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Abstract

Purpose: Deep convolutional neural networks (CNN) have demonstrated impressive success in
various image classification tasks. We investigated the use of CNNs to distinguish between
benign and malignant microcalcifications, using either conventional or dual-energy mammog-
raphy x-ray images. The two kinds of calcifications, known as type-I (calcium oxalate crystals)
and type-II (calcium phosphate aggregations), have different attenuation properties in the
mammographic energy range. However, variations in microcalcification shape, size, and density
as well as compressed breast thickness and breast tissue background make this a challenging
discrimination task for the human visual system.

Approach: Simulations (conventional and dual-energy mammography) and phantom experi-
ments (conventional mammography only) were conducted using the range of breast thicknesses
and randomly shaped microcalcifications. The off-the-shelf Resnet-18 CNN was trained on the
regions of interest with calcification clusters of the two kinds.

Results: Both Monte Carlo simulations and experimental phantom data suggest that deep neural
networks can be trained to separate the two classes of calcifications with high accuracy, using
dual-energy mammograms.

Conclusions: Our work shows the encouraging results of using the CNNs for non-invasive test-
ing for type-I and type-II microcalcifications and may stimulate further research in this area with
expanding presence of the novel breast imaging modalities like dual-energy mammography or
systems using photon-counting detectors.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.3.033501]

Keywords: convolutional neural network; type-I and type-II microcalcifications; anthropomor-
phic breast phantom; dual-energy mammography.

Paper 20090RRR received Apr. 15, 2020; accepted for publication Apr. 19, 2021; published
online May 13, 2021.

1 Introduction

The presence of clustered microcalcifications in the breast can be an early sign of in situ
breast cancer, making up ∼17% to 34% of all newly diagnosed breast cancers detected in
mammography.1 However, many benign breast lesions also exhibit clustered microcalcifications.
It has been reported that ∼66% to 85% of all microcalcification clusters observed in a screening
population are benign.2

Differentiating malignant from benign microcalcification lesions can be a challenging task
owing to similarities in appearance. Radiologists typically analyze both the spatial distributions
of microcalcifications within the cluster as well as the shape of individual microcalcifications
to help in making a diagnosis. However, these features alone cannot be solely used to accu-
rately distinguish between malignant and benign calcified lesions. Core biopsy followed by
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histopathological work-up is often required to establish a definitive diagnosis. Generally, radi-
ologist performance in differentiating malignant and benign microcalcifications is suboptimal.
For example, Veldkamp et al.3 conducted a retrospective study analyzing performance of nine
radiologist observers reading 280 biopsy proved microcalcification clusters (145 malignant) and
reported area under the receiver operator characteristic (ROC) curve of 0.64. Another retrospec-
tive study by Jiang et al.4 analyzed performance of 10 radiologists reading 104 histologically
verified cases of microcalcifications and reported area under the ROC curve of 0.61. The impli-
cations of this suboptimal performance in differentiating malignant and benign microcalcifica-
tion clusters are many unnecessary tissue biopsies that are performed causing undue patient
anxiety and increased healthcare costs.

Frappart et al.5 reported that there are two major types of microcalcifications found within
breast tissue. Type-I microcalcifications consist of calcium oxalate (CO) crystals CaC2O42H2O,
whereas type-II microcalcifications consist of calcium phosphates Ca5ðPO4Þ3OH, predomi-
nantly hydroxyapatite (HA). Type-I microcalcifications are only lightly stained in histologic
tissue sections (and thus often not seen) and are observed most frequently in benign ductal
lesions not associated with breast cancer. Type-II microcalcifications, the more common type,
appear as dark blue deposits in histologic tissue sections and are found in both benign and malig-
nant lesions, but most often in infiltrating and intraductal carcinoma. It has been suggested5–8 that
type-II microcalcifications are the result of cellular degeneration or necrosis and type-I micro-
calcifications are a production of secretions.

Truong et al.9 reported that 12% of a 91 patient cohort studied had benign biopsies based on
mammographic observation of CO microcalcifications. This observation has provided motiva-
tion for investigating whether it would be possible to differentiate HA and CO microcalcifica-
tions using non-invasive imaging methods with the hope of conservatively managing some
patients with calcified lesions using serial mammography and avoiding the risks and patient
anxiety associated with breast biopsy. Wang et al.10 reported on a non-invasive method for
classifying microcalcification-based lesions using phase-contrast x-ray mammography. Using
simple experimental phantoms with large crystalline samples of HA and CO, this group reported
100% sensitivity and specificity in classifying the two chemical sample types. Ghammraoui
and Glick11 recently reported on the use of energy dispersive x-ray coherent scatter computed
tomography for differentiation of type-I and type-II microcalcifications. Both phase-contrast and
x-ray coherent scattering are promising methods for classifying microcalcifications, however,
these imaging modalities are not currently available for routine clinical use.

