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Abstract

Major depressive disorder (MDD) is a common comorbidity in chronic obstructive pulmonary disease (COPD), affecting up to
57% of patients with COPD. Although the comorbidity of COPD and MDD is well established, the causal relationship between
these two diseases is unclear. A large-scale electronic health record clinical biobank and genome-wide association study
summary statistics for MDD and lung function traits were used to investigate potential shared underlying genetic
susceptibility between COPD and MDD. Linkage disequilibrium score regression was used to estimate genetic correlation
between phenotypes. Polygenic risk scores (PRS) for MDD and lung function traits were developed and used to perform a
phenome-wide association study (PheWAS). Multi-trait-based conditional and joint analysis identified single-nucleotide
polymorphisms (SNPs) influencing both lung function and MDD. We found genetic correlations between MDD and all lung
function traits were small and not statistically significant. A PRS–MDD was significantly associated with an increased risk of
COPD in a PheWAS [odds ratio (OR) = 1.12, 95% confidence interval (CI): 1.09–1.16] when adjusting for age, sex and genetic
ancestry, but this relationship became attenuated when controlling for smoking history (OR = 1.08, 95% CI: 1.04–1.13). No
significant associations were found between the lung function PRS and MDD. Multi-trait-based conditional and joint
analysis identified three SNPs that may contribute to both traits, two of which were previously associated with mood
disorders and COPD. Our findings suggest that the observed relationship between COPD and MDD may not be driven by a
strong shared genetic architecture.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a leading cause
of morbidity and mortality globally, affecting 328 million people
and causing 3 million deaths per year (1). Comorbidities are
common among COPD patients (2,3). Individuals with comorbid
conditions report decreased quality of life (4–7), and the presence
of multiple comorbidities can increase mortality rates by as
much as 400% (8). Therefore, understanding the relationship
between COPD and its comorbidities is a research priority (9).

Psychiatric comorbidities are commonly reported in COPD
patients. Individuals with COPD have an increased prevalence
of major depression, with estimates ranging from 8 to 80%
(10–15). The prevalence of depression is higher in individuals
with more severe disease (10,11,14). Among individuals with
COPD, depression is associated with greater exacerbation, higher
rates of hospital re-admission, decreased medication adherence,
poorer quality of life and increased mortality (10–12,16–21).

The biologic mechanism underlying the relationship between
COPD and depression is unknown. Both disorders are highly
heritable, with an estimated genetic heritability of 25–37% for
COPD (22) and 28–51% for major depressive disorder (MDD)
(23–25). Heritability of lung function traits such as forced
expiratory volume in one second (FEV1) and forced vital capacity
(FVC), which are the basis for COPD diagnosis, are also high,
with estimated heritability ranging from 18 to 50% (26–28).
Systemic inflammation, hypoxemia and oxidative stress, and
shared environmental risk factors, such as smoking, have
been proposed as possible mechanisms linking these two
conditions (12,29–31). Smoking is a major risk factor for COPD,
and it may also be an independent risk factor for depression,
though the direction of this relationship is still debated (31–
33). Shared genetic risk factors have been investigated in a
small number of studies (34–37). A candidate gene study for
depression identified a small number of single-nucleotide
polymorphisms (SNPs) associated with increased COPD risk
(34). A large-scale phenome-wide association study (PheWAS)
conducted in the UK Biobank detected associations between
lung function genomic loci and depressive symptoms (35). These
studies suggest that the relationship between COPD and MDD
may be due to pleiotropy, where a single SNP affects two or more
distinct traits (38). However, a genome-wide association study
(GWAS) of depressive symptoms in smokers with COPD did not
identify any significant loci (36). A polygenic risk score (PRS) built
from a genome-wide gene-by-environment interaction study
of depressive symptoms identified a significant association
with COPD, but the underlying model assumed an interaction
between SNPs and stressful life events and therefore did
not examine purely genetic effects (37). Further complicating
the relationship between COPD and MDD is the presence
of sex differences in both disorders. MDD is more prevalent
in women, and women typically experience more severe
depressive symptoms than men (39). Genetic studies of MDD
have identified evidence of sex-specific risk variants and
transcriptional signatures (40,41). Women develop COPD at lower
smoke exposure than men and may experience more severe
disease and rapid respiratory decline compared with men with
similar smoking exposure (42–44). We investigated the genetic
relationship between COPD and MDD, using existing GWAS
summary statistics to test for genetic correlation and pleiotropy
between the traits. We leveraged electronic health records (EHR)
linked to genotyping data to explore shared genetic associations
between COPD and MDD using a PheWAS, an approach often

