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Abstract

The circadian clock is a master regulator of mammalian physiology, regulating daily oscillations 

of crucial biological processes and behaviors. Notably, circadian disruption has recently been 

identified as an independent risk factor for cancer and classified as a carcinogen. As such, it is 

imperative to discern the underpinning mechanisms by which circadian disruption alters cancer 

risk. Emergent data, reviewed herein, demonstrate that circadian regulatory functions play critical 

roles in several hallmarks of cancer, including control of cell proliferation, cell death, DNA repair, 

and metabolic alteration. Developing a deeper understanding of circadian-cancer regulation cross-

talk holds promise for developing new strategies for cancer interception, prevention, and 

management.

Introduction

The circadian clock is an evolutionarily conserved, molecular time-keeping mechanism that 

regulates daily oscillations of biological processes and behaviors (1–4). The central clock is 

generated and maintained in the suprachiasmatic nucleus (SCN) of the hypothalamus, but 

cell-autonomous subordinate clocks also exist in peripheral tissues (e.g., liver, kidney, skin, 

intestine, lung, pancreas, ovary, and heart), which synchronize with one another by the SCN 

clock through neural and humoral inputs. The SCN synchronizes to environmental cues, 

such as ambient light, to coordinate circadian outputs and manage selected molecular and 

physiologic functions on a 24-hour cycle (5, 6). Although the basic molecular architecture of 

the SCN and peripheral clocks is the same, the SCN clock is the “master clock,” which 

signals and synchronizes peripheral clocks and others via circadian output pathways, 

including the autonomic nervous system and the neuroendocrine system. On balance, the 

circadian clock is vital to maintaining physiologic homeostasis and normal function of all 

organisms.
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As a result of both population and laboratory-based findings, the World Health Organization 

designated circadian disruption as a likely carcinogen (7–9), thus raising interest in 

understanding how disruption of diurnal patterns promotes tumor development. 

Epidemiologic studies indicate that circadian rhythm disruptions (e.g., via jet lag, shift work, 

sleep disruption, and exposure to light at night) are associated with increased cancer risk, 

including cancers of the prostate, breast, colon, liver, pancreas, ovary, and lung (10–13). 

Furthermore, loss of circadian control is associated with poor efficacy of anticancer 

treatments and early mortality amongst patients with cancer (14, 15). In addition, visually 

impaired individuals who are insensitive to light changes in the environment, and thus 

depend largely on free-running endogenous circadian clocks to synchronize daily 

physiology, have a lower overall cancer risk (16). While mechanistic understanding of 

observed increased cancer risk is incompletely understood, recent findings have begun to 

uncover the molecular impact of circadian disruption on cancer phenotypes. As will be 

discussed, circadian processes impact key pathways affecting cancer development and 

progression, including cell-cycle control, apoptosis, metabolic regulation, and the DNA 

damage response (DDR; Fig. 1).

Circadian Dysfunction and Cancer

Circadian clock regulation

The core clock machinery is composed of an autoregulatory network consisting of positive 

and negative transcription-translation feedback loops (TTFL; Fig. 1; refs. 17–19). 

Transcriptionally, the clock is driven by positive regulators of the loop. Basic helix–loop–

helix heterodimeric transcription factors (CLOCK/BMAL1 or BMAL1/NPAS2) regulate 

expression of key circadian genes including Cryptochromes (CRY1 and CRY2) and Period 
(PER1, PER2, and PER3) genes, which are the negative regulators of the circadian loop. 

CRY and PER form a transcriptional repressor complex that enters the nucleus to repress 

CLOCK/BMAL1 activity, thus creating a negative feedback loop to control the clock. Bmal1 
is also rhythmically controlled by its own transcriptional target. In brief, Rora, Rev-erbα, 

and Rev-erbβ. RORα stimulate Bmal1 expression, while Rev-erbα, and β suppress Bmal1 
expression. The importance of these master clock regulators is underscored by the 

observation that CLOCK/BMAL1 controls expression of approximately 10% of clock-

controlled genes, which regulate molecular, biochemical, and physiologic processes (1–4). 