Other studies have investigated classification of microcalcification type using dual-energy
mammography and spectral mammography with photon counting detectors.11–14 These inves-
tigations used simulations and experimental phantom acquisitions to process multiple energy
windows with the goal of classifying microcalcifications. Analytical classification algorithms
were used and although excellent performance was reported, a number of modeling approxi-
mations were made to simplify the problem. In Ref. 14, pure HA and CO were mixed with
deionized water filling a relatively large cylindrical tube (2-cm diameter). These cylindrical tubes
with different chemicals were then imaged within a rectangular shaped tank filled with water.
Microcalcifications typically found within the breast are considerably smaller in size; typically
<1 mm with varying non-spherical shapes. Furthermore, to accurately test the proposed algo-
rithm, it is important to model classification performance using a structured background
modeling realistic parenchymal tissue rather than using a uniform water background. Another
limitation in some of the reported studies13,14 was that calcifications were modeled as pure HA
and CO. As reported by Warren et al.,15 pure HA is much more attenuating than that observed in
clinical microcalcifications. The density of solid HA is significantly higher than the density of
HA in clinical microcalcifications. Thus classifying microcalcifications that are modeled as pure
HA and pure CO is a much simpler problem and results are unlikely to translate to clinical
performance.

Ghammraoui and Glick11 and Ghammraoui et al.12 used a more accurate model for the
photon attenuation of HA and CO, assuming similar densities of both materials and
analyzed performance with both photon counting spectral mammography and dual-energy
mammography. These studies modeled the line-integral through a single calcification and
uniform background consisting of 50% adipose and 50% fibroglandular tissue of varying
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breast thickness. Performance in classifying the two materials was moderate when analyzing a
single microcalcification but greatly improved when averaging performance over five separate
microcalcifications.

The study presented here uses a more realistic imaging model of single- and dual-energy
mammography and classifies microcalcification type using a specifically trained convolution
neural network (CNN). Both simulation and experimental studies are acquired with anthropo-
morphic breast phantoms of different compressed breast thicknesses and a random number of
randomly positioned non-spherical microcalcifications within each cluster. Simulated mammo-
grams for training and testing were generated using a GPU-based Monte Carlo (MC) simulation
software to create a large number of region-of-interest (ROI) images with microcalcification
clusters. Experimental acquisitions were acquired using a Hologic Selenia Dimensions 3D mam-
mography system with custom fabricated HA and CO microcalcification clusters inserted into
inkjet-printed 3D anthropomorphic breast phantoms of varying thickness.

Two important parameters in the model are the mass densities for the two types of calcifi-
cations. The literature provides little data on experimentally measured microcalcification
density (of either type) from biopsied tissue samples. Solid CO and HA have mass densities
ρCO ¼ 2.12 g∕cm3 and ρHA ¼ 3.16 g∕cm3, respectively. As was pointed out earlier, Warren
et al.15 argued that pure HA microcalcifications would result in considerably higher contrast
than is typically observed in mammograms. They reported a factor of 0.84 to correct for the
difference in x-ray attenuation of pure CO and imaged microcalcifications in mastectomy
specimens. Accounting for this in the simulation part of this study, CO and HA calcifications
were conservatively modeled to be of the same mass density ρsimCO ¼ ρsimHA ¼ 1.9 g∕cm3. For the
experimental acquisitions, the measured densities of synthetically fabricated calcifications were
ρexpCO ¼ 1.8 g∕cm3 and ρsimHA ¼ 1.9 g∕cm3. The small difference between the two compositions
was due to the physical constraints in the process of mechanically compressing the synthetic
calcification tablets.

We believe this choice represents a reasonable starting point since no other data exists in the
literature on density of real calcifications of either type. Assigning both calcification types to
have similar density is a conservative estimate, likely making the classification task in this study
more difficult than it would be in clinical use. Figure 1 illustrates the difference between in
the linear attenuation coefficient for the two chemical compositions of the same density in the
mammographic range of energies.

In Sec. 2, we describe the MC and experimental study designs as well as the neural network
architecture, its training, and testing conditions. Section 3 summarizes our main findings in
terms of ROC curves and corresponding area under the curve (AUC) values. Discussion of these

Fig. 1 Linear attenuation coefficient for CO and HA of the same density.
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results and the list of limitations of the study are provided in Sec. 4. We sum up and conclude
our results in Sec. 5.