used to examine relationships between comorbid conditions
(45–47). We also performed sex-stratified analyses to investigate
possible sex differences in the relationship between MDD and
COPD. An overall schematic of our study design and methods is
provided in Supplementary Material, Figure S1.

Results
Study population

Our BioVU study population consisted of 72 447 European ances-
try individuals with 9 386 383 SNPs. Approximately 5% of the
BioVU population had a COPD phecode. COPD individuals were
older (median age 68 years) and more male (53.5%) than the
overall study population (median age 56 years and 44.0% male).
COPD patients had a higher prevalence of ever smoking (87.6%)
than the overall BioVU population (49.8%). The prevalence of
major depression (one or more depression phecodes) was higher
in COPD patients (8.8%) than among patients without a diagnosis
of COPD (3.5%) (Table 1).

Genetic correlation between MDD and lung function

We found low genetic correlations (Rg) between MDD and lung
function traits using linkage disequilibrium score regression
(LDSC). None of the genetic correlations between MDD and
lung function were statistically significant. The strongest
correlation between MDD and lung function was with peak
expiratory flow (PEF) (Rg = −0.035, P = 0.07). In contrast, we
observed strong and statistically significant correlation between
lung function traits (Table 2). Local genetic correlation showed
statistically significant peaks in Rg on chromosome 6 for both
FEV1/FVC (Bonferroni-corrected P-value = 8.62 × 10−3) and FEV1

and MDD (Bonferroni-corrected P-value = 4.38 × 10−6). However,
the maximum correlation values were still small (maximum Rg
for FEV1/FVC and MDD: 3.86 × 10−4, maximum Rg for FEV1 and
MDD: 3.36 × 10−4).

PheWAS analyses with lung function and MDD–PRS

We built PRS for lung function (818 738 SNPs) and MDD (803 205
SNPs) from publicly available GWAS summary statistics for lung
function measures and MDD. To confirm expected associations
with lung function, we used linear regression to test for the
association between the lung function PRS and their corre-
sponding pre-bronchodilator lung function traits in a subset
of BioVU patients with available lung function data. The PRS
were robustly associated with the corresponding lung function
traits (data not shown). We performed a PheWAS using logistic
regression models to examine associations between PRSs and
1857 phecodes in the entire study population. Cases and controls
were defined independently for each phecode, and phecodes
with <20 cases were excluded (N = 438 phecodes). The lung
function PRS were consistently associated with decreased COPD
in the PheWAS (Table 3). Similar associations were observed in
sex-stratified analyses, though the significance of the associa-
tion varied between lung function phenotypes (Supplementary
Material, Figs S2–S5). The MDD–PRS was significantly associated
with increased risk of mood disorders [odds ratio (OR) = 1.28,
95% confidence interval (CI): 1.25–1.32; P = 6.42 × 10−76] and MDD
(OR = 1.27, 95% CI: 1.22–1.32; P = 1.41 × 10−31) when adjusting for
age, sex and the first three principal components (PCs) (Table 3).
In sex-stratified analyses, the MDD–PRS was also significantly
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Table 1. Demographics of European ancestry BioVU population (2007–2019)

Characteristic COPD phecode
(N = 3466)

No COPD phecode
(N = 68 981)

Total
(N = 72 447)

Median age (IQR) 68 (60–76) 55 (35–68) 56 (36–68)
Gender (N, %)

Female 1615 (46.6) 38 969 (56.5) 40 584 (56.0)
Male 1851 (53.4) 30 010 (43.5) 31 861 (44.0)
Missing 0 2 2