Furthermore, posttranslational modifications of CRY and PER regulate protein stability, 

control nuclear entry of CRY/PER repressors, and impact the autoregulatory clock feedback 

loops. These overlapping mechanisms conferring daily rhythmicity of cellular, metabolic, 

and physiologic functions for homeostatic maintenance are depicted in Fig. 1 (17, 20, 21). In 

sum, the circadian clock is tightly controlled through a discrete set of transcriptional 

regulatory factors; as will be discussed, recent findings link alteration of clock-regulatory 

factors as contributing to cancer phenotypes.

Tumor-specific functions of CLOCK and BMAL

Numerous studies have linked disruption of circadian clock function to tumorigenesis. 

Studies to date indicate that CLOCK and BMAL1 may harbor tumor-suppressive roles that 

are conserved among humans and rodents (2). In humans, single-nucleotide polymorphisms 
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(SNP) in Clock and/or Bmal1 genes are associated with increased susceptibility to prostate, 

breast, ovarian, and pancreatic cancers (22–26). SNPs associated with increased cancer 

susceptibility are located in rs3749474 and rs11943456 (CLOCK) and in rs117104877, 

rs2290035, rs2278749, and rs969485 (BMAL1). Functional studies will be needed to 

determine how these alterations may contribute to tissue-specific cancers. Conversely, mice 

expressing dominant negative Clock mutation (ClockΔ19) incur an expected disruption of 

circadian rhythm, altering the expression of genes controlling metabolism, chromatin 

remodeling, DDR, and tumor suppression (27, 28). Moreover, ClockΔ19-mutant mice have 

significantly decreased survival when compared with wild-type mice, resulting from cardiac 

dysfunction and metabolic dysregulation. While Clock-mutant mice do not generate 

spontaneous tumors, this may be attributed to the decreased overall survival time, and 

transcriptional profiling reveals an induction of protumorigenic signaling. Similarly, there is 

significant evidence to suggest that Bmal1 also serves to restrict tumor development. 

Suppression of Bmal1 expression significantly increased the metastasizing potential of 

prostate, lung, and glioma cancers, both in vitro and in vivo. Mechanistically, tumor-

suppressive qualities of BMAL1 are posited to occur through regulation of the PI3K–AKT 

signaling axis (29, 30). For instance, the AKT pathway component, ribosomal S6 protein 

kinase 1 (S6K1), phosphorylates BMAL1 allowing for BMAL1 to both associate with 

translational machinery and to also stimulate protein synthesis to impact tumorigenesis (31). 

Furthermore, upstream regulators may play a role in modulating tumor-suppressive potential 

of CLOCK and BMAL1, as studies have shown that the unfolded protein response induces a 

phase shift in circadian oscillations via direct regulation of miR-211 to suppress Clock and 

Bmal1 expression impacting tumor progression (32). While these preliminary studies 

indicate that Clock and BMAL1 may serve tumor suppressor–like functions, exceptions 

exist in colorectal cancer, wherein Clock and Bmal1 expression is elevated, and modeling 

studies linked high CLOCK expression to increased proliferation (33, 34). In addition, in 

acute myeloid leukemia (AML), Clock and Bmal1 are required for growth of AML (35). 

Taken together, early data suggest that CLOCK/BMAL1 serve tumor-protective roles, but 

these functions may be context- and disease-specific.

Tumor-suppressive functions of the CRY and PER family

In addition to CLOCK/BMAL1, evidence exists to implicate CRY and PER genes in tumor 

suppression. SNPs and/or upregulation of Cry1,2 and Per1, 2, or 3 are associated with 

increased susceptibility to prostate, breast, endometrial, colorectal, and skin cancer (22–26). 

Similar to CLOCK/BMAL1, PER’s role as pro or antioncogenic need to be further defined; 

although, current data indicate tumor-suppressive roles. For instance, several mouse models 

have demonstrated that mice lacking both alleles of Per1 and/or Per2 display an increased 

risk of spontaneous and radiation-induced tumor development compared with their wild-type 

counterparts, and this phenotype was further amplified in circadian phase–shifted conditions 

(36–38). In addition, Per2-inactivating mutations in mice exhibit increased risk of neoplastic 

growth. Specifically, suppression of Per2 increased cell proliferation in human colon cancer 

models through regulation of β-catenin and c-Myc, highlighting the tumor-suppressive role 

of Per2 (39). PER1 directly interacts with ATM to mediate its effect on tumor-suppressive 

genes, including TP53 and CHK2 to impact tumorigenesis. This interaction is maintained in 

the presence of DNA damage, where overexpression of PER1 sensitized human cancer cells 
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to DNA damage–induced apoptosis (40). Thus, PER1 and PER2 clearly exhibit tumor-

suppressive roles.

