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Summary

A frequent assumption in value-based decision-making tasks is that agents make decisions based 

on the feature dimension that reward probabilities vary on. However, in complex, 

multidimensional environments, stimuli can vary on multiple dimensions at once, meaning that the 

feature deserving the most credit for outcomes is not always obvious. As a result, individuals may 

vary in the strategies used to sample stimuli across dimensions, and these strategies may have an 

unrecognized influence on decision-making. Sex is a proxy for multiple genetic and endocrine 

influences on decision-making strategies, including how environments are sampled. In this study, 

we examined the strategies adopted by female and male mice as they learned the value of stimuli 

that varied in both image and location in a visually-cued two-armed bandit, allowing two possible 

dimensions to learn about. Female mice acquired the correct image-value associations more 

quickly than male mice, and they used a fundamentally different strategy to do so. Female mice 

were more likely to adopt a strategy of constraining their decision-space early in learning by 

preferentially sampling one location over which images varied. Conversely, male mice tended to 

be inconsistent - changing their choice frequently and responding to the immediate experience of 

stochastic rewards. Individual strategies were related to sex-biased changes in neuronal activation 

in early learning. Together, we find that in mice, sex is linked with divergent strategies for 

sampling and learning about the world, revealing substantial unrecognized variability in the 

approaches implemented during value-based decision-making.

Introduction

Value-based decision-making tasks are used to determine the cognitive and neural 

mechanisms for reward learning and choice [1–4]. One frequent assumption is that agents 
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make their decisions based on the feature dimension that the experimenter has designed the 

reward probabilities to vary on. However, in complex, multidimensional environments, 

stimuli can vary on multiple feature dimensions such as identity and location 

simultaneously, and the features that predict reward outcomes are not always obvious [5]. As 

a result of this complexity, differences in learning and decision-making within and between 

individuals could result as much from differences in the strategies employed to learn, as they 

could from the capacity to learn. Understanding the diversity of strategies employed during 

multidimensional decision-making, and the factors that influence strategy selection, is not 

only essential for understanding typical decision-making, but also vulnerability to 

neuropsychiatric disease [6–9].

Rodents, particularly mice, are increasingly used to probe the neural mechanisms of value-

based decision-making [3,10–14], and can be tested in large numbers to allow the analysis of 

individual differences in decision strategies, including the influence of sex differences. Sex 

is a proxy for multiple genetic, developmental, and endocrine mechanisms that vary across 

individuals [15–17] and could be a source of diversity in learning strategies [18–20]. Indeed, 

sex differences in rodents (and gender differences in humans) appear in a variety of value-

based decision-making tasks, but these effects are frequently inconsistent with a simple 

difference in learning rates [21–23], suggesting sex influences on latent strategies as an 

alternative hypothesis. However, much of this literature has used tasks with low trial counts 

and/or choices that vary on only one dimension, which are not well-suited to elucidating the 

strategies employed during decision-making in higher dimensional environments.

To determine whether there are sex differences in the strategies employed during value-

based decision-making, we trained male and female mice on a two-dimensional decision-

making task: a visual bandit [1,2,4,24–28]. While all animals eventually reached the same 

performance level, female mice learned more rapidly than males on average. Because choice 

could vary in two dimensions [29,30], we asked whether individual animals were adopting 

different strategies during learning. Sex explained a substantial fraction of individual 

variability in strategy. Female mice were more likely to systematically confine their choices 

to one spatial location, accelerating their learning about image values by constraining the 

decision-space. Conversely, males used a combination of image and spatial dimensions, 

were sensitive to the stochastic experience of reward, and changed choice strategies 

frequently. During early learning, gene expression for the neuronal activation marker c-fos in 

the nucleus accumbens and prefrontal cortex significantly correlated with the female-biased 

strategy. These results show that individuals adopt widely divergent strategies for interacting 

with the same uncertain world, and that sex is a factor in guiding these strategies.

Results

Age-matched male and female wildtype mice (n=32, 16 per sex) were trained to perform a 

visually-cued two-armed bandit task (Figure 1a). This visually-cued task design was similar 

to those employed in humans and nonhuman primates [1,2,4,24–28,31,32], in contrast to the 

spatial bandit designs frequently employed with rodents [33–36]. Animals were presented 

with a repeating set of two different image cues which were each associated with different 

probabilistic reward outcomes (80%/20%) (Figure 1b). Reward contingencies were yoked to 
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image identity, which was randomized with respect to location on each trial. This means that 

the sides (left/right) where image cues appeared were not informative of the reward 

contingencies. We repeated the task with six different sets of image pairs. Two out of six 

image pairs were excluded before analysis due to extremely high initial preference (>70%) 

for one image. We included four image pairs with equal initial preference for each image 

and quantified behavioral data in bins of 150 trials for each animal.

Females showed accelerated learning, but males and females reached equivalent final 
performance

To examine learning, we first calculated the average probability of choosing the high-value 

image (23 bins in total). Regardless of sex, mice eventually learned which image was 

associated with the higher reward probability (Figure 1c, GLM, main effect of sex, p = 0.51, 

β1 = - 0.05; main effect of number of trials, p < 0.0001, β2 = 0.10, see equation 1 in 

Methods). However, females repeatedly learned the image pair discrimination significantly 

faster than did males (GLM, interaction term, p < 0.05, β3 = −0.02). We compared these 

results to a deterministic version of the task in the same animals, in which one image was 

always rewarded (100%) and the other was never rewarded (0%). We did not find any 

significant sex difference in rate of learning across trials in the deterministic task (Figure 

1d), suggesting the difference was revealed by the stochastic experience of reward.

