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Abstract

The SAMPL challenges focus on testing and driving progress of computational methods to help 

guide pharmaceutical drug discovery. However, assessment of methods for predicting binding 

affinities is often hampered by computational challenges such as conformational sampling, 

protonation state uncertainties, variation in test sets selected, and even lack of high quality 

experimental data. SAMPL blind challenges have thus frequently included a component focusing 

on host-guest binding, which removes some of these challenges while still focusing on molecular 

recognition. Here, we report on the results of the SAMPL7 blind prediction challenge for host-

guest affinity prediction. In this study, we focused on three different host-guest categories – a 

familiar deep cavity cavitand series which has been featured in several prior challenges (where we 

examine binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which 

are monofunctionalized around the rim to add amino acid-like functionality (where we examine 

binding of two guests to a series of hosts), and binding of a series of guests to a new acyclic 

TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods 

based on molecular simulations, and overall success was mixed, though several methods stood out. 

As in SAMPL6, we find that one strategy for achieving reasonable accuracy here was to make 

empirical corrections to binding predictions based on previous data for host categories which have 

been studied well before, though this can be of limited value when new systems are included. 

Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force 

field had considerable success for the two host categories in which they participated. The new 

TrimerTrip system was also found to introduce some sampling problems, because multiple 

conformations may be relevant to binding and interconvert only slowly. Overall, results in this 

challenge tentatively suggest that further investigation of polarizable force fields for these 

challenges may be warranted.
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1 Introduction

Docking and scoring methods have long been used to assist with hit identification and 

optimization in computer-aided drug design (CADD) [3]. More recently, efforts to improve 

the reliability of CADD methodologies have gone beyond qualitative docking and scoring 

towards quantitative modeling [4] via molecular simulations, which can be used to estimate 

a variety of physical properties of interest [3, 4]. In this area, predictions of protein-ligand 

binding free energies have gained much attention for a few decades for their potential to help 

accelerate small-molecule drug discovery [5], but have received increasing attention recently 

as this potential begins to be realized [6, 7]. The long-term goal is to use computational 

techniques to aid and direct small molecule design to more rapidly and efficiently produce 

new therapeutics [4]. Right now, much discovery works via a slow cycle of experimental 

trial and error, but accurate enough free energy methods could dramatically accelerate early 

stage discovery [3, 5].

The accuracy of free energy calculations is dependent on and limited by inaccuracy in the 

energy model used (i.e., force field used, finite-size effects, and water model) [8], sampling, 

and the protein-ligand system set up, which can include aspects such as protonation state, 

chosen tautomer state, and buffer, to name a few [3, 5]. Although sources of systematic error 

in free energy calculations are known, it is difficult to analyze errors when modeling protein-

ligand systems due to their flexibility and complexity; such challenges mean that simulations 

of a few nanoseconds to microseconds may not always adequately sample the relevant 

conformations of the protein, ligand and environment [3, 5]. For this reason, host-guest 

systems are a great substitute for protein-ligand systems in evaluations of computational 

methods for predicting free energies of binding [3], as conformational sampling can be less 

of a challenge.

Host-guest systems are similar to protein-ligand systems in that they also involve binding of 

a small molecule to a pocket in a receptor, though they have certain differences. We can 

think of a host as resembling a very small protein molecule (of different chemistry) which 

has a binding cavity or pocket. A guest is a small molecule which can bind non-covalently to 

the host. Supramolecular host families such as the cucurbiturils, cavitands, and cyclodextrins 

have diverse binding affinities and the ability to bind small drug-like compounds with 

protein-ligand like affinities [4]. Unlike proteins, the hosts are smaller, simpler, and often 

more rigid [9], removing some of the challenges facing computational modeling of proteins. 

These characteristics make host-guest systems an ideal substitute to test current 

computational methodologies used to predict physical properties of interest and investigate 

issues including binding, receptor flexibility, solvation, hydrogen bonding, the hydrophobic 

effect, protonation, and tautomers [3]. That is, while prediction of protein-ligand binding is 
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still of interest, host-guest systems can serve to help focus on the accuracy of computational 

methods themselves, without conflating as many other challenges.

In this work, we describe the recent SAMPL7 host-guest challenge, which allowed 

participants using diverse methods to predict host-guest binding free energies for a variety of 

guests to three different host families. Here, we give the challenge background, describe the 

hosts, survey participants’ results, and highlight key lessons learned.

2 SAMPL Challenge Background, History, and Expectations

2.1 SAMPL fields blind challenges to provide fair tests

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) challenges 

focus efforts on improving and advancing computational methods through crowdsourcing. 

Blind challenges, like SAMPL and companion challenges such the the Drug Design Data 

Resource (D3R) Grand Challenges, ensure participants do not know experimental values 

when running calculations [10], ensuring that method comparisons are fair and performance 

is hopefully indicative of what could be expected in real-world applications to related 

problems. Host-guest systems form the basis of one category of the SAMPL challenges 

(with others focusing on predicting physical properties, and on protein-ligand binding) and 

typical challenge performance indicates such host-guest systems still pose challenges to 

contemporary methods [10]. Occasionally, host(s) or guest(s) are revisited, so related 

experimental results are available, but we avoid cases where the experimental value being 

predicted is already available in the literature. A wealth of experimental data is already 

available, so SAMPL focuses on predictive tests rather than retrospective analysis. The 

SAMPL challenges are organized in this manner to ensure no participant, even accidentally, 

adjusts their method to agree with “correct” values thereby introducing bias. For example, 

when experimental values are known, a naive participant could stop calculations when they 

agree with the experimental value because they have “converged”. Or more subtly, a 

participant could run calculations with several different sets of settings in the simulation 

package used and conclude that the settings which gave the best results were optimal, 

whereas in fact they might be just observing random fluctuations. Blind challenges avoid 

such opportunities for bias.

In general, SAMPL blind challenges typically involve a host-guest component that provides 

the community an opportunity to test and compare performance of a variety of 

computational methods on the same diverse data. The subsequent release of experimental 

data allows accuracy to be compared relative to experimental results which were not known 

when predictions were made, and the subsequent statistical assessment compares methods 

on equal footing. Upon evaluation, participants and organizers can assess the lessons learned 

and the potential value of different methods. Subsequently, computational methods and their 

algorithms can be calibrated and optimized for application in future blind challenges and in 

the real world [11].
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2.2 Host-guest systems

2.2.1 What are host guest systems?—As described briefly in Section 1, host-guest 

systems are similar to protein-ligand systems in that they both involve the binding of a small 

molecule to a pocket in a receptor. Hosts often contain less than 100 non-hydrogen atoms, 

but are slightly larger than small molecules [9], so the broader field of such chemistry is 

often called supramolecular chemistry. Usually, hosts don’t have large number of possible 

folds or conformational structures like a protein [9]. Eventually some host-guest systems are 

well characterized and become part of the driving force behind methodology improvement, 

with the ultimate goal of transferability to protein-ligand systems [11].