Similarly, mice lacking both alleles of Cry1 and/or Cry2 also display an increased risk of 

spontaneous and radiation-induced tumor development compared with their wild-type 

counterparts, which was further amplified in circadian phase–shifted conditions (36–38). 

Interestingly, mice with Cry1 and Cry2 mutations are arrhythmic, further supporting their 

role in maintaining circadian homeostasis (41). Inhibition of Cry2 expression in breast 

cancer models leads to dysregulation of genes involved in proliferation, apoptosis, 

migration, and invasion, again suggestive of a link to tumor development (42). While these 

collective observations link CRY and PER gene disruption to increased cancer susceptibility, 

functional dissection of CRY and PER pathways in controlling tumor development remain 

nascent.

Mechanisms linking clock dysfunction to the hallmarks of cancer

Molecular understanding of Clock, BMAL1, CRY, and PER family functions in circadian 

regulation are well understood, but data are emergent with regard to the molecular basis of 

tumor-suppressive functions. As described herein, preliminary findings have identified 

cross-talk of clock-regulatory proteins with key hallmark pathways controlling cancer 

development and progression.

Cell-cycle cross-talk.—The mitotic cell cycle and the circadian clock share many 

similarities as biologic oscillators in dividing cells, as each displays periodic phases of 

activation and repression. In organisms from cyanobacteria to unicellular eukaryotes (43–

46), there is molecular coupling of the processes, wherein the molecular clock serves as an 

additional “checkpoint” for mitosis that restricts cell division to specific circadian phases 

(47, 48). However, the relevance of this coupling mechanism is unclear in mammalian cells 

and is the basis of controversy; whereas a subset of studies reported that most cell divisions 

occur in specific phases of the circadian cycle, others failed to identify a gating requirement 

of the cell cycle on circadian clock positioning (49–51). Although the basis of these 

divergent observations is not known, molecular observations in mammalian cells strongly 

support the contention that circadian pathways cross-talk with the cell-cycle machinery 

through transcriptional control or direct protein–protein interactions (Fig. 1).

Studies have demonstrated that circadian clock components can induce or repress cell-cycle 

progression depending on the time of day, inducing rhythmic transcriptional and 

posttranscriptional control of the cell cycle. Thus, each phase of the cell cycle has the 

potential to be influenced by the circadian clock. For example, in G1 phase, Rev-erbα and 

RORα/γ repress transcription of the cyclin-dependent kinase (CDK) regulator p21cip1, 

thereby promoting cell-cycle progression (52–56). Conversely, the clock-controlled gene, 

NONO, regulates the CDK inhibitor p16ink4a expression in a PER-dependent manner at the 

G1–S transition causing cellular senescence (52–56). In addition, PER1 and the circadian 

gene Timeless (TIM) inhibit the G1–S transition through interaction with ataxia-

telangiectasia–mutated (ATM) and checkpoint 2 (CHK2), causing cell-cycle arrest (40). 

Similar paradigms exist for the G2–M transition, wherein both positive and negative 
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influence of circadian clock factors has been reported. CRY1 promotes cell-cycle 

progression by inhibiting WEE1, the G2–M regulatory kinase, and thereby inducing mitotic 

entry. CLOCK/BMAL1 also regulates WEE1 controlling WEE2 rhythmic transcription in a 

manner that is sufficient to control cell-cycle arrest (52–56). Conversely, in different 

analyses it was shown that CRY1 restricts mitosis by modulating the ATM, ATR, CHK1-

mediated G2–M transition by interacting with TIM in a circadian-controlled manner (57, 

58). Lastly, expression of several known oncogenes (β-catenin, c-Myc, and Mdm2), cyclins 

(CCND1, CCNB, and CCN1), and additional cell-cycle regulators (Cdk4, Wnt3, and Tcf4) 

are all clock-controlled (59, 60). Thus, tight circadian control at key checkpoints is 

necessary to promote proper cell-cycle control at the G2–M checkpoint and maintain 

physiologic homeostasis. Taken together, these observations indicate circadian factors 

significantly influence both the G1–S and G2–M transition, but elicit distinct effects, 

dependent on context and the phase of circadian rhythm.