Females systematically reduced the dimensions of the task by strongly preferring one side

Since rodents are generally highly spatial, we hypothesized that mice might have a bias 

towards using spatial information earlier in the task before they learned the reward 

contingency. Consistent with our hypothesis, we observed a short period of heightened side 

bias [37] (either left or right in females early in learning (Figure 1e) which seemed to 

precede the acquisition of the reward contingency. Following this period, female mice 

improved their percentage of choosing high-value image more rapidly than males (GLM, 

main effect of sex, p < 0.001, β1= −0.129; main effect of number of trials, p < 0.001, β2 = 

−0.017).

An outcome-insensitive side bias is only one of several “local strategies” that mice could 

have been using as they learned the reward contingencies. For example, mice could have 

been using an outcome-sensitive win-stay strategy based on spatial or image dimension, 

where the side or image is repeated if it was rewarded. Likewise, animals could use an 

outcome-sensitive image win-stay strategy, or an outcome-insensitive image bias. To 

understand how these different local strategies were employed by mice over time, we 

constructed a generalized linear model (GLM) to predict each choice based on a weighted 

combination of local strategies. The model had a term to account for two classes of basic 

strategies: outcome-independent (bias) strategies and outcome-dependent (win-stay) 

strategies (Figure 2a, see Equation 4 in Methods). Fitting the GLM allowed us to estimate 

how much each of these four strategies was employed within each animal in each bin of 150 

trials. We will call this set of beta weights -- the precise pattern of local strategies employed 

over time -- the “global strategy” employed by each individual animal.
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Across all animals, we found that a specific pattern of local strategies was used when 

learning image pairs (Figure 2b). Animals showed an early tendency towards repeating one 

side, giving way to an image win-stay, and finally repeating an image (the optimal strategy) 

late in learning. To examine whether sex influenced the strength of this global strategy, we 

compared the global strategy beta weights used by male and female animals. We observed 

this consistent and pronounced pattern of strategy procession only in females (Figure 2c). In 

contrast, in males we found a markedly reduced influence of either spatial strategy, while the 

weight of both image-based strategies increased slowly over time (Figure 2d).

To examine how individuals varied in their use of local strategies, regardless of sex, we used 

an unsupervised method: principle component analysis (PCA). We represented each 

animal’s behavior as the set of beta weights for the four local strategies identified above, in 

each trial bin and for each image pair. The principal components of the set of individual 

strategy vectors then reflect the axes that explain the most inter-individual variability in 

these beta weights, meaning that combinations of local strategies over time that differ the 

most between individuals. Principal components (PC) 1 and 2 captured the majority of the 

interindividual variance: 59% of the variability between animals (Figure 2e). PC1 reflected a 

global preference for side- or image-based responding and did not significantly differ 

between sexes (receiver operating characteristic analysis, AUC = 0.43; females = 0.03, 

males = −0.03; mean(F-M)0.07, 95% CI = [−1.70, 1.80], t(30) = 0.08, p > 0.9). PC2, 

however, mirrored the spatial-to-image pattern of local strategies observed primarily in 

female mice (Figure 2c–d). This principal component explained a large fraction (22%) of the 

interindividual variability in our animals. Principal component 2 was identified as a pattern 

of strategies across individuals without regard to sex; however, females and males were 

highly discriminable in terms of their PC2 scores (AUC = 0.86, females = 0.98, males = 

−0.98; mean(F-M) = 1.96, 95% CI = [0.87, 3.05], t(30) = 3.67, p < 0.001). Though the sexes 

were not categorically distinct along this axis, they were highly discriminable and most 

males had negative PC2 scores (Figure S1). No other PCs differed between sexes (all AUC < 

0.6, all p > 0.4). There were no significant differences in PC2 score of each image pair 

within each animal (main effect of image pair: F(3,90)= 0, p>0.99; subject matching 

(F(30,90) = 5.724, p <0.0001). Thus, the PC2 score of each animal was stable across all four 

image pairs, suggesting that PC2 score reflects a property of an individual animal, but not of 

the immediate task or a specific image pair. Together, these results demonstrated substantial 

inter-individual variability in strategy selection in the same multidimensional decision-

making task and suggest that one major axis of strategic variability is sex.

Female-biased early side preference did not speed decision making

The global strategy pattern identified by our GLM and principal components analysis was 

preferentially employed by females as they learned the task, suggesting that this strategy 

might be responsible for faster acquisition of image-value responding in females. However, 

it remained unclear why this might be the case. One possibility is that the early side 

preference strategy was a fast and frugal heuristic for decision-making. Studies show 

decision-makers use simplifying heuristics to minimize cognitive demands [38–41]. Since 

heuristics are simplifying mental shortcuts [38] and choice response time is proportional to 

the computational complexity of the strategy used to make choices [42–44], the use of 
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heuristics should speed decision-making. Therefore, to determine whether the early side-bias 

was a kind of simplifying heuristic, we asked whether it sped reaction time for decisions. 

Specifically, we asked whether (1) females responded faster across all trials, and (2) whether 

females were fastest when the side preference was the strongest. We computed average RTs 

across 23 bins of 150 trials for males and females. Contrary to our hypothesis, female 

reaction times were slower during early learning (bin 1–15) (GLM, interaction term, β3 = 

0.03, p = 0.0007, see equation 1 in Methods) and significantly slower than males across all 

trials (GLM, main effect of sex, β1 = −0.62, p < 0.0001; males = 1.89, SD = 0.13; females = 

2.04, SD = 0.21). The reaction time decreased as the animals ran more trials in both males 

and females (Figure 3a, GLM, main effect of number of trials, β2 = −0.04, p<0.0001). 

Critically, this was not due to sex differences in motor performance as there was no 

difference between response time in males and females in the deterministic schedule (Figure 

S2).We conclude that early side preference in females did not speed their decision-making, 

and thus was unlikely to be a simplifying heuristic.

