 1; ifu>1

8><>: ð16Þ

where u blð Þ ¼ kbondðbl� 1:422Þ and bl denotes the bond length between O5’i+1 and
C5’i+1. We made this bond slightly flexible so that we can add a phosphate group
(atom P, OP1, OP2, O5’) between two fixed riboses at fixed dihedral angles, other
bond lengths and bond angles. The average bond length found in the RNA structures
(1.422 Å) is employed here. Parameter kbond is set to 5.0, which is optimized by
backbone modeling (rebuilt main-chain atoms after fixing base positions).

Eangle uð Þ ¼
�2u� 1; ifu<� 1;

u*u; if � 1≤ u≤ 1;

2u� 1; ifu>1

8><>: ð17Þ

where u θPOC
� � ¼ kangleðθPOC � 120:7Þ and u θOCC

� � ¼ kangleðθOCC � 111:1Þ. θPOC is
between Pi+1-O5’i+1-C5’i+1 and θOCC is between O5’i+1-C5’i+1-C4’i+1. Similar to the
bond length, we made these two angles flexible so that we can add a phosphate group
between two fixed riboses at fixed dihedral angles, other bond lengths and bond
angles. The average values for these two angles in RNA structures are 120.7° and
111.1°, respectively. Parameter kangle is set to 0.1, after a few trials of backbone
modeling. For both bond-angle and bond-length energies, a harmonic function with
linear extrapolations at both ends was employed to improve conformational sampling
efficiency.

Etorsion is calculated from three statistical energy functions (see Fig. 1E for angle
definitions).

Etorsion ¼ E νi; εi; ςi
� �þ E ςi; αiþ1; βiþ1

� �þ Eðβiþ1; γiþ1; νiþ1Þ ð18Þ
with E νi; εi; ςi

� � ¼ �lnPðεi; ςijνiÞ, E ςi; αiþ1; βiþ1

� � ¼ �lnPðαiþ1jςi; βiþ1Þ, and
E βiþ1; γiþ1; νiþ1

� � ¼ �lnPðβiþ1; γiþ1jνiþ1Þ. Here, two improper angles (νi and νiþ1)
belong to the two neighboring riboses connected by a phosphate group. Two dihedral
(angles εi involving C2’i-C3’i-O3’i-Pi+1 and ςi involving C3’i-O3’i-Pi+1-O5’i+1)
determines the position of the phosphate group. In addition, αiþ1, βiþ1, and γiþ1
dihedral angles involve O3’i-1- Pi+1-O5’i+1-C5’i+1, Pi+1-O5’i+1-C5’i+1-C4’i+1 and O5’i
+1-C5’i+1-C4’i+1-O4’i+1, respectively48. Here, the coupling between neighboring three
dihedral angles, rather than the statistics of a single torsion angle was considered to
improve the accuracy of main-chain modeling.

Structure database. All statistical energy terms in Eq. (1) were derived from 2247
RNA structures obtained by X-ray crystallography and cryogenic electron microscopy
with a resolution higher than 3.0 Å downloaded on January 23, 2020 from the PDB
databank1. This set contains 272 ribosome, 221 riboswitches, 138 tRNA, 106 ribo-
zymes, 42 aptamers, 121 virus RNA, 17 introns, 3 spliceosomes, and 1327 others.
Among them, there are 1459 protein–RNA complex structures and 788 RNA-only
structures. The base pairing information is dominated by ribosome (about 89%). We
did not use the Cambridge database because it contains simple structures only. We
did not remove any redundant sequences because we need a database as large as
possible. Moreover, RNAs can have different structures in different complexes and we
want to capture all possible conformations. We can do this because statistics are
collected at the atomic or base level. See the discussion in more details.

Conformational sampling algorithm
Confirmational representation by the NuTree. For conformational sampling, each
RNA structure is represented by the NuTree. Each node in the NuTree denotes an

RNA residue including its base position (the local coordinate system), the ribose
rotameric state and the phosphate position attached to the 3′ position of the ribose
(determined by dihedral angles ε and ζ, Fig. 1E). The edge of the NuTree represents
relative positions between the local coordinate systems of two bases, which are
described by a 3 × 4 coordinate transformation matrix. There are ten types of
coordinate transformation matrices to describe nine types of edges: (1) sequence-
neighboring base pairs along 5′ to 3′ and 3′ to 5′ directions in the loop regions, (2)
sequence-neighboring base pairs along 5′ to 3′ and 3′ to 5′ directions in the
Watson–Crick pairing regions, (3) sequence-neighboring base pairs along 5′ to 3′
and 3′ to 5′ directions in the non-Watson–Crick pairing regions or connection
between Watson–Crick pairing and non-Watson–Crick pairing regions, (4)
Watson–Crick pairs, (5) Non-Watson–Crick pairs, (6) chain connection without a
specific positional relation (jump). Except for jump, each edge has a corresponding
move set. The move set was collected from all possible conformations of the same
type in the structural database that were discretized into 60 representative con-
formations and each representative conformation was further discretized into 60
sub-representative conformations. These 3600 representative conformations form
the move set for each edge type. Figure 1F shows the NuTree for the GCAA
tetraloop with a sequence of G0C1G2C3A4A5G6C7 where the edge 0–1 is sequence-
neighboring base pairs along the 5′ to 3′ direction in the Watson–Crick pairing
region, edges 1–2 is sequence-neighboring base pairs along the 5′ to 3′ direction in
non-Watson–Crick pairing regions, 2–3, and 3–4 are sequence-neighboring base
pairs along the 5′ to 3′ direction in the loop regions, edges 0–7, 1–6 are
Watson–Crick pairs and 2–5 is non-Watson–Crick pair. Although there is no edge
between 4 and 5, we need to build the phosphate connection and calculate the
internal energy between them.