2 Methods

2.1 MC-GPU Software

Monte Carlo simulation of radiographic images using graphics processing units (MC-GPU)
mammography and breast tomosynthesis x-ray transport code16 was used for simulating a
full-field digital mammography (FFDM) system. The software models the entire x-ray imaging
process chain, including a finite size x-ray focal spot, a multi-energetic x-ray spectra emitted
within a cone beam shaped by a collimator, an anti-scatter grid, and an a-Se direct-conversion
detector. The simulation settings were assigned to model the Siemens Mammomat 2D/3D clini-
cal mammography system. The MC-GPU can work with any input spectrum/filter combinations
and high-resolution voxelized breast phantoms representing patient anatomy. Interaction cross
section for photoelectric absorption and elastic and inelastic scattering is incorporated within
the model and tabulated for many relevant materials, including microcalcifications and masses.
The software is highly parallelizable and scales well on multiple graphics processing units.
As an output, MC-GPU produces a grayscale x-ray FFDM image and allows for accurate
estimates of dose deposited in different tissue types.

2.2 Digital Breast Phantom with Embedded Calcifications

A procedural analytic model developed by Graff17 was used to produce a population of anthropo-
morphic digital breast phantoms compressed to 30, 40, 50, 60, and 70 mm. Graff’s method
creates an uncompressed breast first and then performs 3D finite-element computations to
deform it into a desired thickness, as shown in Fig. 2(a). Heterogeneous breast models with
30% fibroglandular and 70% adipose tissue composition were used throughout. Each voxelized
phantom had 70 μm resolution in all dimensions. Two sets of 25 phantom realizations of each
thickness were generated for a total of 2 × 125 different phantoms. Each 125-phantom set was
then populated with HA or CO calcification clusters. Depending on a compression thickness,
38 to 50 random clusters were embedded in a central slice of each phantom to maximize the
number of non-overlapping signal ROIs’, as illustrated in Fig. 2(b). The number of calcifications
per cluster varied from 5 to 15. Microcalcification particles were modeled as ellipsoids with
semiaxes of random lengths matching the volumes of the spheres varying between 200 μm and
1-mm in diameter. In order to make calcification shapes less regular an arbitrary fraction (15% to
50%) of the number of random voxels making up an ellipsoid were removed from (and added to)
its surface. A simulated FFDM projection of the compressed breast with signal clusters is shown
in Fig. 2(c). All in all, a total of 5475þ 5475 unique ROIs with CO and HA clusters were
modeled.

Fig. 2 Simulated conventional FFDM projections of the 4-cm-thick breast phantom with calcifica-
tion clusters of both types: (a) Graff’s digital FE-compressed breast model; (b) central slice of
numerical phantom with embedded calcification clusters; and (c) simulated FFDM projection of
a compressed breast phantom.
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2.3 Experimental 2D-Printed Breast Phantom and Calcification Templates

A physical anthropomorphic breast phantom, as described by Ikejimba et al.,18 was used for
the measurements on a clinical FFDM system Hologic Selenia Dimensions. X-ray contrast is
achieved by using parchment paper, which mimics adipose tissue, with fibroglandular tissue
represented by 2D inkjet-printed patterns of iodine-doped dye. A 4 cm thick phantom is a
571–sheet stack held together by two 6 mm polymethyl methacrylate (PMMA) plates, as shown
in Fig. 3(a). Each 70-μm-thick sheet of paper represents a single slice in silico. Two posts keep
the sheets aligned. Phantoms of smaller thicknesses can be obtained by removing sheets from the
stack. For calcification signals, an x-ray transparent “insert” was designed. Figure 3(b) shows
such an insert with a 6 × 10 array of calcification clusters and of a set of gold-printed fiducial
markers along the periphery. Like in the MC experiment, each cluster contained a random num-
ber of calcifications of different sizes, varying from 5 to 15 per cluster. The production steps for
fabrication of calcifications include using raw CO and HA commercial powder, mixing it with a
small amount of binding substance, creating the tablets by applyingmechanical pressure, and using
a mortar and a pestle to crush the tablets into the specks. This procedure was previously described
by Ghammraoui et. al.12 CO and HA particles, used in the inserts, were then sifted using differ-
ential sieving to isolate all particles with size ranging approximately from 200 to 850 μm.
The fabricated tablets were measured to have density ρtabletCO ≈ 1.8 g∕cm3 and ρtabletHA ≈ 1.9 g∕cm3.
A 5.55% difference was unintentional and resulted from mechanical constraints when using the
tableting machine. It is unknown if these density values were retained for individuals particles,
after the tablets were crushed with a mortar and a pestle. Figure 3(c) demonstrates an example
FFDM image of the paper breast phantom with the calcification signal template inserted.