2.2.2 Why use host guest systems?—Despite their apparent relative simplicity, 

host-guest binding has proved a difficult challenge for computation. Large-scale protein-

ligand binding free energy studies often report RMS errors in the 1–2 kcal/mol range [6, 7, 

12–14], which is considerably better than typical performance in SAMPL host-guest 

challenges [3, 4, 15–17]. It may be that host-guest systems are “simple” enough that there is 

essentially nowhere for problems to hide, or confounding factors like polarizability and force 

field limitations may be more profound in these simple mini-receptors. Alternatively, 

performance of protein-ligand binding free energy calculations has often been worse in blind 

challenges like the SAMPL [18] and D3R [19–22] blind challenges than in the large-scale 

tests cited above, so it may be that typical retrospective tests simply benefit from participants 

utilizing additional knowledge which is not available prospectively or in blind challenges. 

This is supported to some extent by recent benchmarking work from Merck KGaA [13], and 

by an earlier industry perspective [23]. Moreover, binding affinities for protein-ligand 

systems are usually predicted via relative binding free energy calculations for similar 

ligands. On the other hand, host-guest systems are typically absolute binding free energy 

calculations and perhaps a reason for the increased difficulty.

3 Some aspects can pose particular challenges for free energy 

calculations

Several different issues arise in the context of binding free energy calculations that can cause 

particular difficulties or challenges. Here, we survey several major categories of issues 

which affect some methods participating in SAMPL7.

3.1 Guests bearing a formal charge can pose methodological challenges

Molecules with formal charges can pose challenges for molecular simulations, and 

especially for binding free energy calculations. These challenges, and differences in how 

they are handled, can be particularly important when studying binding in systems like those 

considered here.

In general, conducting efficient molecular simulations requires making approximations and 

simplifications of electrostatic interactions. For example, typically we are interested in bulk 

or bulk-like behavior, but simulating macroscale systems is cost prohibitive, so we may 

instead choose to simulate a microscopic box under periodic boundary conditions (PBCs) to 
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minimize edge effects. Alternatively, a modeler might choose to apply effective electrostatic 

interaction functions.

To effectively treat electrostatic interactions, functions involving cutoff truncation schemes 

combined with reaction-field (RF) contribution or lattice-summation (LS) methods may be 

employed [8, 24, 25]. These methods cause the charging component of the calculated free 

energies to be sensitive to important system parameters like the cutoff radius or the box size 

[25]. In addition, the raw single-ion solvation free energies from explicit-solvent simulations 

are extremely sensitive to the boundary conditions and electrostatic interaction treatment 

[24].

The approximations described above may also introduce bias or offset in the electrostatic 

potential during the simulation. System-dependent artifacts can also arise from system 

parameters (such as cutoff radius, box shape and/or size). The artifacts are due to finite-size 

effects which impact computed charging free energies/binding free energies. While such 

errors do not have a major effect on computed free energies as long as systems remain net 

neutral or have a consistent formal charge, they become particularly pronounced when the 

formal charge of a system changes, such as during an alchemical binding free energy 

calculation [8] as employed by many SAMPL participants. For this reason methods may 

need to account and correct for artifacts that may not cancel when a formal charge is 

alchemically inserted in the system. The sign and magnitude of artifacts depend on the 

methods used to calculate electrostatic interactions.

The exact sources of such finite-size errors have been described previously. Briefly, the 

finite-size error in ligand/guest charging (and by extension, binding) free energies originates 

from at least four different physical effects in periodic systems: (a) Periodicity-induced net-

charge interactions; (b) Periodicity-induced net charge undersolvation; (c) Discrete solvent 

effects; and (d) Residual integrated potential effects [8].

There have been some attempts to address these issues; particularly, both instantaneous and 

post-simulation correction strategies have been proposed [8, 24, 26]. One approach is to 

apply various after-the-fact corrections to computed free energies [8, 24, 26]. Alternatively, 

others have proposed applying a correction strategy during simulations, which has been 

called a co-alchemical ion approach, wherein an alchemical perturbation of a charged 

moiety is simultaneously performed with a counter-alchemical charge perturbation of a 

remote molecule (i.e. a counter-ion) [8, 25]. In other words, in this approach, the system is 

maintained net neutral by offsetting a charge change in one portion of a system with a 

compensating change in another portion of the system. The goal in this approach is to ensure 

that errors from finite-size effects are negligible. Post simulation strategies include charge-

correction terms which have been shown to work for LS and RF, and can be evaluated via 

numerical and analytical methods [8, 24, 27, 28].

3.2 Polarization can potentially pose particular challenges

Charged molecules — like those frequent in SAMPL7 – can also pose particular challenges 

because of strong electrostatic interactions with their immediate surroundings. This poses 

two challenges which are particularly relevant here – first, any polarization of the 
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surroundings may be particularly important. Second, other electrostatic interactions are quite 

strong, including interactions with surrounding ions. These can include screening effects, but 

also relatively more specific interactions.

Polarization is a phenomenon where atoms and molecules induce changes in the electron 

distributions of other atoms and molecules they interact with [29]. This effect grows stronger 

the stronger the electrostatic interactions and/or the more polarizable the atoms involved. 

Because of their strong electrostatics, then, the electrostatic interactions of charged groups 

can be particularly affected by polarization. Additionally, anions such as iodide and bromide 

are highly polarizable, including anions with phosphate or sulfate moieties which are present 

in a wide range of biomolecules [30, 31]. Phosphates and sulfates play important roles in 

biological functions, interactions, and are present in drug-like molecules [31]. On the other 

hand, small cations have low polarizability but can still strongly polarize their environment 

when it is polarizable.

Much molecular modeling uses classical fixed-charge force fields without an explicit 

accounting for polarization [31]. Such two-body additive force fields are implicitly polarized 

to hopefully match a level of polarization appropriate on average for condensed-phase 

simulations [32–34]. This is true for common force fields in the AMBER, CHARMM, 

GROMOS and OPLS-AA families (e.g. GAFF [35, 36], OpenFF [37], CGenFF [38–40], and 

OPLS-AA [41, 42]); these neglect polarization for computational efficiency. It’s possible 

that the approximations made by these fixed-charge force fields may result in particularly 

large errors in systems like those examined here [43].

Polarizability may also be particularly important for these systems due to the water model. 

Particularly, with fixed-charge force fields, the water model is also non-polarizable, which 

may be an especially bad approximation for systems like these where water interactions with 

a buried hydrophobic cavity are at play [43]. The expectation is that binding in host-guest 

systems like those examined here are heavily influenced by the hydrophobic effect, and the 

hydrophobic effect will certainly be strongly influenced by properties like polarizability.

