Skip to main content
Chinese Journal of Hematology logoLink to Chinese Journal of Hematology
. 2021 Apr;42(4):313–317. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2021.04.008

新的珠蛋白基因突变引起少见地中海贫血四例报告及文献复习

Rare thalassemia caused by novel nucleotide variants in the globin gene: four case reports and literature review

Zhenzhen Da 1, Lanhua Chen 2, Hongmei Jiang 1, Guangping Wang 1,
Editor: 刘 爽
PMCID: PMC8120116  PMID: 33979976

Abstract

目的

分析4例少见地中海贫血(地贫)患者的DNA序列、临床表型,提高对地贫的认识。

方法

对2014年5月至2019年12月4例少见地贫患者的临床及DNA序列特征进行回顾性分析并复习相关文献。

结果

地贫基因常规检测显示,例1~3均未检测到常见的3种α株蛋白1/2(HBA1/A2)基因缺失及其3种点突变和16种β株蛋白(HBB)基因点突变,例4检测到αα--SEA缺失。HBA1/A2和HBB基因全序列Sanger测序示:例1~4分别存在HBB:c.347C>A、HBB:c.1A>G、HBB:c.393T>G及HBA2:c.301-1G>A(IVS-II-142 G>A)突变。同时,例2的祖父、父亲和姑姑均为HBB:c.1A>G杂合突变。

结论

本研究发现了新的珠蛋白基因突变,HBB:c.347C>A、HBB:c.1A>G和HBB:c.393T>G以及HBA2:c.301-1 G>A(IVS-II-142 G>A)突变在中国地贫患者中为首次报道,HBB:c.393T>G突变为全球首次报道,丰富了地贫基因突变数据库。

Keywords: 地中海贫血, 基因突变, 珠蛋白, DNA序列分析


地中海贫血(地贫)是最常见的单基因遗传病,我国南方地区多见[1]。临床上,α地贫和β地贫是目前最常见的两种类型,分别由α株蛋白1/2(HBA1/A2)或β株蛋白(HBB)基因较大片段缺失或点突变所致[2][3]。此外,尚存在一些其他少见类型的基因突变[4][8]。我们采用全基因序列分析对2014年5月至2019年12月4208例常规地贫基因检测正常或可疑而临床表型仍疑似地贫的患者进行检测,4例检出新的珠蛋白基因突变类型,现报道如下。

病例资料

例1,男,19岁。2岁时发现贫血,3岁时体重仅13 kg,易感冒、发热,10岁后逐渐消瘦、脸色发黄、脾大,多次检查均表现轻度贫血。彩超示脾大:最厚约67 mm,长约181 mm。就诊我院时血常规示:RBC 3.86×1012/L、HGB 94 g/L、平均红细胞体积(MCV)76.5 fl(正常参考值82~100 fl)、平均血红蛋白含量(MCH)24.4 pg(正常参考值27~34 pg),总胆红素96.7 µmol/L(正常参考值1.7~17.1 µmol/L),HbF 7.92%(正常参考值<2%)。常规地贫基因检测及少见类型基因突变PCR均阴性,Sanger测序示HBB:c.347C>A杂合突变(图1A)。其母亲的RBC 4.29×1012/L、HGB 121 g/L、MCV 89.3 fl、MCH 28.9 pg,且不存在HBB:c.347C>A突变。

图1. 4例少见地中海贫血类型突变基因测序结果(红色箭头示突变位点,黑色箭头示碱基C/T杂合子).

图1

A:例1 HBB:c. 347C>A突变;B:例2 HBB:c.1A>G突变;C:例3HBB:c.393T>G突变;D:例4 HBA2:c.301-1G>A突变

例2,男,5岁。因其姑姑诊断为地贫后来我院求诊。血常规示:RBC 5.42×1012/L、HGB 87 g/L、MCV 51.8 fl、MCH 16.0 pg。血清铁蛋白115.5 µg/L(正常参考值6.9~325 µg/L),总胆红素10.8 µmol/L,直接胆红素5.4 µmol/L(正常参考值0~6.8 µmol/L),RBC脆性试验开始溶血0.44%(正常参考值0.44%~0.48%),完全溶血0.20%(正常参考值0.28%~0.32%)。常规地贫基因检测及少见类型基因突变PCR均阴性,Sanger测序示HBB:c.1A>G杂合突变(图1B)。对其家系进行调查,家系图见图2,家系资料见表1。先证者及其父亲、祖父和姑姑均为HBB:c.1A>G杂合突变,而其祖母此位点为野生型。同时,患者本人以及其父亲、祖父和祖母HBB基因第9个核苷酸碱基具有C或T两种表型。

图2. 罕见地中海贫血病例2家系图.