2.4 Monte-Carlo Experiment Design: Conventional and Dual-Energy FFDM

Two experiments were carried out using MC-GPU, modeling conventional single-energy and
dual-energy FFDM. Table 1 summarizes the main acquisition parameters used. Compressed
breast phantoms of five thicknesses of 30, 40, 50, 60, and 70 mm were imaged. For conventional
mammography, simulations used a standard W-Rh x-ray spectrum with fixed x-ray tube voltage

Fig. 3 Breast phantom, template with microcalcification clusters, FFDM image: (a) parchment
paper breast phantom; (b) insert with calcification clusters; and (c) Hologic Selenia Dimensions
FFDM image of the phantom with CO signal clusters.

Table 1 Exposure settings used in MC experiments.

Phantom thickness (mm) 30 40 50 60 70

Mode Single energy Dual energy

Spectrum W-Rh Wh-Al0.2 mm W-Al0.6 mm

kVp 30 26 50

AGDa (mGy) 3.0 1.5 1.5

aThe number of photon histories was adjusted to produce target AGD for given phantom thickness.
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of 30 kVp, with the number of generated photons adjusted to maintain the average glandular
dose (AGD) to be ∼3 mGy. For dual-energy simulations, parameters that were found to be
optimal by Ghammraoui et al.,12 were used. Namely, a 26-kVp W-spectrum with 0.2-mm
Al-filtration was used for the low-energy acquisitions, and a 50-kVp W-spectrum with 0.6-mm
Al-filtration was used for high-energy acquisitions. A total dual-energy AGD of 3 mGy matched
the AGD for the single-energy mode and was split evenly between the high- and low-energy
exposures. Figure 4 provides examples of ROIs with simulated clusters of both types in
a 4-cm compressed breast. It can be observed that the specks in Fig. 4(b) may appear slightly
more attenuating (brighter) on average than in Fig. 4(a). Irregular shapes of calcifications
make distinction more challenging. For instance, CO and HA particles may have similar
apparent size (in xy-plane) but be of different depths along the x-ray path, with the CO particle
being more prolate. In this case, CO calcifications may appear of similar or higher contrast than
HA calcifications. The classification task becomes even more difficult with calcifications in
breast phantoms of varying thicknesses. Higher attenuating HA signals will have reduced
contrast in thicker breasts, whereas less attenuating CO signals in thinner breasts will appear
brighter.

2.5 Clinical FFDM System Experiment Design

For experiments with a physical phantom, a fixed x-ray tube voltage of 30 kVp was used
throughout. The system’s AEC software automatically selected the current–time product. The
system then estimated AGD delivered to the phantom. Table 2 lists acquisition parameters
used in the experiments on the clinical system.

Four templates with calcifications of each type were manufactured. In order to model various
breast thicknesses, acquisitions were taken with 2-, 3-, and 4-cm phantoms by removing paper

Fig. 4 Simulated x-ray projection ROIs of calcifications of both types in a 4-cm digital breast
phantom. The same window level and window width was applied to all ROI images. (a) Type-I (CO)
and (b) type-II (HA).

Table 2 Exposure settings used in measurements on a clinical system.

30 kVp W-Rh spectrum

Phantom thickness (mm) 20 30 40 50 60

Current × timea (mAs) 40 80 125 250 350

AGDa (mGy) 0.41 0.83 1.31 2.63 3.50

aSettings selected/estimated by the system.
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sheets from the stack as well as with 5- and 6-cm phantoms, by adding 1- and 2-cm-thick PMMA
plates. Each calcification insert was imaged three times, oriented normally, flipped horizontally,
and flipped vertically, for additional ROI background realizations. This allowed them to produce
a total of 3300þ 3300 unique CO and HA ROIs. Shown in Fig. 5 are example ROIs of clusters
of each type. An observant reader might notice that HA calcifications in Fig. 5(b) have a slightly
higher contrast on average than CO calcifications in Fig. 5(a).