Fixed point charge water models are limited in some ways by their use of the same partial 

charges to empirically fit the potential energy landscape and dipole moment, two distinct 

water properties [44, 45]. Inevitably, the choice in water model (many listed in [46, 47]) may 

also dictate the accuracy in (a) solvation, (b) dielectric constant, and (c) dipole moment [44], 

and affect ionic behavior along with many other properties. Previous work in the Gilson lab 

indicated that even fixed-charge water models can vary dramatically in water placement and 

orientation around hosts as well as in thermodynamic properties like the enthalpy of binding 

[48, 49], and it seems likely that polarizable models may exhibit even larger differences.

Polarizable force fields potentially help address some of these concerns and challenges. The 

first general purpose polarizable model was introduced by Arieh Warshel for a water model 

suitable for biomolecular simulations [50], building on his work with early QM/MM based 

approaches. Peter Kollman [51] and Berne and Friesner [52] developed early polarizable 

variants of AMBER in the 1980s and 1990s, respectively. More recently, the AMOEBA 

force field has been in development since the early 2000s and was first published by Ren and 
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Ponder around 2002 [53]. Polarizable force fields, and their importance for such systems, are 

explained in Section 2. In addition, popular general force fields such as AMBER, OPLS-

AA, GROMOS, and CHARMM are continuously evolving and polarizable versions of some 

of these are available [46]. One example of the latter is a recent release of CHARMM’s 

balanced Drude polarizable force field [31]. However, polarizable force fields have been 

applied relatively seldom in SAMPL challenges; the AMOEBA force field was used in some 

prior host-guest challenges [11], but the Drude polarizable force field has yet to be used in a 

SAMPL challenge.

In other words, polarizable force fields add additional complexity to the physical model used 

in describing these systems, potentially providing additional accuracy but with additional 

computational cost. However, for some host-guest systems, this may be particularly 

important for several physical reasons. First, these systems often exhibit strong electrostatic 

interactions in a buried, relatively hydrophobic environment, meaning that the precise degree 

of polarization and environmental shielding may be a key determinant. Polarizability may 

affect the strength of charge-charge interactions, and may strongly modulate the shielding 

effect of the environment. Additionally, the hydrophobic effect can be a key determinant of 

binding, and this is also likely strongly modulated by polarization of the water and host.

Polarizable force fields have shown some promise in prior SAMPL challenges. In the 

SAMPL6 host-guest challenge, a method using the AMOEBA force field was employed on 

CB8 with 14 guests ranging from small organic molecules to larger drug-like compounds, 

including approved drugs. The initial results had an ME and RMSE of 2.63 and 3.62 

kcal/mol respectively, and interestingly, this method was able to correctly identify 

questionable host-guest complex ratios of CB8 with guests 11 and 12 [11]. The correct 

respective ratios for these systems were 1:1 and 1:2, and these were a bonus challenge in 

SAMPL6. Binding free energies were predicted to be too favorable for guests 2 and 3 

(Palonosetron and Quinine) which was presumed to be due to (a) AMOEBA parameters for 

the host resulting in single and/or double indentation of the macrocycle and (b) conformers 

of flexible guests locked during solvation in water vs binding in solvated complex [11]. In 

subsequent studies, revised AMOEBA results reported the improved ME and RMSE to 1.20 

and 1.68 kcal/mol respectively, though this was after challenge results were released. In total 

8 of the 15 predicted free energies were within 0.65 kcal/mol of experiment while the 

predictions for Palonosetron and Quinine guests were in better agreement with experiments. 

The improvements were attributed to two factors: (a) the value of key torsion parameters for 

C(N)-C-amide N-carbonyl carbons of CB8 and CB7 were adjusted to improve the flexibility 

description of the host ring system and (b) a double annihilation scheme of electrostatics and 

van der Waals with annihilation of key guest torsions yielded much better conformational 

sampling and hence predictive accuracy. However, through the SAMPL6 challenge we had 

not yet seen methods using the AMOEBA force field dramatically outperform other methods 

prospectively.

3.3 The type and concentration of salt could play an important role in some cases

Empirical force fields’ predictive power can be limited by the quality of their parameters. 

Parameters are not always available for all relevant chemistry, or may not be of equal quality 
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for all chemistry of interest. For example, experiments for all components of the SAMPL7 

host-guest challenge were done in sodium phosphate buffer (of varying concentration and 

pH). However, because of concerns about the quality of phosphate force field parameters, we 

conducted our reference calculations in sodium chloride (of the same ionic strength) instead. 

While this choice seems reasonable and is not uncommon in molecular modeling, it might 

affect computed free energies.

Particularly, the type of salt and its concentration can alter the solubility of a solute (e.g. in 

what is known as the Hofmeister effect) [54, 55]. Such salt dependence also interacts with 

the choice of water model. Particularly, one computational study reported surprising 

differences in the salt dependency of binding enthalpy (comparing TIP3P, SPC/E, TIP4P-

Ew, and OPC water models) during MD simulations for cucurbit[7]uril host with a neutral 

guest [56]. Despite the system being non-ionized, the salt concentration (and the choice of 

sodium and chloride parameters) affected the behavior and thermodynamics of water, raising 

issues regarding selection and adjustment of water models for charged groups [56]. Incorrect 

ionic behavior (i.e. dielectric constant, dipole moment, solvation, and excessive ion-pairing 

and/or ion pairing strength) has been shown to be due to unbalanced force field parameters 

[31, 44].

In the present SAMPL challenge, some participants did not use any ions beyond counter 

ions to neutralize their systems. However, salt concentration is known to play a significant 

role in modulating host-guest binding affinities experimentally in some cases [9, 57]. Thus, 

if salt concentration proves important here, such differences in protocol could produce a 

systematic difference between methods.

3.4 Some methods require considerable expertise to use successfully

Some methods for binding prediction require extensive knowledge and expertise. For 

example, a person with little computational experience may not be able to conduct a 

successful free energy calculation given the historical difficulty of setting up such 

simulations. Few available software tools are user-friendly enough that one might be able to 

simply insert receptor and ligand files and obtain an accurate estimate of a property like a 

binding free energy. This likely affects accuracy; it’s conceivable that users providing the 

same input files to the same package could obtain dramatically different results because of 

different choices of protocol.

Some tools provide a relatively straightforward interface for free energy calculations, at 

least, like YANK, but even YANK still requires a command-line interface and a wide variety 

of settings can affect computed values. Other tools like those from Schrödinger and the 

Chemical Computing Group allow free energy calculations from a GUI (Graphical User 

Interface), and the Schrödinger tools remove many key choices from the hands of users. 

However, we are not yet aware of a successful application of these tools to host-guest 

binding.