图2

表1. 罕见地中海贫血例2及其家系各成员血液学基本资料.

成员 性别 年龄(岁) RBC(×1012/L) HGB(g/L) MCV(fl) MCH(pg)
例2 5 5.42 87 51.8 16.0
祖父 51 5.82 108 56.0 18.6
祖母 47 4.12 89 73.5 21.6
父亲 26 6.39 122 60.6 19.1
姑姑 29 3.44 71 68.3 20.6

注:MCV:平均红细胞体积;MCH:平均血红蛋白含量

例3,女,29岁。自幼面色苍白、自感乏力,多家医院检查示贫血。就诊我院时,血常规示RBC 3.44×1012/L、HGB 71 g/L、MCV 68.3 fl、MCH 20.6 pg。血清铁55.0 µmol/L(正常参考值7~32 µmol/L),血清铁蛋白260 µg/L,总胆红素12.9 µmol/L,直接胆红素4.1 µmol/L。常规地贫基因检测及少见类型基因突变PCR均阴性,Sanger测序示HBB:c.393T>G杂合突变(图1C)。

例4,女,17岁,因“贫血、经多家医院诊治效果不佳”就诊于我院。血常规:RBC 4.59×1012/L、HGB 92 g/L、MCV 70.4 fl、MCH 20.0 pg、网织红细胞比例6.04%(正常参考值0.5%~1.5%)。Hb电泳发现异常条带:HbA2 5.08%。血清铁32.0 µmol/L、血清铁蛋白136.22 µg/L、总胆红素32.1 µmol/L、直接胆红素4.0 µmol/L。RBC脆性试验:开始溶血0.48%,完全溶血0.24%。常规地贫基因检测为αα--SEA缺失,Sanger测序示HBA2:c.301-1G>A(IVSⅡ-142 G>A)纯合突变(图1D),致HBA2基因mRNA剪接异常。

讨论

例1的HBB:c.347C>A突变最早发现于一个捷克家庭中,32岁母亲及6岁女儿患病[9],依其就诊时的居住地命名为Hb Hradec Kralove(Hb HK)[9]。母亲为先证者,3个月时表现重度溶血性贫血,5岁时切脾治疗,但临床症状改善不显著,轻度肝大,严重感染时需输血治疗,其女儿也具有类似的表现,3岁时脾脏也轻度肿大,但肝脏大小正常。就诊时母女均表现为轻度贫血,HGB分别为96、98 g/L,网织红细胞计数显著增多、有核红细胞增加,可检测到Heinz小体,母女的HbF分别为4.0%和13.4%[9]。随后,2003年,日本学者也报道了Hb HK患病母女,均表现为贫血、黄疸、脾大等,患儿与其母亲HbF分别为16.3%、10.5%[10]。文献检索显示,本组例1为中国首次报道的Hb HK病例,表现为脾大、轻度贫血,HbF为7.92%,但该病例为男性,其母亲不存在HBB:c.347C>A突变,也无贫血等症状。就目前复习到的文献而言,例1可能是第1例男性Hb HK病例。然而,因未能对其父亲进行基因检测,该突变是否遗传自父亲暂不清楚。上述5例Hb HK患者的HbF均增高,提示GCC>GAC突变可能参与了HbF的表达调节,这也可能是该类型突变患者仅表现轻度贫血的原因之一。这对进一步探讨HbF的表达调控和通过提高HbF水平进行个体化治疗重型地贫以改善其贫血的策略提供了新的思路。此外,有文献报道,HBB基因第115位密码子还存在GCC>CCC的突变,导致Ala>脯氨酸(Pro),其Hb(Hb Madrid)与Hb HK相同,均极不稳定[9][10]。无论是GCC>GAC还是GCC>CCC的突变,导致其Hb不稳定的原因可能是突变造成了Hb的空间构型改变,继而容易降解[9][10]