2.6 Convolutional Neural Network for Classifying Type-I and Type-II
Calcifications

A Pytorch machine-learning library built-in implementation of ResNet-18 architecture was used
for image classification.19 The network was trained from scratch on the set of either MC gen-
erated or clinical mammography system images. An ADAM optimizer with initial learning rate
of LR0 ¼ 0.01 and a step-decay schedule with a 1/2 learning rate drop after every 5 epochs was
used to train the neural network. A weight decay (regularization) factor of 0.0001 was found to
be optimal for stable training. Binary cross entropy was chosen as the loss function for the two-
class problem. Training dataset augmentation in a form of random vertical and horizontal
flipping was applied. As an input, for conventional FFDM modeling, 100 × 100 px2 grayscale
TIFF files containing calcification clusters were used. It was found that unprocessed (with no
rescaling or standardization) floating-point raw ROIs, as cropped from the MC-GPU output,
resulted in the best performance. The clinical system generates “for presentation” 12-bit gray-
scale DICOM mammograms, from which 16-bit 130 × 130 px2 ROIs with calcification clusters
were extracted.

For dual-energy mammography (studied only with MC simulations), a two-channel dataset
was produced, in which each ROI is a two-frame TIFF image, with the first channel containing
a 26-kVp acquisition, and the second channel containing a 50-kVp acquisition, as shown in
Fig. 6. Similar to the single-energy mode, using raw floating-point MC-GPU data resulted in
the best classification performance. The output of the CNN was the list of probabilities to pro-
duce type classification ROC curves.

The network was trained and tested on 10,000/950 images for the MC simulations, and on
6000/600 images for the experimental study. A typical example of the ResNet learning process is
illustrated in Fig. 7. Shown in Fig. 8 is the localization feature map computed for the final
convolutional layer of the network, highlighting the regions in the image that the CNN is
using to predict calcification type. As expected, the neural network is focusing primarily on
the calcification particles for the task of distinguishing one type of microcalcifications from
another.

Fig. 5 Clinical system x-ray projection ROIs of calcifications of both types in a 4-cm paper breast
phantom. The same window level and window width was applied to all ROI images. (a) Type-I
(CO) and (b) type-II (HA).
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3 Results

The main findings of this work are summarized in a form of the ROC curves and corresponding
AUC values. The uncertainties on the ROC curves are reported as 95% confidence interval (CI)
bands calculated using a vertical averaging method.20 Likewise, errors on the AUC values
correspond to 95% CI standard error on the mean.

Fig. 7 Neural network learning curves: (a) training and test accuracy and (b) training and test
loss value.

Fig. 8 Visualization of “attention” heatmap: (a) original image; (b) heatmap; and (c) the two
overlayed.

Fig. 6 Two channels of the dual-energy FFDM image: (a) acquired using 26 kVp W-Al0∶2 mm

spectrum and (b) acquired using 50 kVp W-Al0∶6 mm spectrum.
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3.1 Simulations: Conventional Mammography; Microcalcifications of
Fixed Density 1.9 g∕cm3

Figure 9(a) shows a good separation between true-positive and true-negative probability distri-
butions as estimated by the neural network, for the classification task of assessing whether the
microcalcification cluster is HA for conventional mammography. The corresponding ROC
curve, shown in Fig. 9(b), has AUC ¼ 0.986� 0.009. With breast phantom thickness varying
between 3 and 7 cm, non-uniform anthropomorphic background, and random clusters of
microcalcifications of different shapes and sizes, the neural network is able to distinguish
CO and HA calcifications with very high accuracy. It is also interesting to notice that the
ROC is “well-behaved” in the high-sensitivity portion of the curve, asymptotically approaching
sensitivity = 1 line.

In clinical use, it is likely that the operating point for this algorithm would be set at a very
high sensitivity, maximizing the number of true positives, i.e., when HA clusters are classified as
such, and minimizing the number of false negative cases, when HA is misclassified as CO. In this
clinical situation, false negatives would carry a high risk and should be minimized. False positive
decisions, i.e., when CO is identified as HA by the CNN, entail a low risk and mean that a patient
would go to biopsy just as she normally would without additional information from the neural
network.

It is curious to compare deep learning image classifier performance with human readers.
To do this, a binary choice (type I or type II calcifications) reader study was carried out. Three
medical physicists were presented with 200 CO and 200 HA ROIs randomly drawn from a set
used for the NN testing. Readers were shown one image at a time and were asked to decide
whether it was one type or another, before proceeding to the next image. A “train-as-you-go”
arrangement was used with a right/wrong feedback provided after a decision was made. The first
100 ROIs were discarded, and only the remaining 300 ROIs were used for computing true
positive and false positive rates. The results are shown in Fig. 9(b) as filled color circles with
the 95% CI error bars, with the error on the mean estimated from binomial distribution. All three
readers scored similarly with sensitivity and specificity values scattered around 0.6. Notably,
the humans performed better than guessing but far inferior to the deep neural network.