We next considered two additional hypotheses. Slow response times in females could reflect 

increased conflict between intrinsic side preference and value-based choice compared to 

males. If this is true, then females would only be slower than males when conflict is present: 

when they choose a non-preferred side. When choosing the preferred side, they may even be 

faster than males. However, we found that the response time of females was significantly 

longer than that of males both when choosing a non-preferred side (Figure 3b, GLM, main 

effect of sex, β1 = −0.58, p < 0.0001) and when choosing a preferred side (GLM, main 

effect of sex, β1 = −0.42, p < 0.0001). This effect was strongest in the earliest stages of 

training (GLM, preferred side: main effect of number of trials, β2 = −0.04, p < 0.0001, 

interaction term, β3 = 0.02, p = 0.001; nonpreferred side: main effect of number of trials, β2 

= −0.03, p < 0.0001, interaction term, β3 = 0.02, p = 0.007). Therefore, slower response 

times in females were not driven solely by those trials with a conflict between preferred side 

and value, but did seem to be enhanced in the earliest stages of training when it was least 

clear what the optimal choice was, and decisions might be more demanding as a result.

This led to a third hypothesis: that female response times were slower because this global 

strategy pattern was more computationally demanding. If so, females would have slower 

response times during both preferred and non-preferred side choices, as observed. If the 

female-biased global strategy procession was computationally expensive or time consuming 

to execute, then individual variability in the use of this strategy should predict variability in 

response time. We quantified individual variability in strategy with PC2 scores and asked 

whether there was a direct correlation between PC2 score and reaction time across 

individuals, regardless of sex. PC2 scores were positively correlated with reaction time 

(Figure 3c, Spearman’s correlation, rs = 0.452, p = 0.009; Pearson’s correlation, r = 0.347, p 

= 0.051), suggesting that the animals using the early side bias strategy tended to make 

slower decisions. The fact that the nonparametric Spearman correlation was significant but 

the Pearson correlation was not implied that the relationship between these variables was 

probably nonlinear. However, this analysis cannot rule out the possibility that this 

relationship between PC2 and RT is mediated by some nonlinear effect of sex on both PC2 

and RT. Regardless, although we tend to think of a side-bias as not cognitively demanding, 

here, the animals that were slowest to make decisions were those who used this strategy. 
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This is difficult to reconcile with the idea that the females used this strategy as a fast and 

frugal heuristic.

Male strategies were not more random

Although our regression analyses captured the procession of strategies typically employed as 

female mice that learned the task, they provided little insight into what the males were doing 

during early learning. Substantial prior research has found higher impulsive and exploratory 

behavior in males compared to females [21,45–48], so perhaps males, as a group, lacked a 

coherent strategy because they simply chose randomly before the reward contingencies were 

learned. Instead, across several analyses, we found that males’ choices depended more on 

both past outcomes and past choice history than females’.

One classic, agnostic measure of outcome sensitivity is response time speeding. Males 

responded significantly faster when they had just received a reward (Figure 3d and 3e, one-

sample t-test, mean RTreward – RTno reward = −0.14, 95% CI = [−0.23, −0.05], t(15) = −3.38, 

p = 0.004). Conversely, the reaction times of females were not systematically affected by the 

outcome of the last trial (mean RT effect = −0.03, 95% CI = [−0.13, 0.06], t(15) = −0.75, p = 

0.47). These results reinforce the idea that females were following a global strategy, but not 

the idea that males lacked evidence of a global strategy because they were more random. 

Instead, males were more sensitive to reward outcomes than females in terms of response 

time.

We next examined whether males’ choices, in addition to their response times to make those 

choices, was also more outcome sensitive than females. Although our regression results did 

not suggest that males were more likely to follow a classic win-stay/lose-shift policy than 

females (see also Figure S3), win-stay/lose-shift could not capture all possible reward-

dependent behaviors in this two-dimensional task. For example, rather than always repeating 

a side or an image after reward, animals could have different policies for different 

combinations of sides or images, or follow outcome-based alternation rules. To account for 

the breadth of ways that animals could be responding to reward, we compared the pattern of 

choices following rewards with the pattern following no-reward, allowing us to estimate how 

much animals adapted their choices in responses to rewards without assuming what those 

choices were. We found that males’ choices were much more outcome sensitive. Male’s 

choices after a reward, compared to females’, diverged more from their behavior after non-

reward (Figure 4a, GLM, main effect of sex, β1 = 4.55, p < 0.0001). Note that the optimal 

strategy in this task is to consistently choose the high reward image regardless of outcome. 

Consistent with this, both males and females learned to become less reward sensitive over 

time (Figure 4a, main effect of number of trials, β2 = −0.99, p < 0.0001). Thus, males were 

more outcome sensitive than females when measured either by response time or by choice, 

again suggesting that males were not more random.

The males’ choices were more organized with respect to past reward than females, but were 

they also more organized with respect to their previous choices? Within each block of trials 

in each animal, we calculated conditional mutual information for each bin [49,50], which 

quantifies the dependence of current choices (side, image) on the previous choice given the 

outcome of the previous trial (Figure 4b). Note that this is related to our previous regression 
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results in Figure 2b–d, but allows us to quantify structure in a model-free way. The result 

suggested that mutual information decreased over time in both sexes, reflecting the gradual 

acquisition of the optimal strategy for this task (repeat high-value image no matter the 

previous trial) (Figure 4b, GLM, main effect of number of trials, β2 = −0.001, p =0.0002, 

see equation 1&5 in Methods). However, the mutual information of male mice was higher 
than that of females (main effect of sex, β1 = 0.043, p < 0.0001), particularly early in 

learning (interaction term, β3 = - 0.002, p < 0.0001). This suggests that male strategies were 

not only more outcome-sensitive but also more dependent on their past choices, again 

indicating that the strategy employed by males was not a random one.