HBB:c.1A>G,即HBB基因起始密码子ATG>GTG突变,最早在4个日本人中发现,分别为13岁的男孩及其母亲、51岁和54岁的两例女性患者,其HGB分别是116、99、110和91 g/L,且HbA2均增加[11]。HBB基因起始密码子ATG>GTG突变将形成异常的β链,从而导致地贫的发生。另外,HBB基因起始密码子ATG还存在其他类型的突变,如ATG>ATA、ATG>ATT、ATG>ACG、ATG>AGC和ATG>AGG等[4],[12][19]。其中,ATG>AGG最早报道于中国地贫患者中[11][12],且为中国地贫患者HBB基因起始密码子ATG突变最常见的类型[4],[13],而本文病例2为中国地贫患者HBB基因起始密码ATG>GTG突变的首个病例。同时,除ATG>GTG突变外,例2及其父亲、祖父和祖母HBB基因第9个核苷酸的碱基存在T或C两种基因型,此变异,即HBB:c.9T>C最早于2014年印度学者报道,在印度Odisha State正常人中发生率为19.57%[20],但在中国人当中尚未见报道。该变异属于同义单核甘酸DNA多态性,因文献报道甚少,缺乏对HBB:c.9T>C功能的研究,其作用目前尚不清楚。有趣的是,在例2家系中,仅存在HBB:c.9T>C杂合变异,而无HBB:c.1A>G杂合突变的祖母也出现贫血的表现。与无HBB:c.9T>C杂合变异的国外报道的HBB基因ATG>GTG突变患者相比,该家系成员Hb含量总体也趋于较低水平。虽然,HBB:c.9T>C变异并不改变氨基酸的序列,为非致病性变异,但由于一些DNA多态性可通过参与基因的表达等而影响表型,如Aγ(+25 G>A)DNA多态性与HbF的表达和含量相关[21][22]。因此,HBB:c.9T>C变异是否与例2及其家系,尤其是其祖母的贫血相关联值得今后进一步探讨。

例3的HBB:c.393T>G突变目前尚未见相关报道,在地贫和异常血红蛋白数据库(A Database of Human Hemoglobin Variants and Thalassemias, http://globin.bx.psu.edu/hbvar/menu.html)和ithanet数据库(https://www.ithanet.eu/db/ithagenes)也无相关记录。虽然,2016年,Henderson等[23]报道过HBB:c.393T>A突变。但目前仍然缺乏HBB c.393T>G突变对表型影响的报道。由于HBB:c.393T>G突变引起HBB基因第130位氨基酸密码子TAT改变为TAG,其编码的酪氨酸变为终止密码子,形成一条截短的异常β链。可推测HBB:c.393T>G突变导致β链功能异常,从而引起β地贫的发生和贫血的表型。

HBA2: c.301-1G>A(IVS-II-142 G>A)突变于2001年由Noguera等[24]首次报道,其病例来自于阿根廷的1例67岁的HbH患者及其33岁女儿。HbH病有两种类型,缺失3个HBA基因或缺失2个HBA基因但另一个HBA基因存在点突变,后者较少见,但其临床表现更重[25]。由于阿根廷这例HbH患者一条染色体上的HBA基因缺失,而另一染色体又发生HBA2:c.301-1G>A(IVS-II-142 G>A)突变,仅保留了一个野生型的HBA1等位基因,因而其性质相当于HBA2纯合突变。同时,又因涉及HBA基因剪接受体或供体剪接位点的突变常引起α珠蛋白链合成完全被抑制,患者贫血程度相对较重。为此,该患者临床表现比缺失型HbH(中间型α地贫)和α0地贫更严重。就诊时该患者的HGB仅有66 g/L,而仅存在HBA2: c.301-1G>A(IVS-II-142 G>A)突变的女儿,贫血程度较轻,其HGB为97 g/L。本文例4除表现为小细胞低色素贫血外,红细胞脆性试验显示完全溶血减低,网织红细胞增多,总胆红素和直接胆红素也均高于正常值。由于不仅存在HBA2:c.301-1G>A(IVS-II-142 G>A)突变,还存在αα--SEA缺失,其基因型类似于上述的阿根廷这例患者,为非缺失型HbH病。在中国亦属于首次报道。例4的临床表型如贫血等是否会随年龄增大而加重,值得进一步观察。