Conversely, cross-talk exists wherein the cell-cycle regulatory machinery impinges on 

circadian clock function, especially as related to transcriptional silencing occurring during 

mitosis. As observed, the pivotal tumor suppressor protein p53 is central to coupling 

circadian and cell-cycle oscillators. Molecular studies demonstrated that p53 directly binds 

to Per2 promoter and represses Per 2 expression, thus disrupting CLOCK/BMAL1 

regulation and shifting the circadian cycle (61). In addition, a second tumor suppressor, 

PML, binds to and promotes PER2 nuclear localization, thus altering circadian timing and 

homeostasis (62). The overall impact of circadian clockcell-cycle cross-talk on tumor risk is 

complex, and likely contributes to the impact of circadian disruption on tumor development. 

Future studies are needed to link these molecular observations to cancer risk mediated by 

circadian disruption.

Regulation of cancer cell signaling.—Sustaining proliferative signaling remains a key 

factor among hallmarks of cancer (63, 64), and preliminary evidence exists linking circadian 

factors to regulation of growth factor processes in cancer. For example, upstream 

components of the JNK and p38 pathways exhibit the high circadian rhythmicity, including 

the following: ASK2, MKK7, MMK3, MMK6, p38γ, p38α, and JNK3 (65, 66). There is 

also evidence of cross-talk in that MKK7-mediated JNK activation increases the half-life of 

PER2 through phosphorylation, resulting in altered circadian timing (67). Furthermore, 

GADD45 family members that directly interact with JNK/p38 components also respond to 

circadian clock–regulated signaling (68). Both CRY1 knockdown in vitro and PER-mutant 

mice demonstrated impaired the circadian expression of GADD45α increasing cellular 

proliferation (38, 42). Finally, downstream components of the ERK1/2 pathway, ERK2 and 

MKK2, also show significant circadian rhythmicity, implicating connectivity of multiple 

growth factor signaling pathways with the circadian clock (65, 66). How these observations 

connect to specific growth factor responses in cancer remains an open question to be 

addressed.

At the tissue level, the central clock controls cell proliferation in peripheral tissues via the 

sympathetic nervous system (SNS), which innervates all peripheral organs to control 

intracellular signaling (69, 70). Studies showed that deregulated SNS signaling, either 

through surgical ablation or in jet-lagged mouse models, abolishes circadian oscillation and 
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promotes tumor initiation (36, 71). Deregulated SNS signaling causes loss-of-function in the 

peripheral clock abolishing CLOCK/BMAL activation and leading to Myc oncogenic 

activation (36, 72). Taken together, balanced circadian control of cellular proliferation 

through transcriptional control and kinase regulation is key to cellular homeostasis and 

preventing tumor development.

Clock influence on cell death.—Recent studies established direct relationship between 

the core circadian clock and apoptosis. Similar to what was observed with cell-cycle 

regulation, circadian factors can both promote and restrict apoptosis, dependent on cellular 

context and clock status. With respect to promoting cell death, CRY1/2 and PER1 influence 

the extrinsic TNFα-dependent pathway and intrinsic apoptotic pathways, respectively (73). 

Mechanistically, PER2 sensitizes cancer cells to radiation-induced apoptosis through 

activation of Myc-mediated proapoptotic pathways. In addition, knockdown of PER1 results 

in downregulation of antiapoptotic BCL-2 and upregulation of proapoptotic BAX in 

hepatocellular carcinoma cells, increasing apoptosis. Thus, circadian factors can promote 

apoptosis through multiple mechanisms. Conversely, Clock can inhibit apoptosis. Mice 

defective in CLOCK show decreased expression of apoptosis-inducing factors, which 

contributes to increased tumor growth (74). In addition, the apoptotic regulators DEC1 

(proapoptotic) and DEC2 (anti-apoptotic) repress CLOCK/BMAL–induced transactivation 

of the Per1 promoter, thereby influencing circadian regulation of apoptosis (75–77). These 

collective observations underscore the need to more fully understand the factors that control 

circadian-mediated cell death regulation, and the impact of these processes on 

tumorigenesis.