Smoking status (N, %)
Ever 2435 (83.9) 20 861 (41.2) 23 296 (43.5)
Never 455 (16.1) 29 741 (58.8) 30 207 (56.5)
Missing 565 18 379 18 944

Major depressive disorder (N, %) 305 (8.8) 2385 (3.5) 2690 (3.7)

COPD, chronic obstructive pulmonary disease

Table 2. Genetic correlation between major depressive disorder and
lung function traits

Phenotype 1 Phenotype 2 Rg P-value

MDD FEV1/FVC −0.0011 0.95
MDD FEV1 −0.0325 0.07
MDD FVC −0.0307 0.10
MDD PEF −0.0351 0.07

FEV1/FVC FEV1 0.4046 2.66 × 10−89

FEV1/FVC FVC −0.0841 3.20 × 10−5

FEV1/FVC PEF 0.6273 0

FEV1 FVC 0.877 0
FEV1 PEF 0.7058 0

FVC PEF 0.4351 1.28 × 10−136

FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MDD,
major depressive disorder; PEF, peak expiratory flow.

associated with mood disorders and MDD (Supplementary Mate-
rial, Fig. S6, Supplementary Material, Table S1).

In addition to the expected phenotype associations, we
observed a significant association between the MDD–PRS and
COPD when adjusting for age, sex and the first three PCs
(OR = 1.13; 95% CI: 1.09–1.17; P-value =3.72 × 10−12) (Table 3,
Fig. 1A). Adjusting for smoking attenuated the association and
was no longer statistically significant (OR = 1.09; 95% CI: 1.04–
1.13; P = 8.07 × 10−5) (Table 3, Fig. 1B). Similar patterns were
observed for both men and women in the sex-stratified analyses
of PRS–MDD (Supplementary Material, Table S1, Supplementary
Material, Fig. S6). None of the lung function PRS were associated
with MDD in the smoking-adjusted or smoking-unadjusted
analyses (Table 3, Fig. 2). Similarly, no significant associations
between any of the lung function PRS and MDD were observed
in the sex-stratified analyses (Supplementary Material, Table S1,
Supplementary Material, Figs S2–S5).

Multi-trait conditional analysis to detect potential
pleiotropy

We used multi-trait-based conditional and joint analysis
(mtCOJO) to adjust MDD for the genetic effects of FEV1/FVC.
The majority of SNPs showed little to no change in the effect
estimate. The median percent change in the beta before and
after conditioning was 0%, with an inter-quartile range of −6–
5%. However, heterogeneity in dependent instrument outlier

approach (HEIDI-outlier) identified three SNPs (rs12040241,
rs7617480, rs12967855) with evidence of pleiotropy between MDD
and FEV1/FVC (Supplementary Material, Table S2).

Discussion
We evaluated the potential for shared genetic architecture
between lung function and MDD. We did not observe a
significant global genetic correlation between lung function
traits and MDD, consistent with prior work (48). In contrast,
genetic correlations between lung function traits ranged from
−0.08 to 0.87, similar to previous studies (35). Local genetic
correlation did identify a small but statistically significant
increase in genetic correlation on chromosome 6 in the human
leukocyte antigen region. This finding is consistent with the
known role of inflammation and the immune system in both
COPD (49,50) and MDD (51,52). We found that the PRS–MDD
was significantly associated with COPD in our PheWAS, but
this association was no longer statistically significant when
controlling for smoking. Conversely, none of the lung function
PRS showed a significant association with MDD in PheWAS
analyses, suggesting little shared genetic architecture between
lung function and MDD. However, using multi-trait conditional
analysis, we identified three potentially pleiotropic SNPs.
Interestingly, two of these SNPs were associated with both mood
and smoking traits in a prior GWAS (53–58). An intronic variant in
KLHDC8B, rs7617480, was previously identified as genome-wide
significant in GWAS of smoking cessation (53) and subjective
well-being (54). The second SNP, rs12967855, an intronic variant
in CELF4, was previously found to have genome-wide significant
associations with lifetime smoking index (55) and unipolar
depression (56–58).