3.5 We avoid multimeric systems which introduce additional complications

Binding which involves stoichiometries other than 1:1 can be considered multimeric 

association. Some proteins exhibit this behavior, where a single protein molecule co-
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assembles with other proteins to form a complex; in other cases, a protein might oligomerize 

only on binding of a ligand or ligands. The reverse can also happen, with multiple ligands 

binding to a single protein, etc. The same holds true for some host-guest systems, with these 

systems exhibiting binding that is not 1:1 [58, 59], complicating both experimental 

measurement of binding and computational prediction thereof. In SAMPL7, we worked with 

experimental collaborators to deliberately ensure the challenge focuses on systems 

exhibiting 1:1 binding. However, the formation of host-guest multimeric complexes can even 

depend on the guest identity [59].

With multimeric host-guest complexes, cooperativity may play a role. Cooperativity occurs 

when a binding event can either increase or decrease the strength of subsequent binding 

events [60]. In the presence of ions, electrostatic attractions can also lead to cooperativity 

[61]. Indeed, experiments must verify 1:1 binding (as was done here) otherwise computation 

would need to consider other possibilities.

4 Previous SAMPL host-guest challenges used similar hosts

Previously SAMPL challenges have included a variety of host-guest systems, but the 

majority of SAMPL hosts have been in the cucurbituril [62] and Gibb deep cavity cavitand 

(often called “OctaAcid”) families [63] thanks to the contributions of Lyle Isaacs and Bruce 

Gibb’s labs. There have been several analogs of these two families since host-guest systems 

first appeared in SAMPL3. SAMPL7 includes several analogs in the cyclodextrin [64] 

family thanks to Michael Gilson’s lab.

Study of these various systems, in SAMPL and elsewhere, can help provide insight into the 

particular challenges each system presents. However, conclusions are not always clear; 

sometimes, performance remains highly variable across several challenges.

Particularly, performance in prior SAMPL challenges was highly variable by method and 

target, and no clear method emerged as reliable across all systems or most systems. Both 

SAMPL3 and SAMPL4 included some guests in cucurbituril family [15, 65–68], with the 

best RMS errors typically being around 2.5 kcal/mol unless empirical corrections were 

included [65, 69], and no method stood out across both challenges [17]. SAMPL4 also 

included cavitands. In SAMPL5, the best RMS error was closer to 3 kcal/mol [65], but 

correlation with experiment for this approach was not good. Methods based on explicit 

solvent and electronic structure calculations were noted to appear relatively consistent and 

generally provide the greatest reliability across all SAMPL challenges [70], but also had 

considerable room for improvement. In general, predictions for cavitands seemed to be 

modestly more accurate whereas clip-based hosts have been more challenging in prior 

challenges (like CB-Clip in SAMPL5 [70]). Thus, in the present challenge, we hoped to 

learn whether we might see a method or methods with significantly improved accuracy 

relative to prior challenges, and whether one might emerge that performs reasonably well 

(e.g. RMS error under 3 kcal/mol) across multiple host classes, as this has not typically been 

the case in prior challenges.
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5 SAMPL7 Host-Guest Systems and Challenge Organization

The SAMPL7 host-guest challenge involved three different systems or categories which we 

explain here – one focusing on cucurbituril-derivatives, one focusing on Gibb deep cavity 

cavitands (GDCCs), and one focusing on modified cyclodextrins.

5.1 Cucurbiturils and derivatives (CB[n], CB-Clip and TrimerTrip)

Cucubiturils are a common and relatively well-studied system for host-guest binding [9] 

which have been featured in some prior SAMPL challenges.

Many cucurbiturils (CB[n]s) have been synthesized by the Isaacs Lab, and several featured 

in previous SAMPL challenges. The potential applications of cucurbiturils include use as 

solublizing excipients for insoluble drugs, sequestrants for drugs of abuse and 

neuromuscular blockers, and pH triggered delivery agents [62]. This family of hosts 

typically have a molecular structure containing n glycoluril units connected via 2n 

methylene bridges, forming a barrel shaped macrocycle with a central hydrophobic cavity. In 

addition, cucurbiturils contain electrostatic carbonyls protruding out from the hydrophobic 

cavity.

In the SAMPL7 challenge, the host is not a classic cucurbituril, as instead of being a 

macrocycle, it is a clip-shaped molecule based on similar chemistry. Particularly, the host is 

an acyclic cucurbituril clip composed of a glycoluril trimer capped with aromatic triptycene 

sidewalls at both ends (here called TrimerTrip, as it is a trimer of glycoluril units with 

triptycenes), and four sulfonate solubilizing groups protruding out from the sidewalls 

(Figure 1) [62]. The sulfonate groups also enhance ion-ion interactions with cationic guests 

[71], which are typical cucurbituril binders. Acyclic CB[n]-type receptors often take on a C-

shape due to their increase in flexibility [62, 71, 72]. Experimentalists synthesized acyclic 

cucurbiturils with the idea to help increase the binding strength and capacity for different 

guests, including macrocyclic guests.

Typically, CB[n]-guest complexes have very high affinity, especially for charged 

hydrophobic ammonium guests similar to those of the SAMPL7 challenge (Figure 1). This 

high affinity is due to the presence of intracavity waters lacking a full complement of 

hydrogen bonds. The lack of hydrogen bonds is known to provide an enthalpic driving force 

for binding to macrocyclic CB[n] complexes [73]. In terms of CB[n]-guest complex 

interactions, the charged nitrogen group on guests interacts with oxygens from the carbonyl 

portal of the host. The latter contributes to limiting the number of poses that need to be 

considered [11], at least in cyclic hosts.

CB7 was used as a basis for host-guest benchmarking (including on binding of guests with 

adamantane and aromatic ring cores) since some of its properties and characteristics made it 

a convenient host both computationally and experimentally [9]. Four insights and challenges 

for CB7 are described [9] and some may be transferable to a clip type cucurbituril. (1) The 

tight exit portal of CB7 makes it difficult for guests with bulky hydrophobic cores such as 

adamantyl to fit through the portal and hence lead to convergence problems. (2) The 

timescales of wetting and dewetting events may be large compared to typical simulation 
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timescales. In CB7, when gradually decoupling a guest there is a large fluctuation of waters 

in the host cavity. The latter occurs when the guest is partially decoupled and may also lead 

to convergence problems. (3) Experimental and computational binding thermodynamics are 

sensitive to the salt composition and concentration (for buffer conditions). (4) Guests with 

formal charges can pose challenges for binding free energy calculations (Section 3.1).

Previous studies of cucurbiturils, including CB7, have highlighted the importance of host 

and guest sampling, salt effects, and water model. Sampling of the CB7 host is thought to be 

straightforward because it is fairly rigid. However, guest binding modes might be 

challenging to adequately sample, especially for the more flexible guests. In the presence of 

buffer and/or salt, ions may compete with guests for the binding site. In addition, cationic 

guests could have interactions with counter-ions in solution, lowering affinity compared to 

zero-salt conditions [9]. One previous study showed a 6.4–6.8 kcal/mol dependence on salt 

concentration [9, 74]. The water structure around CB7 is sensitive to the choice of water 

model, and water is important in modulating binding in SAMPL7 systems. The choice of 

water model is also likely to have an impact on the number of sodium ions that must be 

displaced upon host-guest binding.