Clock and the DDR.—Perturbed DDRs contribute to cancer phenotypes (78, 79), and a 

multitude of evidence links circadian clock to DDR competence. In murine models, clock 

disruption results in accumulation of DNA damage and increased risk of neoplasia. The link 

between these processes is likely evolutionarily conserved, as Cryptochromes are 

structurally related to DNA photolyases that catalyze light-dependent DNA repair in plants 

and Drosophila (80). The direct role of CRYs in DDR in mammals still has to be fully 

defined mechanistically; however, several causative studies have shown the importance of 

CRY1,2 in DDR. UVB irradiation in the epidermis of Cry1−/−; Cry2−/− mice exhibits 

dampened circadian rhythm in the nucleotide excision repair gene XPA (81, 82). Time-

restricted feeding also shifts the phase and amplitude of the epidermis circadian clock, 

ultimately altering sensitivity to UVB-induced DNA damage and expression of XPA, 

hindering repair (83). Furthermore, UV-induced DNA damages induce CRY2 interaction 

with ATR and CHK1 to regulate intra-S checkpoint function (84). The overall involvement 

of CRYs with DDR regulation underscores the need to fully investigate the contribution of 

tumor-derived CRY alterations in not only cancer development, but response to therapeutic 

intervention.

Importantly, other components of the molecular clock including PER1, PER2, and TIM play 

pivotal roles in multiple DDR processes. PER1 directly interacts with ATM/CHK2 in 

response to radiation-induced DSBs (40), PER1 overexpression activates Myc-mediated 

apoptosis in response to radiation-induced DSBs, and conversely, downregulation of PER2 
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confers resistance to radiation-induced apoptosis due to delayed CHK2 activation (38, 85). 

Accordingly, Per2−/− mice incur an increased risk of lymphoma (38, 86). TIM also has 

functions in DDR, including modulation of CHK1 and ATR downstream of single-strand 

DNA breaks, and activation of CHK2 via ATM modulation downstream of double strand 

breaks (87). Taken together, distinct circadian components are necessary to elicit canonical 

DDR for both single-strand and double-strand DNA breaks.

Complementing these findings, the positive circadian component Bmal1 has been 

preliminarily linked to DDR. Bmal1 knockdown abolishes radiation-induced p53 activation, 

releasing cells from cell-cycle arrest (88). In addition, in vivo keratinocyte-specific deletion 

of Bmal1 dampens UVB-induced DDR and increases accumulation of DNA lesions in the 

epidermis of mice (89). Conversely, the DNA repair factor CCAR2 represses BMAL1 and 

CLOCK expression and can modulate circadian rhythm (90), providing yet more evidence of 

cross-talk between DDR and circadian pathways. Understanding the specific timing and 

pathway regulation by each circadian gene will be pivotal for discerning proper therapeutic 

regimens to induce sustained responses to genotoxic therapies.

Cancer cell metabolism and the clock.—Coordinated interaction between the 

molecular circadian clock and the intricate network of metabolic pathways is required for 

maintenance of physiologic homeostasis in healthy cells. First identified in mammalian red 

blood cells (91), the metabolic circadian clock is independent of transcriptional activity and 

is sustained through the redox cycle of peroxiredoxin/thioredoxin/NADPH enzymes (92–

94). This complex displays a 24-hour redox fluctuation metabolizing H2O2 in various tissues 

throughout the body. Multiple redox pairs, including: thiols (glutathione-GSH/GSSG) and 

coenzymes (FADH2/FAD+, NADH/NAD+, and NADPH/NADP+), dictate the global cellular 

redox state to influence electron flux and cellular homeostasis (95, 96). In particular, 

NADPH is able to extend or shorten the 24-hour circadian rhythm in drosophila, mouse 

tissue, and human cells (97). Thus, NADPH is a critical cofactor that has the potential to 

function as a circadian-regulated and cancer-promoting metabolite.