Although we identified three potentially pleiotropic variants,
our findings do not provide strong evidence for a shared genetic
architecture between MDD and COPD. Smoking behaviors may
contribute to the relationship between MDD and COPD (32,33,59).
Cigarette smoking and nicotine dependence have been identi-
fied as potential confounding factors of the relationship between
COPD and mood disorders (59), and smoking may modify asso-
ciations between COPD and depression (31). Among individuals
with COPD, current smokers report higher rates of depression
symptoms and have increased mortality risks compared with
former smokers and individuals without depression (60,61). Pre-
vious studies have also shown that smokers with mental ill-
ness have higher mortality rates, particularly from respiratory
conditions (60,62–64). Further study is needed to understand

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab068#supplementary-data


622 Human Molecular Genetics, 2021, Vol. 30, No. 7

Table 3. Association of lung function and MDD–PRS with COPD and MDD in European BioVU participants (2007–2019)

PRS COPD MDD

ORa 95% CIa ORb 95% CIb ORa 95% CIa ORb 95% CIb

FEV1 0.87 0.84–0.90 0.87 0.84–0.90 1.00 0.96–1.04 0.99 0.95–1.03
FVC 0.94 0.91–0.98 0.95 0.91–0.99 1.00 0.96–1.04 0.99 0.95–1.03
FEV1/FVC 0.83 0.81–0.86 0.83 0.80–0.87 1.00 0.96–1.04 1.01 0.97–1.05
PEF 0.89 0.86–0.92 0.88 0.85–0.92 1.03 0.99–1.07 1.03 0.99–1.07
MDD 1.13 1.09–1.17 1.07 1.03–1.12 1.27 1.22–1.32 1.24 1.19–1.30

COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MDD, major depressive disorder; PEF, peak
expiratory flow; OR, odds ratio; CI, confidence interval.
aModel adjusted for age, sex and first three principal components (N = 72 445).
bModel adjusted for age, sex, first three principal components and ever smoking (N = 53 503).

the underlying mechanisms linking smoking, COPD and MDD
(59–61).

This study has several strengths and considerations. We used
available summary statistics from large, well-powered GWAS to
conduct our analyses (35,65,66). We also used the rich BioVU
resource with extensive clinical data allowing us to examine
multiple phenotypes. Our study is limited by the inclusion
of only European ancestry participants. PRS performance
decreases in cross-ancestry analysis (67,68), and the limited
number of lung function GWAS that have been conducted
in African Americans have had small sample sizes with few
genome-wide significant findings (69,70). Further research
is needed to understand the genetic relationship between
COPD and MDD in non-European descent populations. Another
limitation of our study is the lack of a replication population
to validate our findings. However, our findings are consistent
with prior research (35,48). Finally, our study relied on EHR data,
which can present challenges due to data missingness and
misclassification (71–75). We chose to use phecodes to define
phenotypes in our study, as previous research has demonstrated
that phecodes better capture clinical disease than International
Classification of Disease (ICD) codes alone (76). For the majority
of phenotypes, we expect the effects of misclassification to be
minimal or biased toward the null (77,78). We also encountered
challenges due to missingness, particularly for smoking data
(Table 1), which is prone to high rates of missingness and
inaccuracies in EHR (79–82). Individuals who were missing
smoking data were younger and had a lower prevalence of COPD
than those with available smoking information (Supplementary
Material, Table S3), thus relying on complete case analysis may
limit the generalizability of our findings.

In conclusion, we found that the elevated prevalence of MDD
in COPD cannot be solely explained by shared genetic risk fac-
tors. Our findings suggest a role for shared environmental or
behavioral risk factors, such as smoking. We identified three
potentially pleiotropic SNPs that can be prioritized in future
studies of MDD and COPD. These findings require further inves-
tigation into the biological underpinnings between MDD and
COPD to elucidate the causal mechanism underlying their rela-
tionship.