While these insights result from studies on CB7, some of them may carry over to the 

TrimerTrip host studied here. However, unlike its macrocyclic derivatives, TrimerTrip is 

acyclic and able to flex the methylene bridged glycoluril trimer backbone [72]. Hence, with 

more degrees of flexibility sampling of TrimerTrip may not be as straightforward. 

TrimerTrip, like the Calabadion “cousins” in the family of cucurbiturils, may allow guest 

cationic groups to interact with other regions of the host rather than the carbonyl portals as 

in CB[n] macrocycles [72], which may complicate guest sampling.

Previous acyclic CB[n]-type receptors contain a central glycoluril oligomer (monomer, 

dimer, and tetramer) with aromatic triptycene sidewalls, just like TrimerTrip. These clip-like 

receptors retain the essential molecular recognition properties of macrocyclic CB[n] [75]. 

The monomer [71], dimer [75], and tetramer [66, 75] clips are able to encapsulate typical 

hydrophobic cationic guests which also bind to macrocyclic CB[n]s. In addition, the dimer 

and tetramer display similar host-guest properties [75]. While TrimerTrip is a distinct host, it 

shares substantial similarity with these previous receptors and we expect it to exhibit 

relatively similar behaviors in binding to guests.

5.2 Gibb Deep Cavity Cavitands (GDCCs) – OctaAcid (OA) and exo-OctaAcid (exo-OA)

Of the several members in the GDCC host family [63], two have been used in several 

previous SAMPL challenges thanks to the Gibb group’s participation. Those featured in 

previous SAMPL challenges include OctaAcid (OA) and tetra-endomethyl OctaAcid 

(TEMOA). A newer exo-OctaAcid (exo-OA) along with OA are part of the SAMPL7 host-

guest blind challenge (Figure 2). The guests for this system are diverse in their size and 

bulkiness, but typically have either a carboxylate or quaternary ammonium (Figure 2).

OA and exo-OA have a deep and hydrophobic basket-shaped pocket, and are fairly rigid [9, 

58]. In total there are eight carboxylate groups in both OA and exo-OA. The propionate 

groups at the exterior site of the cavity are the same in both hosts. The difference between 
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the two hosts is the location of 4 carboxylates around the cavity opening. For OA the 

carboxylates are protruding out of the cavity while for exo-OA they are at the cavity 

entrance (Figure 2).

GDCCs have been used in SAMPL3–7 and there is much experimental data [9, 43, 63, 76] 

and insight available. This family of hosts bind guests with a hydrophobic moiety that fits 

the pocket and a hydrophilic group which points out towards the solvent [9].

The GDCCs have been shown to bind diverse guests varying in polarity, positively and 

negatively charged, as well as organic cations and anions [9, 77, 78]. The latter has been 

shown for OA, where binding thermodynamics is sensitive to the concentration and type of 

anions present. Shifts in binding enthalpies and free energies of approximately 10 kcal/mol 

and 2 kcal/mol respectively [54] have been observed and attributed to the competition 

between guests and anions leading to entropy-enthalpy trade-offs [9, 54]. In addition, 

experimental and computational simulation results show that de-wetting of GDCCs leads to 

increased guest affinity, because water cannot compete for the pocket [63, 76].

In the presence of elongated guests, such as a long aliphatic chain, two OA hosts can 

encapsulate a guest forming a ternary complex. This phenomena is more likely to occur as 

polarity decreases for the groups at both ends of the guest [77]. However, as described 

earlier in section 3.5, SAMPL7 was designed around systems which exhibit 1:1 binding. 

Isothermal titration calorimetry (ITC) experiments have shown that short-chain fatty acids, 

amphiphilic molecules, and large polarizable anions form 1:1 complexes [76], as do the 

guests reported here.

Previous work has proposed benchmarking free energy calculations on host-guest systems; 

for GDCCs, the proposed benchmark included OA binding to guests with adamantane, 

aromatic, and saturated cyclic carboxylates. These host-guest systems were chosen because 

of the broad range of binding free energy values produced, and because both host and guests 

are small and rigid enough to confidently converge binding free energy calculations [9]. 

Several key challenges were highlighted by prior work: (a) a tight entry/exit portal may 

create a barrier and prevent entry or exit of guests with bulky hydrophobic cores. Hence, this 

can hinder sampling of guests leading to convergence problems. (b) It is important to ensure 

adequate host conformational sampling (though the motions may be slow), particularly of 

the propionoic acid groups. Benzoic acid flips (at the rim of the cavity) have also been 

reported from several simulations [3, 9, 65], though these have not been verified 

experimentally and may be irrelevant to binding thermodynamics. However, it has been 

noted that the benzoic acid flips might be an important challenge in some force fields. (c) 

Waters move only slowly into and out of the cavity, with the number fluctuating over tens of 

nanoseconds [9, 79]. (d) Salt concentration and buffer conditions may modulate binding to 

GDCCs. Additionally, (e) charged guests may introduce finite-size artifacts. (f) Strong 

electrostatic interactions could result in modified protonation states of the host and/or guest. 

Acidic guests could be protonated, or two of the propionate groups could retain an acidic 

proton because they are in close proximity and can hydrogen bond. At the rim of the cavity a 

guest may also modulate protonation state of the neighboring carboxylates.
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5.3 Cyclodextrins (CDs) and cyclodextrin derivatives

Cyclodextrin (CD) family hosts are composed of chiral glucose monomers linked to yield a 

cyclic polymer. The SAMPL7 challenge focused on modified CDs provided by the Gilson 

lab, which synthesized monofunctionalized derivatives differing by addition of a substituent 

projecting outward from a primary or secondary face hydroxyl of the cyclic oligosaccharide 

(Figure 3). The CD host derivatives and native (unmodified) CDs have a truncated cone 

shape (Figure 4) with a hydrophobic cavity and a hydrophilic surface, while the substituents 

are intended to alter the host’s chemical and physical properties. The new host substituents 

introduce new host-guest interactions, while retaining some of the same binding 

characteristics [80].

While typical SAMPL host-guest challenges have focused on binding of a series of guests to 

one or two hosts, one unique aspect of this portion of the challenge is that it focuses on 

binding of just two guests to a series of related hosts.