For constructing a RNA model, the average coordinates were used for atoms in
the bases. Atoms in riboses were generated from representative PDB
conformations. Bond length and bond angles associated to the phosphate group
were set to the average value in PDB library. It should be emphasized that atomic
coordinates of riboses were not generated from a fixed bond length and angles but
directly from the pucker-dependent conformers49 from PDB structures.

Conformational sampling moves. Conformational sampling involves node and edge
sampling. Node sampling allows either a random selection of ribose rotamers or a
small adjustment of the base local coordinate system (<0.2 Å translational and <2°
rotational motions). Both moves are local. They do not change the positions of
other nodes and riboses. Edge sampling makes both local and global moves. The
local move makes minor adjustment (<0.2 Å translational and <2° rotational
motions). The global move randomly selects a move from the set according to the
edge type. Edge sampling moves will change the positions of all downstream nodes
but not the relative positions between the nodes.

The above sampling may change the relative positions of some neighboring
riboses and make it necessary to rebuild the phosphate connection. Such
connection can be rapidly built by the grid search from representative points for
the lowest Einternal value in the ε–ζ torsional angle space. According to the
distribution of conformations (Supplementary Fig. S7), we have divided ε–ζ space
into 50 representative points, each representative point into 50 sub-representative
points and each sub-representative point with 25 local points in 1° extension. That
is, a total of 125 calculations is conducted for searching the lowest Einternal value.

Monte Carlo simulated annealing. All nodes in a NuTree are divided into three
types: those with positions fixed (A), those with relative internal positions fixed but
not absolute positions (B), and those with both relative and absolute positions
changed (C). The energy change after each move is calculated by

4E ¼ dEðABÞ þ dEðACÞ þ dEðBCÞ þ dEðCCÞ þ dErot þ dEinternal ð19Þ

where dE(AB), dE(AC), dE(BC), and dE(CC) denote the changes in interaction
energies with the AB, AC, BC, and CC regions, respectively, and dErot and dEinternal
are the changes in rotameric and internal energies, respectively. Each move is
accepted or rejected according to the Metropolis criterion. We employed simulated
annealing for energy optimization with an initial temperature set at 2.5, which is
decreased by a factor of 0.95 at each round until temperature reached 0.01. In the
refinement protocol, the initial temperature is set at 0.5 which is decreased to 0.01
by a factor of 0.9. The sampling steps at each temperature Nstep is proportional to
the edge number in the NuTree.

Nstep ¼ 400*nðwc edgeÞ þ 2000*ðnwc edgeÞ þ 4000*nðother edgeÞ ð20Þ
where n(wc edge) is the edge number of Watson–Crick pair or helix neighbor, n
(nwc edge) is the edge number of Non-Watson–Crick pair or NWC neighbor, n
(other edge) is the number of other edges.

To increase the efficiency of conformational sampling, we give Eclash and Einternal
a low weight of 0.05 at the initial temperature and gradually increase the
weight to 1.

Motif test set. The test set is obtained from the benchmark of Rosetta-SWM34,
downloaded from https://purl.stanford.edu/fq893cm4516. After removing redun-
dant RNAs and those with more than 50 bases and non-standard RNA bases, we
have 48 motifs listed in Supplementary Data 1.
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RNA puzzle and FARFAR2 test sets. RNA Puzzle data set is downloaded from https://
github.com/RNA-Puzzles/raw-dataset-and-for-assessment. The prediction results of
FARFAR224 are downloaded from https://purl.stanford.edu/wn364wz7925.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The structural data and test sets used by BRiQ is publicly available at http://servers.
sparks-lab.org/downloads/BRiQ-dataset.tar.gz.

Code availability
The source code of BRiQ refinement is available at https://github.com/Jian-Zhan/RNA-
BRiQ. We have also made the code citable by obtaining a DOI for the Github repository,
which allows a permanent reference to the version of the code used in this study50.
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