Materials and Methods
Study population

Our study population included participants in the Vanderbilt
University Medical Center BioVU clinical repository (2007–2019).
BioVU is a DNA biobank linked to de-identified EHR clinical

data, dating back to the 1980s (83). We limited our study pop-
ulation to BioVU individuals of European ancestry previously
genotyped on the Illumina Infinium Multi-Ethnic Genotyping
Array. Demographic data (sex, age at last record), smoking, ICD-
9 and ICD-10 codes, and pulmonary function data (2011–2019)
were extracted from structured fields in the EHR using natural
language processing.

We selected individuals of European ancestry using PC anal-
ysis implemented in EIGENSTRAT (84,85). We performed stan-
dard quality control and imputed genotypes to the Haplotype
Reference Consortium with the Michigan Imputation Server (86).
Genotypes were hard-called using default settings (P > 0.1) in
PLINK 1.9 (87,88).

GWAS summary statistics

To investigate potential pleiotropy between lung function and
MDD, we used publicly available summary statistics from pre-
viously performed GWAS in individuals of European ancestry.
Summary statistics were obtained from a large-scale GWAS of
lung function (FEV1, FVC, FEV1/FVC and PEF) (35) and from a
meta-analysis of two genome-wide studies of MDD (65,66).

Genetic correlation

We calculated the overall Rg between traits using LDSC software
and a reference linkage disequilibrium (LD) score panel derived
from European 1000 Genomes populations (89,90). To calculate
local genetic correlation, we used Heritability Estimation from
Summary Statistics (ρ-HESS) with a European LD reference panel
provided by the software authors (91).

Polygenic risk scores

To build PRS, we used polygenic risk score-continuous shrink-
age to estimate posterior effect sizes of SNPs with continuous
shrinkage priors in each GWAS (92). We then applied the score
function in PLINK 1.9 (87,88) to calculate a PRS for each individual
in BioVU. PRS were normalized by subtracting the mean and
dividing by the standard deviation.

PheWAS

We explored the relationship between each PRS and EHR
phenotypes in a PheWAS (93). We performed logistic regression
analysis to examine associations between PRS and 1857
phecodes. Phecodes are defined by aggregating similar ICD-9
and ICD-10 billing codes (76,94) and have been used extensively
in prior studies (95–108). We mapped extracted ICD-9 and ICD-10
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Figure 1. Phenome-wide association study among BioVU participants (2007–2019) of major depression polygenic score, adjusted for (A) age, sex and first three principal

components, and (B) age, sex, first three principal components and ever smoking.

billing codes from BioVU to phecodes using the PheWAS R pack-
age (109). Phecodes with fewer than 20 cases were excluded from
analyses. Models were adjusted for age at last visit, sex, smoking
(ever/never) and three PCs estimated using EIGENSTRAT (84,85)
to adjust for potential confounding by genetic ancestry. We also
performed sex-stratified PheWAS using the same parameters
and covariates as in the main analysis, with the exception
of sex as a covariate. A type 1 error rate of alpha = 0.05/1857
phecodes = 2.69 × 10−5 was set for inference of statistical
significance.

Multi-trait conditional analysis

We performed mtCOJO to investigate cross-phenotype effects
(110). We evaluated the change in effect size for SNPs in the
FEV1/FVC GWAS before and after conditioning on MDD. We also
implemented HEIDI-outlier, incorporated into mtCOJO meth-
ods, to detect potentially pleiotropic SNPs (110). We used the
National Human Genome Research Institute-European Bioin-
formatics Institute (NHGRI-EBI) GWAS Catalog (111) and the
National Heart, Lung, and Blood Institute (NHLBI) Genome-Wide
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Figure 2. Phenome-wide association study among BioVU participants (2007–2019) of (A) FEV1, (B) FVC, (C) FEV1/FVC and (D) PEF polygenic scores, adjusted for age, sex,

first three principal components and ever smoking.

Repository of Associations Between SNPs and Phenotypes (112)
to look up prior associations for identified SNPs.

Supplementary Material
Supplementary material is available at HMG online.
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