Previous studies on CDs (α-CD, β-CD, and mono-3-carboxyproponamido-βCD) report two 

distinct bound states for each host-guest pair. The first bound state, called the “primary 

orientation”, has the guest polar group (i.e., alcohol, ammonium, carboxylate) towards the 

glucose subunits primary alcohols, while the “secondary orientation” has the guest polar 

group towards the secondary alcohol [80, 81] (Figure 4). Though a possible third “surface 

orientation”/binding mode has been speculated to exist, it may be this is a transition needed 

for the guest to flip from primary to secondary phase orientation or vice-versa [43]. The 

difference in binding free energy for the two main orientations has been reported as being 

about 2 kcal/mol and up to 5 kcal/mol using several different force fields [81], with this of 

course also depending on the guest. The same report suggested that using GAFF v2.1 better 

models the flexibility of β-CD compared to the SMIRNOOFF99Frosst and GAFF v1.7 force 

fields.

The guests proposed in SAMPL7 have been reported to bind native β-CD, mono-3-

carboxyproponamido-β-CD, and β-CD substituted with an amine at the 3 position 

(secondary face). Rimantadine (Figure 3) binds beta-CD and mono-3-carboxyproponamido-

βCD with its cationic ammonium group projecting out from the secondary face [80, 82]. On 

the other hand rimantadine prefers the primary orientation when binding β-CD with an 

amine at the 3 position. Both 4-methyl-cyclohexanol (g1) and rimantadine (g2) (Figure 3) 

may bind to the new β-CD derivative hosts (MGLab9 through MGLab36 Figure 3) in either 

of the three orientations. However, it was hypothesized that the rimantadine head group 

would be oriented towards a negatively charged substituent and away from a positively 

charged one [43].

Binding modes for the cyclodextrin dataset were determined using 2D NOESY NMR by the 

Gilson lab [64]. This experimental binding mode information can in turn be used to check if 

the selected binding mode(s) used in a particular method played a role in the accuracy (or 

lack thereof) of computed binding free energies. Table 1 summarizes the binding 

orientations for methylcyclohexanol and rimantadine with each host as determined by the 

Gilson lab (for specific details of the experimental methods see Ref [64]).
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5.4 Challenge Organization and Format

The SAMPL7 host-guest blind challenge was organized so participants may submit a ranked 

submission, a non-ranked submission, or both for any or all of the three host-guest systems. 

Participants were advised to submit their best method as their ranked submission since only 

one ranked submission is allowed, as detailed below.

Participants were provided with pre-prepared host and guest structures, with SMILES 

strings, mol2, PDB and sdf files provided for all compounds. We made an effort to provide 

reasonable protonation states, etc., but also provided disclaimers that participants should 

carefully consider the choice of protonation state, etc. All provided data/instructions are 

available in the SAMPL7 GitHub repository (https://github.com/samplchallenges/SAMPL7).

Participant submissions followed a prescribed template and included predicted values and 

uncertainties, as well as method and participant information and other details. All 

submission files are available in the GitHub repository. Predicted values were optionally 

allowed to include binding enthalpy.

Only ranked submissions were considered in challenge analysis. Groups were able to submit 

multiple submissions, but needed to designate additional submissions as non-ranked. Non-

ranked submissions, or additional submissions, allow “benchmarking” of methods. For 

example, for a particular method a participant can change one parameter in their 

methodology (i.e. charging method, host conformer, guest pose, water model, etc.) to 

ascertain its impact on predictions. In previous challenges, participants were allowed 

multiple ranked submissions; the shift to a single ranked submission per participant is new to 

SAMPL7. This change was made to reduce the potential for multiple shots on goal to be 

more fair to groups which only submit one set of predictions.

In addition to the formal predictions, one member of our team (MA) conducted a set of blind 

reference calculations which were submitted informally in the non-ranked category. Data 

collection for TrimerTrip and its 16 guests (Figure 1) of this challenge was completed 

around August of 2019 and a challenge submission deadline of October 4, 2019 was set to 

avoid delaying the experimental publication. The GDCC dataset was finalized on May 25, 

2019 and its submission deadline, along with that for the Cyclodextrin derivative challenge, 

was set to November 4, 2019. Submissions for OA with g1-g6 (Figure 2) guests were 

optional (and not part of rankings) since these have been reported in previous challenges and 

literature values are available. In addition, submitting binding enthalpies for GDCC 

predictions were optional. Similarly, for the Cyclodextrin derivatives dataset, predictions for 

g1 and g2 binding to β-cyclodextrin (Figure 3) were optional since literature values for these 

compounds are available.

As noted above, we provided input files in a variety of formats. Participants were advised 

that (a) further equilibration of the host with the guest might or might not be needed (for 

TrimerTrip, we pre-equilibrated the host structure as discussed in Methods) and (b) to 

exercise their best judgment on the state modeled (i.e protonation, conformer, binding mode, 

etc.). In essence, part of the host-guest challenge for some systems included binding mode 

prediction.

Amezcua et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/samplchallenges/SAMPL7


6 Methods

In this section we describe the details of our own reference calculations, give a general 

overview of methods used by participants’ submissions, summarize key experimental details 

and methodology (the experimental studies will be published elsewhere [63, 64, 72]), and 

describe our statistical analysis and evaluation approach.

6.1 Absolute Binding Free Energy Predictions

6.1.1 Reference Calculation Methodology—In this section we give details of our 

own reference calculations. These reference calculations were informally part of the 

challenge and used as additional methods for comparison. These calculations were also 

conducted blindly and were informally submitted as a “non-ranked” category, as they do not 

constitute a formal part of the challenge but are provided as a point of comparison.

Reference calculations were done using an alchemical free energy calculation toolkit known 

as YANK [10, 83]. YANK provides several schemes for sampling from multiple 

thermodynamic states. For reference calculations we applied the replica exchange sampler 

(also known as Hamiltonian Exchange) [83, 84], using the OpenMM simulation engine [85–

89]. Free energies are estimated using the multistate Bennet acceptance-ratio (MBAR) [90]. 

(For details on the thermodynamic cycle used in YANK and the theory see http://

getyank.org/latest/theory.html)

Initially, test simulations were done with the goal to determine if we could identify and 

apply a reasonable single protocol to run all host-guest systems. However, due to the guest 

formal charges and the diversity of the hosts and guests we guessed that successful protocols 

(especially lambda spacings) would be system dependent.

For the simulations, harmonic distance restraints (between the closest atom to the center of 

the host and the closest atom to the center of the guest from the initial geometries) were used 

to allow the guest to explore the cavity and different binding orientations since the binding 

mode of some guests were unknown. Restraints are needed to define the standard state and 

ensure the ligand remains near the host to avoid sampling problems. We chose harmonic 

center-of-mass restraints in particular to allow the ligand to sample alternate binding modes 

if needed. This may help reduce bias in free energy estimates if we start from an incorrect 

binding mode (especially in the cases where the binding mode is unknown).