Males changed their strategies more over time

Although males were more outcome and choice sensitive than females, our regression 

analysis did not show a pronounced or unified strategy pattern preferred by males. This 

could suggest that males were less consistent in their choice of strategy across individuals 

and/or across time (i.e. within the same individual). To test these hypotheses, we used a 

model-free analysis to compare how similar one set of choices was to another (similar to our 

approach in Figure 4a). We expressed the choices in each bin as a probability vector, with 

each element of the vector reflecting the probability of that unique combination of behaviors 

{last choice, last outcome, current choice}. The average angle between any two of 

probability vectors reflects the variability in choices across conditions. Males were not more 

idiosyncratic than females on a population level; the choices of any given male were not 

more variable from other males than any given female’s choices were from other females 

(Figure 4c, GLM, main effect of sex, β1 = −1.47, p = 0.11). However, a given male was 

more variable within himself, both across trial bins within one image pair (Figure 4d, GLM, 

main effect of sex, β1 = 4.24, p < 0.0001; Figure S4 for the same analysis across non-

adjacent blocks) and across multiple image pairs (Figure 4e, GLM, main effect of sex, β1 = 

4.54, p = 0.047). Overall, the variability in choices captured by these analyses decreased 

across time as the divergent strategies used by individual animals started to converge to the 

optimal strategy (GLM, main effect of number of trials, within sex between subject: β2 = 

−0.78, p < 0.0001; within subject across bins: β2 = −0.359, p < 0.0001). Together, these 

results suggest that individual males tended to change their strategies over days and 

repetitions of the same task, while females employed a systematic strategy to each 

repetition.

Choice patterns are high dimensional, so to visualize the change or stability in strategies in 

two dimensions we used multidimensional scaling [51–53] to visualize “strategy paths” 

throughout learning. This allows us to see the similarity between patterns of choice across 

animals over time and across repetitions (Figure 4f). Both representative male and female 

“strategy paths” approached the optimal strategy over time. Consistent with the 

quantification described above, the strategy path of males are visibly more variable and 

different across repetitions of the task, whereas the strategy path of a given female tends to 

be more consistent across repetitions.
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Sex mediated the ability of neuronal activity to explain strategy selection

Learning and decision-making is highly sensitive to alterations in corticolimbic structures. 

However, it remains unclear how alterations in these structures predict choice strategy, much 

less sex differences in strategy. To address this question, we examined neuronal activity in 

several corticolimbic brain regions through the expression of c-fos, an immediate early gene 

that is a marker of neuronal activation. The animals were sacrificed after the second day of a 

new, final image-reward pair (after 400–500 trials), corresponding to when the female side 

bias was greatest. We compared mRNA expression level for c-fos in homogenized pieces of 

tissue from five brain regions, including nucleus accumbens (NAc), dorsal medial striatum 

(DMS), amygdala (AMY), hippocampus (HPC), and prefrontal cortex (PFC), using 

quantitative real-time PCR (Figure 5a). In each region, females had a higher c-fos expression 

than males (unpaired t-test, NAc: t(30) = 2.41, p = 0.02; DMS: t(30) = 2.31, p = 0.03; AMY: 

t(30) = 4.05, p < 0.001; HPC: t(30) = 2.74, p = 0.01; PFC: t(29) = 3.163, p = 0.003).

To understand whether activation of any of these brain regions correlated with the side bias 

strategy, we constructed a GLM to predict PC2 from c-fos levels in each brain region. The 

results suggested that only two regions, the NAc and PFC predicted strategy use, as indexed 

by PC2 score (Figure 5b, GLM, NAc: β1 = 0.72, p = 0.02; DMS: β2 = 0.48, p = 0.14; AMY: 

β3 = 0.52, p = 0.10; HPC: β4 = 0.55, p = 0.08; PFC: β5 = 0.75, p = 0.02; sex was included 

as a variable in the model and was also significant: β6 = 0.99, p = 0.0009, equation 2 in 

Methods). Correlations between c-fos expression in NAc/PFC and PC2 scores were further 

confirmed with a Pearson product-moment correlation (Figure 5d–e, NAc: r = 0.40, n = 32, 

p < 0.03; PFC: r = 0.41, n = 32, p < 0.02). No region predicted PC1 scores in an identical 

analysis. Because each region was also correlated with sex (and sex independently predicted 

PC2), NAc and PFC could have been the best predictors of PC2 because these regions were 

the most strongly correlated with sex (Figure 5c). However, sex was most strongly correlated 

with AMY, which was not a significant predictor of PC2. This evidence is circumstantial, 

however, and with 16 subjects per sex we lacked the power to measure the correlation 

between cfos and PC2 within each sex. To understand if sex mediated the relationship 

between NAc and PFC c-fos activity and PC2 scores, we used a structural equation 

modeling (SEM) approach [54,55] to analyze the relationship between sex, gene expression, 

and PC2 and latent constructs (Figure 5f; Table S1). The results suggested that sex was a 

significant mediator of the relationship between neural activation and PC2 in both NAc and 

PFC, highlighting these regions as promising targets for future studies looking at the effects 

of sex on the neural circuits responsible for implementing strategic learning.