3.2 Simulations: Dual-Energy Mammography; Microcalcifications of
Fixed Density 1.9 g∕cm3

Neural network classification performance for dual-energy mammography is shown in Fig. 10.
Observed AUC performance is very close to the one for conventional mammography and
is within the measurement error bars. Our first conclusion from these results is that in a case

Fig. 9 Estimated CNN performance for simulated conventional (single energy) mammography:
(a) conventional FFDM type probability distribution and (b) type discrimination ROC and human
observer performance. Error bands around ROC curve and the error bars represent 95% CI.
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of calcifications of the same density (which might not be exactly the case in real patients) dual-
energy modality does not provide noticeable advantages over conventional FFDM in discrimi-
nating the calcifications of the two kinds. In this test scenario, the deep neural network seems to
be capable of using single energy x-ray images to accurately distinguish between CO and HA
calcification clusters.

3.3 Experimental Measurements: Clinical FFDM System and
Anthropomorphic Phantom with Microcalcifications

In the experimental part of the study, multiple CO and HA microcalcification templates were
imaged within the anthropomorphic breast phantom of varying thickness ranging from 2 to 6 cm
on a clinical FFDM system Hologic Selenia Dimensions. The obtained AUROC value was per-
fect 1.0 with negligible errors. One possible explanation for this ideal classification performance,
as was mentioned earlier, is that our experimental HA particles unintentionally came out to be of
density of 1.9 g∕cm3, whereas CO particles had density of 1.8 g∕cm3, as was measured after
forming the tablets. Such 5.5% difference, with more x-ray opaque HA particles also being
slightly denser, may have been a conducive contributing factor to the observed ideal classifi-
cation performance.

3.4 Simulations: Non-Constant Calcification Density

For all study results described above, constant microcalcification density of 1.9 g∕cm3 was
assumed. However, it is likely that the density of real microcalcifications is distributed around
some mean value. Unfortunately is it difficult to measure density of individual microcalcifica-
tions in biopsy samples. A reasonable speculation would be to presume that calcification density
of both type-I and type-II microcalcifications follows, perhaps, a normal distribution. One kind
of a sensitivity test for the proposed methodology would be to test the CNN that is trained using
ROI images of clusters with calcifications of fixed density (of 1.9 g∕cm3) on the ROI images
with varying density. Let us consider two test case scenarios.

1. More extreme case. Calcification density varies uniformly around the mean value
1.9 g∕cm3 �20%, from 1.5 to 2.3 g∕cm3 [see Fig. 11(a)].

2. More likely case. Calcification density follows normal distribution within the same range
[see Fig. 12(a)].

Fig. 10 Estimated CNN performance for simulated dual-energy mammography.
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Figures 11(b) and 11(c) show ROC cluster classification performance for simulated conven-
tional and dual-energy mammography for test the images with calcification density uniformly
distributed between 1.5 and 2.3 g∕cm3. First, we see a significant ∼9.5% to 11% drop in AUC
for both modalities compared to the AUC measured using test ROI images with constant micro-
calcification density 1.9 g∕cm3. Second, dual-energy mode provides a tangible ∼2% improve-
ment in AUC compared the single energy mode. Third, in the high-sensitivity region of the ROC
curve, the dual-energy modality results in noticeable improvement over that from conventional
mammography. In Fig. 12, similar results are presented for the simulated x-ray mammograms
with normally distributed calcification density. In this test case, both modalities show increase in
classification accuracy, with dual-energy modality behaving better in the high-sensitivity part of
the ROC curve. In terms of the AUC performance, dual-energy mode has a ∼2.7% advantage
compared to conventional mammography. It should be emphasized that the test case considered
here purposely has fairly broad density distribution to demonstrate NN capabilities in a rather
extreme scenario. Currently, there is no published data available on distribution of microcalci-
fication density in the human breast specimens.

4 Discussion

4.1 Brief Recap and Main Findings

Microcalcifications are localized calcium deposits in breast tissue and are sometimes considered
an early mammographic indication of breast cancer. Studies have shown that radiologist

Fig. 11 CNN classifier performance trained on cluster images with fixed calcification density of
1.9 g∕cm3 tested on images of calcifications with uniformly distributed density. (a) Test set density
distribution; (b) conventional mammography; and (c) dual-energy mammography.
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performance in differentiating malignant and benign microcalcifications present mammography
is less than optimal. Previous reader studies have shown that given a patient cohort of mammo-
graphic images with known (based on biopsy) malignant and benign microcalcifications, radi-
ologists are only able to accurately classify ∼60% to 70% at best. This lack of classification
accuracy results in many unnecessary biopsies causing undue patient anxiety and increases in
healthcare costs.