通常,经血常规分析HGB、MCV和MCH,并结合Hb电泳可筛查出绝大多数的地贫患者,在此基础上进一步做基因检查即可得到确诊。然而,临床上血常规检查、Hb电泳结果正常的情况下,有时也可能存在HBA或HBB基因突变,即不能完全排除地贫。因此,对一些轻度贫血或不贫血而家庭或夫妻一方为地贫的人员,可以直接进行基因检测以明确有无地贫。此外,在本研究中,例4常规地贫检测结果仅发现αα--SEA缺失,而Hb电泳却发现异常条带。由于在临床实际工作中常常会忽略Hb电泳检查,因此筛查时除血常规外,应对疑似患者进行Hb电泳以防遗漏少见或罕见类型的基因突变。尽管如此,通过目前常规的地贫筛查和基因检测方法,仍然难以发现一些少见或罕见的基因异常。为此,对于疑似病例,应结合患者的实际,运用如全基因分析、新一代测序技术、全外显子或全基因组序列测定等新技术进行深入分析,以便对患者做出精准诊断,为实施个体化基因治疗奠定基础[26]

References

  • 1.Zhao P, Wu H, Weng R. Molecular analysis of hemoglobinopathies in a large ethnic Hakka population in southern China[J] Medicine (Baltimore) 2018;97(45):e13034. doi: 10.1097/MD.0000000000013034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia[J] Lancet. 2018;391(10116):155–167. doi: 10.1016/S0140-6736(17)31822-6. [DOI] [PubMed] [Google Scholar]
  • 3.Yang Z, Zhou W, Cui Q, et al. Gene spectrum analysis of thalassemia for people residing in northern China[J] BMC Med Genet. 2019;20(1):86. doi: 10.1186/s12881-019-0818-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Huang H, Xu L, Chen M, et al. Molecular characterization of thalassemia and hemoglobinopathy in Southeastern China[J] Sci Rep. 2019;9(1):3493. doi: 10.1038/s41598-019-40089-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.He S, Qin Q, Yi S, et al. Prevalence and genetic analysis of α- and β-thalassemia in Baise region, a multi-ethnic region in southern China[J] Gene. 2017;619:71–75. doi: 10.1016/j.gene.2016.02.014. [DOI] [PubMed] [Google Scholar]
  • 6.Zhao P, Wu H, Weng R. Molecular analysis of hemoglobinopathies in a large ethnic Hakka population in southern China[J] Medicine (Baltimore) 2018;97(45):e13034. doi: 10.1097/MD.0000000000013034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.钟 良英, 汪 芳, 陈 培松, et al. HKαα合并东南亚型缺失地中海贫血的基因型与血液学分析[J] 中华医学杂志. 2018;98(2):117–121. doi: 10.3760/cma.j.issn.0376-2491.2018.02.009. [DOI] [Google Scholar]
  • 8.林 敏, 林 芬, 杨 立业, et al. 华南人群地中海贫血的罕见基因突变[J] 中华医学遗传学杂志. 2017;34(6):792–796. doi: 10.3760/cma.j.issn.1003-9406.2017.06.002. [DOI] [PubMed] [Google Scholar]
  • 9.Divoky V, Svobodova M, Indrak K, et al. Hb Hradec Kralove (Hb HK) or alpha 2 beta 2 115 (G17) Ala-->Asp, a severely unstable hemoglobin variant resulting in a dominant betathalassemia trait in a Czech family[J] Hemoglobin. 1993;17(4):319–328. doi: 10.3109/03630269308997485. [DOI] [PubMed] [Google Scholar]
  • 10.Ohga S, Nomura A, Takada H, et al. Dominant beta-thalassemia with hemoglobin Hradec Kralove: enhanced hemolysis in the spleen[J] Int J Hematol. 2003;78(4):329–334. doi: 10.1007/BF02983557. [DOI] [PubMed] [Google Scholar]
  • 11.Hattori Y, Yamashiro Y, Ohba Y, et al. A new beta-thalassemia mutation (initiation codon ATG----GTG) found in the Japanese population[J] Hemoglobin. 1991;15(4):317–325. doi: 10.3109/03630269109027886. [DOI] [PubMed] [Google Scholar]
  • 12.Lam VM, Xie SS, Tam JW, et al. A new single nucleotide change at the initiation codon (ATG----AGG) identified in amplified genomic DNA of a Chinese beta-thalassemic patient[J] Blood. 1990;75(5):1207–1208. [PubMed] [Google Scholar]