Discussion

Male and female mice used a range of problem solving strategies in a stochastic two-

dimensional decision-making task. In the task, each cue had two dimensions - the identity of 

the image and the location of the image - but animals did not appear to know which was 

most predictive of reward. Although both male and female mice eventually learned to 

choose the high-value image, female mice learned faster. The dimensionality of the task 

allowed us to uncover sex differences in how the animals achieved the associations across 

time. We discovered that female mice were more likely to adopt a consistent and systematic 
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strategy procession over time that constrained the search space early in learning by 

preferentially sampling the outcomes of images on one side (left or right). This approach, 

which occurred when animals were most uncertain about the best choice, may have 

permitted more rapid acquisition of the image-value association. In contrast, males were less 

likely to employ this systematic approach, and instead responded to a combination of visual 

and spatial dimensions, changed their approach frequently, and were strongly influenced by 

the immediate prior experience of reinforcement. While animals of both sexes reached 

equivalent levels of performance, the strategic paths individuals took to get there varied 

dramatically.

Sequential decision-making and learning in rodents is often studied with spatial bandit tasks, 

in which reward probabilities are linked to sides that are visually identical [1,4,11,13,33,56]. 

In these spatial bandit tasks, side bias in choice has sometimes been equated with inflexible, 

automatized habitual behaviors and animals displaying such bias were often excluded from 

experiments [57–59]. However, the slower choice response time in side-biased females 

suggests that the early side preference was more likely to be cognitively demanding than a 

heuristic. The animals that used this approach appeared to “jump start” their learning, 

suggesting that side-biased animals may covertly learn about the correct dimension while 

behaviorally selecting the wrong item, and were able to convert this to successful learning 

due to the stability of the task structure.

Traditional reinforcement learning (RL) models often employ simplifying assumptions that 

agents select actions 1) based only on reward-associated dimensions and 2) in a consistent 

manner across learning. Our findings indicate that naturalistic learning can violate both of 

these assumptions, yet be successful. Analyses like the ones we perform here could help 

inform the design of RL models in future work. For example, hierarchical RL models [60] 

can deal with changes in strategies over time, and multidimensional RL models can 

incorporate feature-based and higher dimensional learning [61].

Our data implicate the prefrontal cortex (PFC) and nucleus accumbens (NAc) in the 

differences in strategy between males and females. These regions have been widely 

implicated in reward-guided decision-making, but so have the other regions we tested for 

which we didn’t find a significant relationship to these strategies [2,29,62]. One possibility 

is that the PFC and accumbens are particularly engaged in strategic decision-making. This 

resonates with previous studies that have implicated the PFC in implementing strategies and 

rule-guided behaviors [56,63–68] and the NAc in selecting and implementing learning 

strategies [29,30]. Implementing different strategies produces changes in how different 

choice dimensions are represented in the PFC and NAc [41], and lesions in the NAc can 

drive animals towards a low-dimensional action-based strategy or prevent animals from 

switching between strategies [2,30]. These signals could be sex-biased: the PFC is sensitive 

to gonadal hormones during risky decision-making [69], and dopaminergic function in the 

accumbens has sex-specific effects on risky decision-making[70], perhaps due to sex 

differences in dopamine neurons [71]. Our result, that the relationship between neural 

activity and strategy was mediated by sex, is broadly consistent with this growing literature.
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One fundamental unanswered question is why females tended to employ a shared and 

systematic strategy. Zador (2019) recently proposed that much of animal behavior is not 

dictated by supervised or unsupervised learning algorithms, but instead by biological 

constraints [72]. “Habitual” or repetitive choice behaviors tend to be enhanced in females 

[21,22,73] hinting at a shared mechanism. Sexual differentiation involves multiple 

mechanisms, many of which influence reward-guided decision-making circuits [71,74]. For 

example, while testosterone increases effort expenditure and impulsive behavior [65–67], 

estradiol limits high-effort choices [16,69,75]. Sex chromosomes also independently 

influence such behaviors [15] with elevated habit in XX carriers and increased effort in XY 

carriers [76,77]. It is important to note that such influences of sexual differentiation are 

graded, rather than dichotomous, and can interact with non-sex biological mechanisms in 

complex ways. Indeed, here we found that a small number of males adopted a similar 

approach to most females, implicating the graded engagement of both sex difference and 

non-sex difference mechanisms in the degree of adoption of sex-biased exploratory 

strategies we observed here. An intriguing possibility is that the spectrum of behaviors we 

observed across animals, from systematic to volatile, may emerge from sex-biased tuning of 

learning strategies that were critical to survival for the species as a whole.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Nicola Grissom (ngrissom@umn.edu)

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Data and software are available upon request to the Lead 

Contact, Nicola Grissom (ngrissom@umn.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty-two BL6129SF1/J mice (16 males and 16 females) were obtained from Jackson 

Laboratories (stock #101043). Mice arrived at the lab at 7 weeks of age, and were housed in 

groups of four with ad libitum access to water while being mildly food restricted (85–95% 

of free feeding weight) for the experiment. Animals engaging in operant testing were housed 

in a 0900–2100 hours reversed light cycle to permit testing during the dark period, between 

09:00 am and 5:00 pm. Before operant chamber training, animals were food restricted to 

85%−90% of free feeding body weight and had been pre-exposed to the reinforcer (Ensure). 

Pre-exposure to the reinforcer occurred by providing an additional water bottle containing 

Ensure for 24 hours in the home cage and verifying consumption by all cagemates. Operant 

testing occurred five days per week (Monday-Friday), and the animals were fed after 

training with ad lib food access provided on Fridays. All animals were cared for according to 

the guidelines of the National Institution of Health and the University of Minnesota.
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METHOD DETAILS

Apparatus.—Sixteen identical triangular touchscreen operant chambers (Lafayette 

Instrument Co., Lafayette, IN) were used for training and testing. Two walls black were 

acrylic plastic. The third wall housed the touchscreen and was positioned directly opposite 

the magazine. The magazine provided liquid reinforcer (Ensure) delivered by a peristaltic 

pump, typically 7ul (280 ms pump duration). ABET-II software (Lafayette Instrument Co., 

Lafayette, IN) was used to program operant schedules and to analyze all data from training 

and testing.