We ended up choosing two protocols, varying in number of lambda windows (with all other 

simulation parameters kept consistent), with one being for systems with neutral guests and a 

second for guests with a formal charge. We expected that a second protocol for guests with a 

formal charge would be needed since electrostatic interactions would be much stronger with 

its environment and limit sampling. Indeed, after testing the “neutral” protocol on a charged 

guest we noticed insufficient replica mixing per an issued warning from a generated YANK 

simulation health report. The protocol for neutral guests had 31 lambda windows and was 

based on a previous protocol used on β-CD with cyclopentanol as the guest. This protocol 

was tested on β-CD with 4-methyl-cyclohexanol as the guest. For systems with a charged 

guest, we ran a test free energy calculation using YANK’s automatic pipeline to determine 
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the best alchemical path (lambda windows and values) based on a β-CD and the positively 

charged rimantadine (g2) guest, resulting in 61 lambda windows. Both of the test 

calculations were within 4 kcal/mol of experimental values [80] upon completion, and 

simulation health reports showed reasonable exchange between replicas and exhibited 

apparently reasonable convergence. However, in the case of the charged guest, convergence 

was not as convincing at similar time scales. For example, the test calculation for the neutral 

guest showed reasonable convergence by 14 ns per window while in the case of a charged 

guest, simulations were run for 26 ns per window and convergence was still not as obvious.

The “neutral guest” protocol described above (31 lambda windows) was used to run all 

simulations in the cyclodextrin dataset with guest g1, for 16 ns per lambda window when 

free energy estimates appeared converged. On the other hand, the “charged guest” protocol 

(61 lambda windows) was used for the remaining host-guest systems across all datasets 

since all other guests bore a formal charge. In this case, simulations were run until free 

energy estimates apparently converged or up to 30 ns per lambda window, which ever came 

first. First, to determine feasible cross application of the “charged guest” protocol to 

different systems (GDCC and TrimerTrip datasets), the charged protocol was tested on OA-

g2 and clip-g11. Experimental data for OA-g2 was available from a previous SAMPL 

challenge, so this was an ideal system to test the protocol. The OA-g2 test resulted in 

predicted free energy within 4 kcal/mol, after running the simulation to 26 ns per window. A 

health report for the OA-g2 simulation showed reasonable mixing between replicas, and 

there was apparent convergence. However sampling of replicas in individual states was not 

ideal. For the clip-g11 test simulation (for TrimerTrip dataset), the protocol was initially 

deemed reasonable based on YANK’s health report (with mixing_cutoff and 

mixing_warning_threshold options at default 0.05 and 0.9 settings, respectively) which can 

detect insufficient replica mixing or number of swaps between states and thus issue 

warnings. Warning messages were not issued in this test case. However, in this test case 

sampling of replicas in individual states was not ideal and the calculations apparently did not 

fully converge even after 30 ns per window. For this reason all simulations for TrimerTrip 

were run for 30 ns per window in an attempt to obtain reasonable convergence, though after 

the fact convergence was only apparent for clip-g1 of TrimerTrip dataset. In addition, an 

“open” host conformer was extracted from the clip-g11 test simulation trajectory, the guest 

was docked to the open host conformer, and simulation (found in Docking/GAFF/
YANK_REF_2) was re-run in an attempt to allow the host to relax and adapt to the bulky 

guest. Still longer simulations, or protocol optimizations, might be needed for better 

converged results.

Reference calculations were conducted using GAFF parameters and AM1-BCC charges. 

GAFF parameters and guest AM1-BCC charges were assigned using Antechamber, and 

AM1-BCC charges for the host were assigned using the OpenEye toolkits because 

Antechamber could not charge the hosts. The starting poses were determined by docking via 

AutoDock Vina [91] and the top scoring pose was selected. If multiple orientations need to 

be considered, our Hamiltonian replica exchange based simulations, in theory, ought to 

sample them despite starting from a single orientation. A host-guest complex was manually 

created in tLeap and TIP3P was used to solvate the host-guest complex and the guest. In 

addition, sodium and chloride were manually added as counter ions, and additional ions 
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were added to mimic experimental buffer conditions. Subsequently, AMBER restart, 

topology, and input coordinate files were generated with tLeap. The starting simulation files 

(AMBER restart/coordinate (rst7) and topology (prmtop)), workflow and methodology 

details, and yaml scripts (with protocol parameters) are available at SAMPL7 GitHub 

repository (see https://github.com/samplchallenges/SAMPL7/tree/master/host_guest).

6.1.2 Participant Calculation Methodologies—There were a total of 30 submissions 

(ranked and non-ranked) from 6 groups for the SAMPL7 host-guest challenge. A good 

number of methods used alchemical free energy calculations with classical fixed charge 

(GAFF [92], GAFF2 [93], CGenFF [92]) and polarizable force fields (AMOEBA) [94], 

different charging schemes (AM1BCC [92, 95], RESP [95]), several explicit water models 

(TIP3P [92], TIP4P-Ew [95], OPC [93]) and even implicit solvent [95]. Outside of 

simulation-based free energy methods, quantum mechanical (QM) and QM/MM (molecular 

mechanics) approaches were also used [95], and one group employed machine learning [96]. 

In addition, several groups submitted multiple predictions (particularly for the GDCCs) and 

the ensuing results are important to provide insight and give merit to the methods used here. 

Participants’ submissions with specific details on their methodologies are available in the 

relevant host-guest system directory in the SAMPL7 GitHub repo (https://github.com/

samplchallenges/SAMPL7/tree/master/host_guest/Analysis/Submissions) and methods are 

briefly summarized in Table 4.

6.2 Experimental Measurements

The experimental binding data for all host-guest systems are listed in Table 2 and in the 

SAMPL7 GitHub repo (see https://github.com/samplchallenges/SAMPL7/tree/master/

host_guest/Analysis/ExperimentalMeasurements); if there are any updates/changes, the 

GitHub version is the authoritative one. As mentioned in Section 3.5 a 1:1 binding 

stoichiometry was confirmed for all host-guest systems. The binding values were determined 

via ITC and/or NMR typically at 298K. Binding measurements for TrimerTrip were 

performed in 20 mM sodium phosphate at pH 7.4. Binding constants for GDCC systems 

were determined in 10 mM sodium phosphate buffer at pH 11.7. All binding for CD 

derivative systems were assayed in 25 mM pH 6.8 sodium phosphate buffer. Experimental 

results suggest all binding was inside the CD-derivative cavity so there is no surface binding. 

Specific experimental details can be found in the SAMPL7 github repository (see https://

github.com/samplchallenges/SAMPL7/tree/master/host_guest) and in the relevant 

experimental papers [62–64], respectively. Binding of one guest (g1) to the GDCC exoOA 

was undetectable by ITC and NMR (Table 2).