Cancer-associated reprogramming of energy metabolism to predominantly utilize glycolytic 

activity, despite aerobic conditions (Warburg effect), is characterized with higher NADPH 

formation, decreased TCA cycle activity, and increased fatty acid synthesis (98), and recent 

studies established a relationship between this process and the circadian clock. For example, 

melatonin elevation due to light exposure changes leads to decreased growth of prostate and 

breast cancer xenografts due to disruption of the Warburg effect (99–103). In addition, 

alterations in the pentose phosphate pathway, which generates NADPH, is tightly controlled 

in a circadian manner (96). Moreover, sirtuins (SIRT), a family of NAD+-dependent 

proteins, interact with the circadian clock to control chromatin remodeling and metabolic 

output (104). SIRT1 expression is regulated by CLOCK/BMAL; conversely, SIRT1 directly 

interacts with CLOCK and is known to deacetylate PER2 altering the circadian clock (105–

107). This SIRT-circadian system also impacts the TCA cycle through SIRT3 and BMAL, 

and fatty acid metabolism through SIRT6 governing CLOCK/BMAL recruitment of 

SREBP1 to circadian promoters (108, 109). On the basis of these findings, evidence is 

strong that circadian disruption influences metabolic adaptions in favor of cancer 

development.
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Consistent with these findings, controlled feeding times improve metabolic disease even 

when mice are fed a high-fat diet (110, 111). For example, clock-mutant mice exhibit 

impaired cholesterol metabolism and promotion of atherosclerosis (112). In addition, RORγ
−/− mice display reduced hepatic gluconeogenesis and improved insulin sensitivity; while 

cell-specific deletion of Bmal1 led to hypoglycemia (113, 114). The influence of the 

circadian clock on metabolism also impacts lipogenesis, bile acid synthesis, cardiovascular 

disease, and inflammation (115). For instance, chronic jet-lag to disrupt the circadian rhythm 

induced spontaneous hepatocellular carcinoma (HCC) in wild-type mice due to deregulated 

nuclear receptor–controlled cholesterol/bile acid and xenobiotic metabolism, in addition to 

global liver metabolic dysfunction similar to the pathway observed in obese patients (116). 

Moreover, recent studies showed that 50% of detected metabolites oscillate in a mouse liver, 

and 18 of those metabolites also oscillate in human cell-autonomous U2OS cells (117). 

Intriguingly, BMAL1, CRY1, and CRY2 knockdown decouples transcriptional and 

metabolite rhythms by shortening, lengthening, or diminishing rhythms, respectively. 

Conversely, metabolic alterations can alter the circadian oscillation as well. For example, 

AMPK is a key nutrient sensor that can destabilize CRY1 and PER2 through 

phosphorylation, which alters the circadian rhythm (118, 119). Moreover, UBE3A binds and 

degrades BMAL1 in a ubiquitin ligase–dependent manner to disrupt circadian oscillation 

(120). In addition, MYC directly activates negative regulators of CLOCK/BMAL1, leading 

to disruption of circadian metabolic oscillation (121). The insulin-FOXO3-Clock signaling 

cascade mediates function in hepatic metabolism and oxidative sensitivity (122, 123). Lastly, 

a recent study showed that a high-fat diet influenced the circadian transcriptome and 

metabolome due to impaired BMAL1 and PPARγ recruitment (124). Thus, through 

transcriptional remodeling and posttranslational modifications, the circadian clock regulates 

metabolism and integrates nutrient signaling critical to maintaining tumorigenesis.

Leveraging circadian rhythm function in cancer management (chronotherapy)

Given the substantial data linking circadian clock dysfunction of cancer pathways, it is 

reasonable to consider how this process might be modulated to influence tumor growth and 

survival. The concept of chronotherapy, which considers the body’s natural rhythms and 

cycles to treat an illness or disorder, was utilized even before the molecular mechanism of 

the core circadian clock was defined (125). For example, the chemotherapeutic agent, 

cisplatin, exhibits significant difference in outcomes for patients with prostate, breast, 

cervical, and ovarian cancer when morning and evening doses were compared, indicating 

chronotherapy improves the toxic therapeutic ratio of cisplatin and enhances efficacy (126). 

Furthermore, additional chemotherapeutic drugs exhibited optimal dosing timings to 

improve outcome in bladder, colorectal, endometrial, and renal cancer (127–130). The 

activity of several anticancer drugs may be restricted by their side effects and toxicities to 

healthy cells. Hence, chronotherapeutics aims to maximize the antitumor effects of cancer 

chemotherapy by minimizing toxicity and undesirable side effects, while simultaneously 

increasing tolerability to improve the survival rate for patients with cancer.