Type-I microcalcifications are predominantly observed in benign calcified breast lesions,
whereas type-II microcalcifications can be found in either malignant or benign lesions. This
finding has motivated researchers to develop imaging methods to accurately differentiate
type-I and type-II microcalcifications. Recent studies have been reported using various imaging
approaches,11–14 and analysis was conducted using theoretical simulations or experimental
phantom acquisitions. The study presented herein uses more accurate modeling of the problem
compared to previous efforts and should relate better to performance achievable with clinical
data. Simulations are generated using MC simulation of mammograms modeled with a clinically
realistic mammography device. Physical phantom acquisitions were acquired with a Hologic
Selenia Dimensions 3D clinical FFDM system.

The breast phantom in both simulations and experimental acquisitions accounted for the
structure of the breast parenchyma, providing realistic background. In addition, breast phantoms
modeling varying compressed thicknesses were used. Microcalcifications were modeled using
a range of realistic sizes (0.2 to 1.0 mm) and shapes. Other previous studies modeled micro-
calcifications as pure HA or pure CO but doing so is not realistic. In particular, it has been shown
that microcalcifications of pure HA would provide much higher image contrast than that

Fig. 12 CNN classifier performance trained on cluster images with fixed calcification density of
1.9 g∕cm3 tested on images of calcifications with normally distributed density. (a) Test set density
distribution; (b) conventional mammography; and (c) dual-energy mammography.
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observed in clinical images.15 Therefore in this simulation study, the density of both HA and CO
was conservatively estimated to be the same, both assigned to be 1.9 g∕cm3. In the phantom
study, the density of HA was slightly higher than CO (1.9 versus 1.8 g∕cm3).

As far as we know, this is the first study describing the classification of microcalcifications
based on their chemical composition using a CNN. The application was studied using both con-
ventional FFDM and dual-energy FFDM. Ideally, training datasets for this classification problem
would be obtained from clinical images with known truth. Unfortunately, large datasets of
clinical images containing microcalcifications of known chemical composition verified through
histopathological analysis are not available. Thus in this study, datasets used for training of the
CNN were generated using a realistic MC simulation or by imaging an anthropomorphic breast
phantom with custom fabricated microcalcifications of differing chemical composition. The
resulting networks were then applied to independently simulated and experimental phantom
acquisitions for performance analysis. Results presented here suggest that the ResNet CNN
can accurately differentiate microcalcifications of differing chemical composition, in both inde-
pendently simulated images as well as with experimental phantom acquisitions of custom fab-
ricated, synthetic microcalcifications. For the CNN that was trained and tested on MC simulated
images, the AROC for conventional mammography was 0.986� 0.009 and for dual-energy
mammography was 0.988� 0.010. Given that the dataset consisted of mammograms simulated
with phantoms of varying compressed thickness embedded with microcalcifications of varying
size and shape, it was somewhat surprising that performance with conventional FFDM was
similar to that with dual-energy FFDM. Since microcalcification contrast within the image is
dependent on size and shape of the calcification as well as on the breast compression thickness,
this result might suggest that the CNN is learning information on the breast thickness and
microcalcification size from the ROI image. Sensitivity studies run using simulated data sug-
gested that CNN performance will be slightly degraded if microcalcification density of each
type follows a random distribution, with likely less of a penalty observed with dual-energy
mammography.

For the CNN that was trained and tested on experimental phantom images, the AUROC for
FFDM was perfect 1.0, exceeding the performance observed with simulation studies. Although
this performance is remarkable, some caveats should be noted specific to the experimental phan-
tom study. Unlike the simulation study where all microcalcifications had the same variations in
shape, HA and CO calcification batches might have had subtle differences in shape. HA and CO
powders might have bonded differently when mixed with the binder substance, thereby resulting
in different ways the tablets break up (i.e., flaking versus breaking as solid chunks) under
mechanical pressure when crushed with a mortar and pestle. Another caveat is that although
different breast compression thicknesses were studied, the thicknesses selected for study were
discrete with five different thicknesses used (3 to 7 cm). Since it is likely that the CNN would
need to estimate breast thickness for each ROI analyzed, having only five discrete thicknesses in
the testing cohort could make the classification problem easier than in real case where patient
breast thickness is a continuous unknown variable. Based on the results of this study, we hypoth-
esize that the CNN trained on either the simulated or experimentally acquired dataset could be
used to accurately differentiate microcalcifications in clinical images. Further studies with clini-
cal data are needed to test this hypothesis, however, there are some limitations in this reported
study that should be first explored further.