  • 13.Huang H, Xu L, Lin N, et al. Molecular spectrum of β-thalassemia in Fujian Province, Southeastern China[J] Hemoglobin. 2013;37(4):343–350. doi: 10.3109/03630269.2013.792274. [DOI] [PubMed] [Google Scholar]
  • 14.Landin B, Rudolphi O, Ek B. Initiation codon mutation (ATG -->ATA) of the beta-globin gene causing beta-thalassemia in a Swedish family[J] Am J Hematol. 1995;48(3):158–162. doi: 10.1002/ajh.2830480304. [DOI] [PubMed] [Google Scholar]
  • 15.Saba L, Meloni A, Sardu R, et al. A novel beta-thalassemia mutation (G-->A) at the initiation codon of the beta-globin gene[J] Hum Mutat. 1992;1(5):420–422. doi: 10.1002/humu.1380010512. [DOI] [PubMed] [Google Scholar]
  • 16.Zhang J, He J, Zeng XH, et al. Genetic heterogeneity of the β-globin gene in various geographic populations of Yunnan in southwestern China[J] PLoS One. 2015;10(4):e0122956. doi: 10.1371/journal.pone.0122956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ohba Y, Hattori Y, Harano T, et al. beta-thalassemia mutations in Japanese and Koreans[J] Hemoglobin. 1997;21(2):191–200. doi: 10.3109/03630269708997524. [DOI] [PubMed] [Google Scholar]
  • 18.Koo MS, Kim SI, Cho HI, et al. A beta-thalassemia mutation found in Korea[J] Hemoglobin. 1992;16(4):313–320. doi: 10.3109/03630269208998875. [DOI] [PubMed] [Google Scholar]
  • 19.Lacan P, Aubry M, Couprie N, et al. A mutation of the betaglobin gene initiation codon, ATG-->AAG, found in a French Caucasian man[J] Hemoglobin. 2005;29(3):225–228. doi: 10.1081/hem-200066332. [DOI] [PubMed] [Google Scholar]
  • 20.Sahoo SS, Biswal S, Dixit M. Distinctive mutation spectrum of the HBB gene in an urban eastern Indian population[J] Hemoglobin. 2014;38(1):33–38. doi: 10.3109/03630269.2013.837394. [DOI] [PubMed] [Google Scholar]
  • 21.Breveglieri G, Bianchi N, Cosenza LC, et al. An Aγ-globin G->A gene polymorphism associated with β039 thalassemia globin gene and high fetal hemoglobin production[J] BMC Med Genet. 2017;18(1):93. doi: 10.1186/s12881-017-0450-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Jiang F, Li J, Zhou JY, et al. Regulatory Single Nucleotide Polymorphism rs368698783 (G>A): a Genetic Modifier of Hb F Production Only under Erythropoietic Stress Characteristic for β-Globin Chain Deficiency?[J] Hemoglobin. 2019;43(1):73–75. doi: 10.1080/03630269.2019.1588130. [DOI] [PubMed] [Google Scholar]
  • 23.Henderson SJ, Timbs AT, McCarthy J, et al. Ten Years of Routine α- and β-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations[J] Hemoglobin. 2016;40(2):75–84. doi: 10.3109/03630269.2015.1113990. [DOI] [PubMed] [Google Scholar]
  • 24.Noguera NI, González FA, Dávoli RA, et al. A novel splice acceptor site mutation of the alpha2-globin gene causing alpha-thalassemia[J] Hemoglobin. 2001;25(3):311–315. doi: 10.1081/hem-100105224. [DOI] [PubMed] [Google Scholar]
  • 25.Lal A, Goldrich ML, Haines DA, et al. Heterogeneity of hemoglobin H disease in childhood[J] N Engl J Med. 2011;364(8):710–718. doi: 10.1056/NEJMoa1010174. [DOI] [PubMed] [Google Scholar]
  • 26.赖 永榕. 我如何治疗地中海贫血[J] 中华血液学杂志. 2018;39(11):892–894. doi: 10.3760/cma.j.issn.0253-2727.2018.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology

RESOURCES