Operant Training and tasks

Pretraining.: Animals were exposed daily to a 30-min session of initial touch training, 

during which a blank white square (cue) was presented on one side of the touchscreen, 

counterbalancing left and right between trials. This schedule provided free reinforcement 

every 30 seconds, during which the cue was on. If animals touched the cue during this 

period, a reward three times the size of the regular reward was dispensed (840 ms). This led 

to rapid acquisition. Following this, animals were exposed daily to a 30-min session of must 

touch training. This schedule followed the same procedure as the initial touch training, but 

free reinforcers were terminated and animals were required to nose poke the image in order 

to obtain a regular reward (7-uL, 280 ms).

Deterministic pairwise discrimination training.: Animals were exposed to 10 days of 

pairwise discrimination training, during which animals were presented with two highly 

discriminable image cues (“marbles” and “fan”). One image was always rewarded and the 

other one was not. Within each session, animals completed either 250 trials or spent a 

maximum of two hours in the operant chamber (typically these mice completed ~200 trials/

day).

Two-armed bandit task.: Animals were trained to perform a two-arm visual bandit task in 

the touchscreen operant chamber. On eEach trial, animals were presented with a repeating 

set of two different images on the left and right side of the screen, counterbalancing left and 

right across the session. Responses were registered by nose poking to one of the displayed 

images on the touchscreen. Nose poke on one image triggered a reward 80% of the time 

(high payoff image), whereas the other image was only reinforced 20% of the time (low 

payoff image). Following the reward collection, which was registered as entry and exit of the 

feeder hole, the magazine would illuminate again and the mouse must re-enter and exit the 

feeder hole to initiate the next image trial. If the previous trial was unrewarded, a 3-second 

time-out was triggered, during which no action could be taken. Following the timeout, the 

magazine would illuminate and the mouse must enter and exit the feeder hole to initiate the 

next image trial. The ABET II system recorded trial to trial image chosen history, reward 

history, grid position of the images with time-stamp. Within each day, animals completed 

either 250 trials or spent a maximum of two hours in the operant chamber. Animals were 

given 14 days to learn about the probabilistic reward schedule of one image pair, before 

moving onto the next image pair. A total of six image pairs were trained, but two image pairs 

were eliminated from analyses due to very high initial preference (>70%) for one novel 
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image over another, indicating that (to the mice) these images appeared unexpectedly similar 

to previously experienced images with learned reward values.

RNA quantification.—At the end of training, animals were sacrificed after the second day 

of learning a new image pair (around 400–500 trials of experience per mouse), when we 

expected to see the biggest difference in learning performance and strength of lateralization. 

Animal brains were extracted and targeted brain regions were dissected. We extracted RNA 

from targeted brain areas and assessed gene expression for the fos genes in the nucleus 

accumbens (NAc), dorsal medial striatum (DMS), amygdala (AMY), and hippocampus 

(HPC), using quantitative Real Time PCR system (BioRad, USA). Fos expression 

normalized to the housekeeper gene glyceraldehyde 3-phosphate dehydrogenase (gapdh) 

was calculated using the comparative delta Ct method.

QUANTIFICATION AND STATISTICAL ANALYSIS

General analysis techniques—Data was analyzed with custom PYTHON, MATLAB, 

and RStudio scripts. Generalized linear models were used to determine sex differences over 

time, unless otherwise specified. P values were compared against the standard ɑ = 0.05 

threshold. The sample size is n=16 for both males and females for all statistical tests. No 

animal was excluded from the experiment. All statistical tests used and statistical details 

were reported in the results or the supplemental table. All figures depict mean ± SEM.

Data analyses

Generalized Linear Models (GLMs).: In order to determine whether sex and number of 

trials (bins) predicts the accuracy of the task, strength of lateralization, reaction time, mutual 

information (MI), or angle between probability vectors, we fit a series of generalized linear 

models of the following form:

Y =   β0 + β1 sex + β2 trials + β3 sex trials , [1]

where Y is the dependent variable (accuracy, laterality, reaction time, MI, or angle). In this 

model, β1 described the main effect of sex and β2 described the main effect of number of 

trials (bins). β3 captures any interaction effect between sex and number of trials (bins).

To determine whether c-fos expression in NAc, DMS, AMY, HPC, PFC, and sex predicted 

the weights of Principal Component (PC) 2, we fit the following generalized linear model:

PC2 =   β0 + β1 NAc + β2 DMS + β3 AMY + β4 HPC + β5 PFC
+ β6 sex . [2]

In this model, β1- β5 captures the predictive effect of gene expression in five regions on the 

use of PC2 strategy. β6 described the effect of sex on the weights of PC2.

Degree of lateralization.: As a measure of the strength of side bias, we used the absolute 

percentage of laterality [37], calculated for each mouse according to the following formula:
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Degree   of   laterality = rigℎt−left
rigℎt+left [3]

Generalized Logistic Regression Model.: Mice could base their decisions on reward 

history in the spatial or image domains or on choice history in the spatial or image domains. 