4.2 Limitations

Microcalcifications in the simulation study were modeled as ellipsoids in a voxelized geometry,
with some fraction of voxels on the ellipsoid surface removed and added to attain less regular
boundaries. Ellipsoids were only oriented along Cartesian coordinates axes. Although this
model is likely more realistic than modeling microcalcifications as perfect spheres, there is some
clinical evidence that benign calcifications often exhibit more regular, continuous appearance,
whereas malignant calcifications tend to have irregular complex configurations. Nonetheless,
we took a more conservative approach of generating both HA and CO calcifications with the
same model. Thus one might expect even higher classification accuracy in this task if the neural
network can learn differences in the morphology of type-I and type-II microcalcifications.
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Although each simulated breast phantom had a unique distribution of breast tissues, thus
providing non-repetitive anthropomorphic background realizations, each phantom within the
population used in the study was based on the same heterogeneous mixture of adipose and fibro-
glandular composition (i.e., 30% fibroglandular and 70% adipose tissue). In the experimental
study, only one physical phantom was used, and parchment paper sheets were removed to obtain
thinner breast models, and PMMAwas added to model thicker breast models. This approach is
somewhat coarse but provides a readily available method for modeling breasts of different sizes
in the experiment. Further studies might include breast phantom models with even more varia-
tion in breast density and compression thickness.

It is known that some fraction (around 15%) of biopsied calcified lesions contained a mixture
of CO and HA in the clusters. This may further complicate the classification of such clusters
from benign ones. Additional studies are needed to understand classification performance when
these mixed type clusters are included in the analysis.

5 Conclusions

The motivation for this work was prompted by encouraging results from the prior simulations
studies by Ghammraoui and Glick,11 Ghammraoui et al.,12 and Kim et al.,13 showing good poten-
tial for dual-energy mammography in distinguishing type-I and type-II microcalcifications in the
breast lesions without performing biopsy. With the recent success of CNN in classifying images
of all kinds, it is logical to hypothesize that CNNs might accurately classify microcalcification
chemical types in both dual energy as well as conventional FFDM images. The two types of
materials occurring in calcified lesions, calcium HA and CO, have moderate differences in their
chemical compositions, namely the average atomic number, resulting in HA having larger photo-
electric absorption cross section and consequently slightly higher contrast in mammography x-
ray images. The combination of adipose and fibroglandular tissues distribution in the breast,
variations in compressed breast thickness as well as calcifications of different shapes and sizes
add a substantial amount of complexity in discriminating between the two calcification types
with a visual inspection of a mammogram by a human reader. A literature review3,4 suggests that
only about 60% to 70% of all calcified lesions were identified by radiologists as benign or malig-
nant correctly, based on their visual appearance alone. This study attempted to account for the
above factors in the MC simulation and clinical FFDM phantom experiments described herein.
Our modeling results agree quite well with our experimental findings and suggest that deep
CNNs’ may have the capacity to discriminate type I and type II calcification clusters in the
breast, using either conventional or dual-energy (diagnostic) mammography images with class
separation ROC AUC > 0.87 for the worst case scenario explored here. The in silico and the
phantom experiments were arranged, to the best of our ability, in a way that the only difference
between the calcifications of both kinds was their chemical composition. A number of simplify-
ing assumptions and following limitations, as listed above, were used in the modeling study and
in the experiments. Nevertheless, our initial results demonstrate that deep neural networks may
have a strong potential in assisting breast radiologists with reliable classification between malig-
nant and benign calcified lesions found in mammograms.

Future work to further analyze the clinical feasibility of this approach will include using
Raman spectroscopy on biopsy specimens to define gold standard chemical composition.
These specimens will be imaged combined with a physical anthropomorphic breast phantom
to further evaluate CNN discrimination performance.

As of the time of writing, dual-energy contrast-enhanced spectral mammography (CESM)
has been approved by the FDA for three mammography equipment vendors to market. Although
currently we have not seen a lot of clinical use of CESM, more and more clinical studies are
showing the benefit of CESM for diagnostic work-up. We show the potential for using dual-
energy spectral mammography to gain further knowledge on the chemical composition of micro-
calcifications. In the future, we expect dual-energy imaging to become more common for
diagnostic work-up, for analyzing both masses (using iodinated contrast) and microcalcifications
(using dual-energy and chemical decomposition methods). We believe that the results of this
study provide motivation for further research and development of spectral mammography sys-
tems, including both dual energy and use of photon counting detectors.
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