The role of the circadian clock in chemotherapy administration has also been evaluated 

using wild-type and circadian clock–mutant mice (131). Clock-mutant and Bmal1 knockout 

mice are sensitive to chemotherapy regardless of the time of administration of treatment 
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(132), whereas Cry1−/− Cry2−/− mice are more resistant to chemotherapy compared with 

wild-type (133). These in vivo studies also revealed that both host tolerability and drug 

efficacy are affected by circadian timing. Accordingly, it was inferred that response to 

chemotherapy varies with the time of day, indicating the circadian clock plays an important 

role in therapeutic outcome (131). In addition, genome-wide circadian gene expression 

profile studies in mice, nonhuman primates, and human lung and liver tissues indicated that 

at least 80% of the FDA-approved drugs tested exhibited daily rhythm in their targets and 

respective downstream functions (134, 135).

Consequently, the successful chronotherapeutic preclinical results were used as justification 

for several randomized clinical trials for advanced cancers, which revealed that anticancer 

chronotherapy is most beneficial to patients who maintain their endogenous circadian clock 

and rhythm (136). This highlights the intricate connection of therapeutic efficacy with 

individual innate circadian function for ideal outcome. However, a dysregulated circadian 

clock could alter the efficacy of anticancer drugs, so additional investigation needs to be 

performed to discern optimal timing for treatment in those disease states. On the basis of 

these collective data, discerning the mechanisms by which the circadian clock alters cancer 

therapy may provide insight into refining and augmenting outcomes for the therapeutic 

intervention.

Conclusions

Circadian disruption is an independent risk factor for cancer and has been classified as a 

carcinogen. As described herein, perturbations of the circadian clock strongly influence 

neoplastic transformation and tumor growth through alterations of multiple cancer 

regulatory pathways including cell cycle, apoptosis, DDR, and metabolism. While the robust 

link between circadian dysfunction and cancer is well established, mechanistic 

understanding is nascent. Therefore, it is imperative to continue to elucidate the mechanisms 

by which the mammalian circadian clock regulates cancer progression.

Key questions remain that must be addressed to delineate the complex roles of the molecular 

clock in human malignancy. First, is a circadian lifestyle change that incorporates timing of 

sleep, physical activity, and nutrition enough to diminish disruption of circadian rhythm to 

reduce cancer incidence? It is intriguing to speculate that cancer risk reduction could be 

achieved through behavior modification and/or pharmacologic normalization of the 

circadian cycle. Second, what molecular mechanisms are involved in tissue-specific 

circadian gene expression and how does that impact tumorigenesis? Peripheral clocks are 

found in several tissue types, but not all, and the lack of coordinated circadian rhythm leads 

to differential expression of core circadian genes. The impact of circadian expression on 

tumorigenesis and other age-related diseases needs to be evaluated. Third, because circadian 

genes have been associated with high concentrations of sex hormones (137), it would be 

intriguing to discern the possible role of circadian genes in hormone-related cancers to 

uncover novel mechanisms of action. Finally, to establish a rational chronotherapeutic 

strategy, determining the underlying basis of effectivity and optimal implementation strategy 

will be critical. Future studies will prove instrumental in enriching our understanding of 

circadian influence on tumor initiation and progression. In conclusion, discerning the 
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intricate workings of the circadian clock on cancer development and progression has the 

potential for transformative impact with respect to cancer prevention and management.
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Figure 1. 
“Hallmarks” of the circadian clock. The core clock machinery consists of positive (CLOCK 

and BMAL1) and negative [Cryptochrome (CRY) and Period (PER)] regulators that 

maintain daily rhythmicity throughout an organism, impacting cell cycle, apoptosis, DNA 

repair, and metabolic regulation. CLOCK/BMAL1 heterodimers bind to E-box sites to 

regulate expression of core clock genes (CCGs), including CRY1, CRY2, PER1, PER2, and 

PER3. CLOCK/BMAL1 also regulates expression of additional clock-controlled genes, such 

as RORA and Rev-erb, which, in turn, regulate expression of BMAL1 through binding to 

ROR response elements (RORE). Thus, this autoregulatory network consisting of positive 

and negative transcription-translation feedback loops confer daily rhythmicity for 

homeostatic maintenance. The circadian clock influences several biological processes 
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impacting tumor development and progression. Circadian-controlled processes are vast, 

including cell cycle, apoptosis, metabolic regulation, and DDR, which are all crucial for 

physiologic homeostasis. Disruption of circadian homeostasis through various factors is 

associated with increased cancer incidence and is an important, independent risk factor of 

cancer development in humans.
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