To determine how these four aspects of previous experience affected choice and how these 

effects changed over time, we estimated the effect of the last trials’ reward outcome (O), 

image choice (I), and chosen side (S) using logistic regression. If image (image 1) was on 

the left side of the screen, we could predict the probability of choosing that image as a linear 

combination of the following four terms:

log p I1, t
p I2, t

=   β0 + β1 * I1, t − 1 − I2, t − 1 + β2 * Ot − 1 * I1, t − 1 − I2, t − 1

+ β3 *   SL, t − 1 − SR, t − 1 +   β4 * Ot − 1 * SR, t − 1 − SL, t − 1 ,
[4]

where each term (O, I, and S) is a logical, indicating whether or not that event occurred on 

the last trial. As a result, the term (I1,t-1- I2,t-1) is 1 if image 1 was chosen on the last trial, 

and −1 otherwise. The term β1 thus captures the tendency to either repeat the previous image 

(when positive) or choose the other image (when negative). The term β2 * Ot-1 accounts for 

any additional effect of the previous image on choice, when that previous choice was 

rewarded.. If image 1 was on the left side, SL,t-1 denotes the probability of repeating the left 

side where image 1 appeared. However, because image 1 could be either on the left or the 

right side of the screen (which allowed us to dissociably estimate the probability of choosing 

it based on side bias or image bias), we expanded the (SL,t-1- SR, t-1) term to account for the 

current position of image 1 as follows:

I1, t = L SL, t − 1 − SR, t − 1 + I1, t = R SR, t − 1 − SL, t − 1 ,

meaning that the current position of image 1 determined the sign of the side bias term. This 

model was fit individually to each bin of 150 trials, within each animal and image pair, via 

cross-entropy minimization with a regularization term (L2/ridge regression).

Principal component analysis.: In order to determine how decision-making strategies 

differed across animals and bins, we looked for the major axes of inter-individual variability 

in decision-making strategies. To do this, we took advantage of the fact that the coefficients 

of the generalized linear model provided a simplified description of how decision-making 

depended on image, side, and outcome for each subject within each image pair. Because the 

generalized logistic regression model estimated 4 terms per image pair and there were 23 

independent bins per image pair, we described this meant that each animals’ behavior for 

each given image pair could be described as 4*23 92*1 dimensional vectors. Because 32 

animals completed 4 image pairs, this gave us a total of 128 total strategy vectors, or a 

92×128 dimensional strategy matrix, with each column corresponding to one animal’s 

strategy in one image pair. We then used principal component analysis to identify the linear 

combinations of model parameters that explained the most variance across these strategy 
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matrix. The first two principal components, which explained the majority of the variance 

(59%), are illustrated in Figure 2e.

Conditional mutual information and model-free analyses.: To account for idiosyncratic 

strategies, which could vary across animals or image pairs, we used a model-free approach 

to quantify the extent to which behavior was structured without making strong assumptions 

about what form this structure might take. We quantified the extent to which choice history 

was informative about current choices as the conditional mutual information between the 

current choice (C) and the last choice (Ct-1), conditioned on the reward outcome of the last 

trial (R):

I Ct; Ct − 1 R =   ∑r ∈ R ∑ct ∈ C ∑ct ∈ C Pct, ct − 1, r Ct, Ct − 1, R

log
PR r PCt, Ct − 1, R ct, ct − 1, r
PCt, R ct, r PCt − 1, R ct − 1, r ,

[5]

where the set of choice options (C) represented the unique combinations of each of the 2 

images and 2 sides (4 combinations). To account for observed differences in overall 

probability of reward for male and female animals, the mutual information was calculated 

independently for trials following reward delivery and omission, and then summed across 

these two conditions.

We used a similar approach to provide a modrel-free description of the animals’ choice 

patterns. Briefly, instead of finding the set of beta weights that best described reliance on 

various history-dependent strategies over time, we directly calculated the joint probability of 

each possibility combination of last choice (image and side), last outcome (reward and 

unrewarded), and current choice (image and side). This means that we represented the 

animals’ history-dependent choice pattern for each image pair as an 32-dimensional vector 

(4 (last choice) x 2 (last outcome) x 4 (current choice) = 32) of joint probabilities. Via a 

geometric interpretation of a multinomial distribution, we considered the animal’s pattern of 

behavior within any bin of trials as a point on the 32–1 dimensional simplex formed by 

length-1 vectors. This geometric approach allowed us to map strategies over time or across 

bins as a diffusion process across this simplex, where the angle between two vectors 

(between animals/between bins/between repetitions) is proportional to step between them on 

a strategy simplex. The bigger the step between two vectors, the more variable the behavior 

pattern is.

Multidimensional Scaling (MDS).: MDS allows the visualization of complex strategies and 

choice behaviors. Since the choice behaviors across both spatial and image dimensions are 

high-dimensional, we had to plot in a lower dimensional space in order to visualize them. 

MDS is a means of visualizing similarity and variability of choices across trial bins within 

individuals. Choice patterns within a trial bin (150 trials) that are more similar are closer 

together (shorter distance) on the graphs than patterns that are less similar. The star 

represents the optimal strategy, which in this task, is to consistently choose the high reward 

image. In MDS graphs allow visualization of how choice behaviors in one trial bin differ the 

next trial bin and how choice behaviors vary across image pairs. For example, in the MDS 
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graph of the second female animal (Figure S5), this animal only learned one image pair as 

only one path approached the optimal strategy (marked by the star). In most males’ graphs, 

the distance between each step, which represents the choice pattern in one trial bin, is longer 

than most females. This suggests that choice behavior of males are more variable and 

heterogeneous compared to that of females.

Mediation Analysis.: First we used a direct model and regressed c-fos expression of either 

NAc or PFC on weights of PC2. When assessing a mediation effect, three regression models 

are examined:

Model 1 (direct):

PC2 =   γ1 + β NAc + ε1 [6]

Model 2 (mediation):

sex =   γ2 + α NAc + ε2 [7]

Model 3 (indirect):

PC2 =   γ3 + β′ NAc + β1 sex + ε3 [8]

In these models, γ1, γ2, and γ3 represent the intercepts for each model, while ε1, ε2, and 

ε3 represent the error term. β denotes the relationship between dependent variable (PC2 

weights) and independent variable (NAc c-fos expression) in the first model, and β’denotes 

the same relationship in the third model. α represents the relationship between independent 

variable (NAc c-fos expression) and mediator (sex) in the second model. The mediation 

effect is calculated using the product of coefficients (αβ1). The Sobel test is used to 

determine whether the mediation effect is statistically significant [45].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Females showed accelerated acquisition of the high reward probability image in a 
stochastic two-armed visual bandit task.
A) Schematic of the mouse touch-screen operant chamber. B) Schematic of two-armed 

visual bandit task. Images varied between the two locations across trials. C) Average 

learning performance (percent correct) across four repetitions of the task in males and 

females. D) No sex difference in learning performance was observed in deterministic reward 

schedule. Data shown as bins of 50 trials. E) Females displayed stronger side bias early on in 

learning. Data shown as bins of 150 trials unless specified otherwise. * indicates p < 0.05. 

Graphs depict mean ± SEM.
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Figure 2. Female mice use a procession of strategies, initially using a spatial bias followed by a 
switch to responding based on image domain.
A) Schematic of four basic local strategies based on choice and reward history of image and 

spatial dimensions of the task. B) The GLM beta weights of the four local strategies, 

averaged across all animals. C and D) Same as B, for female mice and male mice, 

respectively. E) A principal component analysis (PCA) was conducted on the estimates of 

global strategy strength over time across all animals regardless of sex. Left) Variance 

explained by each principal component (PC). Middle) The coefficients of the first two PCs. 

Right) PC scores for individual male (blue) and female (pink) animals, for PC1 (top) and 

PC2 (bottom). See also Figure S1. Data shown as bins of 150 trials. Graphs depict mean ± 

SEM.
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Figure 3. Female-biased early side preference did not speed decision making.
A) Predominantly using the early side preference, females responded slower during early 

learning. See also Figure S2. B) Average reaction time of both sexes when choosing a 

preferred side and a nonpreferred side across bins of 150 trials. C) Correlation analyses 

revealed a significant positive correlation between PC2 scores and reaction time. D) One-

sample t-test was conducted across bins to compare the difference in reaction time (RT) 

between rewarded and unrewarded trials to 0 (when there is no effect of past outcome on the 

reaction time). Male mice have significant RT effects on the last reward. There was no 

difference in reaction time between rewarded and unrewarded trials in female mice. E) 

Average RT difference following a rewarded vs. an unrewarded trial across all trials. Overall, 

male responded faster when the last trial was rewarded than unrewarded. Data shown as bins 

of 150 trials. * indicates p < 0.05. Graphs depict mean ± SEM.

Chen et al. Page 22

Curr Biol. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Male mice were more likely to differ from themselves over time, with choice patterns 
dependent on past outcomes.
A) Comparing choice strategies as vector angles. Left) We calculate the joint probability 

distribution of all possible choices at time t (image x side) and all previous choices at t-1. 

This probability distribution can be thought of as a vector on the probability = 1 simplex 

(middle). We then compare choice strategies by measuring the angle between choice strategy 

vectors, here between strategy vectors following a reward and following no reward. Right) 

Average angle between choice strategy vectors following reward and no reward, plotted 

separately for males (blue) and females (pink). See also Figure S3. B. Left) If choice on trial 

t is independent of choice on the previous trial (t-1), mutual information will be low. 

Conversely, if choice t depends on t-1, mutual information will be high. Right) Conditional 

mutual information is higher in males, indicating that responses are more dependent on the 

previous trial variables than they are in females. C). Average angle between choice strategy 

vectors between animals within sex. D) Average angle between choice strategy vectors 

within animals across trial bins See also Figure S4. E) Average angle between choice 

strategy vectors within animals across repetitions of the task. F) Multidimensional scaling 
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(MDS) was used to reduce the dimensionality of the strategy space in order to visualize each 

animal’s strategy paths. Each graph is a different animal, with the colors representing 

repetitions of the task. The star represents the optimal strategy for each projection (i.e. the 

choice pattern that only repeats high value image). Note that the strategy paths of both sexes 

are approaching the optimal strategy point. See also Figure S5. Data shown as bins of 150 

trials. * indicates p < 0.05. Graphs depict mean ± SEM.

Chen et al. Page 24

Curr Biol. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Both sex and neuronal activity can account for strategy selection, but sex mediated the 
ability of neural activity to explain strategy selection.
A) cFos gene expression (qRT-PCR) in five brain regions: nucleus accumbens (NAc), dorsal 

medial striatum (DMS), amygdala (AMY), hippocampus (HPC), and prefrontal cortex 

(PFC). Female mice showed elevated c-fos expression across all five brain regions. 

Extracted brain sections for each brain region are shown in the altas. B) regression 

coefficient of c-fos expression in NAc and PFC, and sex in predicting the use of PC2 

strategy C) Heatmap of correlation matrix of c-fos expression level among five brain 

regions. Colorbar = Pearson’s r. D) cFos gene expression in NAc and PFC is significantly 

correlated with the weight of PC2. E) Median split of c-fos expression in NAc and PFC and 

PC2 scores within each sex. F) Sex mediated the relationship between c-fos expression in 
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NAc and PFC and PC2 scores.The top models demonstrate thedirect effect and the bottom 

models demonstrate the mediated effect. Effects are labeled with estimated coefficients. The 

strength of the direct model is greatly reduced after mediation, suggesting that sex mediated 

neural measures in explaining strategy selection. See also Table S1. Graphs depict mean ± 

SEM. Asterisks marked significant effects (*: p < 0.05 **: p < 0.01 ***: p<0.001).
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