6.3 Statistical/Error Analysis of Challenge

In general, analysis was performed using Python scripts deposited in the SAMPL7 GitHub 

repository adapted from previous SAMPL challenges such as the SAMPL6 host-guest 

challenge, so analysis is extremely similar to what was performed there [97]. All binding 

free energy prediction sets were compared with experimental data via the following 

statistical measurements: RMSE (root mean-squared error), R2 (coefficient of 

determination), τ (Kendall Tau correlation coefficient), m (linear regression slope), ME 

(mean error), and MAE (mean absolute error). Any uncertainty in the error metrics was 
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determined via bootstrapping with replacement, as described previously [3, 4]. Methods for 

each host-guest system dataset (TrimerTrip, GDCC, and CD derivatives) were only 

evaluated and compared within the same dataset. In addition, we computed RMSE and ME 

of methods to each individual host-guest system to ascertain problematic molecules.

The statistical evaluation was separated into two categories, ranked and non-ranked, as 

described in Section 5.4. All ranked submissions’ evaluation data, plots, and tables are 

available at the SAMPL7 GitHub repository (see https://github.com/samplchallenges/

SAMPL7/tree/master/host_guest/Analysis/Accuracy_ranked). Statistical analysis was 

carried out with and without optional guests. Optional guests were those for which 

experimental data was already available. In addition, one very poorly performing CD ranked 

method was not included in much of our analysis because its performance was so poor that it 

would have made most other methods appear virtually identical, but was included in the 

non-ranked analysis and in Table S1 and S2 (sid 15 or ID AM1-BCC/MD/GAFF/TIP4PEW/
QMMM). All non-ranked evaluation data, plots, and tables are available in the SAMPL7 

GitHub repository (see https://github.com/samplchallenges/SAMPL7/tree/master/

host_guest/Analysis/Reference/Accuracy), as is the raw data and the analysis tools.

7 Results and Discussion

We find that predictive accuracy of binding free energies for host-guests, in terms of RMSE, 

is comparable to previous SAMPL challenges. However, we do see moderate improvement 

in some cases. For instance, binding affinity predictions of hosts in the acyclic cucurbituril 

category such as H1 featured in SAMPL3 [15], CBClip from SAMPL5 [70], and TrimerTrip 

(SAMPL7) had a mean RMSE of 7.07, 5.87, and 4.15 kcal/mol, respectively. The best 

performing methods for acyclic cucurbiturils achieved RMSEs as low as 1.60, 3.40, and 1.58 

kcal/mol. The accuracy of methods used for acyclic cucurbiturls similar to TrimerTrip show 

improvement across SAMPL challenges. On the other hand, methods used in predicting 

binding free energies for systems in the cavitand category OA/TEMOA (SAMPL5), OA/

TEMOA (SAMPL6), and OA/exoOA (SAMPL7) show high variation from challenge to 

challenge. The RMSE across challenges shows similar or slightly poorer accuracy on 

average. However, the best performing methods in the cavitand category usually do better 

than methods in other categories, or at least as well, by RMSE, and achieve R2 values well 

above 0.7 kcal/mol. This is more apparent in SAMPL6 and SAMPL7, partly from methods 

using the extensive cavitand data available from previous challenges to apply corrections. 

Comparing accuracy of ranked and non-ranked methods, on average ranked methods 

performed better (Figure S4). In addition, we find participation in the SAMPL host-guest 

challenges to be fairly consistent over time with approximately 30 submissions (the exact 

submission amount shown in parenthesis next to the SAMPL challenge) each in SAMPL3 

(29), SAMPL5 (31), and SAMPL7 (30), except the substantial increase to 80 submissions 

for SAMPL6.

Out of the 30 participant submissions in SAMPL7, 7 were for TrimerTrip, 16 for the 

GDCCs, and 9 for the CD derivatives. The TrimerTrip submissions included 3 ranked and 4 

non-ranked, GDCCs included 4 ranked and 12 non-ranked, and CD-derivatives had 3 ranked 

and 6 non-ranked (Figure 5). For a large portion of methods submitted, docking was used to 
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obtain starting structures, and one submission used self association molecular dynamics 

(SA-MD) [96]. General classical fixed charge force fields were commonly used, as has 

become common in SAMPL host-guest challenges (see Section 6.1.2 for methods submitted 

to SAMPL7 host-guest challenge). Alchemical free energy techniques were employed in 

many cases, with analysis done via thermodynamic integration (TI) and Bennett acceptance 

ratio (BAR) for equilibrium calculations. Nonequilibrium approaches were also employed, 

such as using the fast switching double annihilation method (FSDAM) approach [93, 98]. 

Here we introduce the results for all ranked methods separated by host-guest system dataset, 

give statistics for binding of individual host-guest systems averaged across methods, and 

lastly examine analysis of non-ranked methods including our own reference calculations.

7.1 Ranked Submissions

7.1.1 TrimerTrip—Statistical analysis of the 3 sets of ranked absolute binding free 

energy predictions for the TrimerTrip dataset are summarized in Table S2 and Figure 6. All 

methods used explicit solvent. These submissions used nominally very similar free energy 

techniques (though with differences in protocol) but force fields were substantially different. 

Fixed-charge approaches used the GAFF and GAFF2 force fields, along with the TIP3P or 

OPC water models (the method called MD/DOCKING/GAFF/xtb-GNF/ used GAFF with 

TIP3P, while FSDAM/GAFF2/OPC3 used GAFF2 with OPC). The third submission in this 

category, AMOEBA/DDM/BAR, used the AMOEBA force field, which explicitly treats 

polarizability and includes multipoles; this AMOEBA-based approach was consistently the 

top performing method with values of 2.76 kcal/mol, 0.50, 1.25, and 0.47 in terms of RMSE, 

R2, slope (m), and τ respectively (Figure 6). The mean error (ME) for this AMOEBA 

submission was modestly larger in magnitude than one of the other ranked submissions, but 

in all other respects its performance was superior. Full statistics are in Table 3. AMOEBA-

based approaches also perform well in the GDCC category, as we will see below.

For this dataset, the AMOEBA/DDM/BAR method predicted 10/16 binding affinities within 

2 kcal/mol, the majority of these being within 1 kcal/mol (as discussed in the SAMPL7 

virtual workshop [43]; full data available in our GitHub repository). The outliers for this 

method were clip-g6, clip-g7, clip-g8, clip-g9, clip-g11, and clip-g17, of which binding 

affinities were predicted to be too unfavorable. The FSDAM/GAFF2/OPC3 method 

predicted 10/16 within 2 kcal/mol and host-guest system outliers were clip-g3, clip-g8, clip-

g10, clip-g11, clip-g16, and clip-g18. The other ranked submission, MD/DOCKING/GAFF/
xtb-GNF, predicted 5/16 binding affinities within 2 kcal/mol, with 4 of those 5 being within 

1 kcal/mol. Interestingly, all of the predictions within 2 kcal/mol used starting poses 

generated not by docking, but by using SA-MD. The SA-MD approach makes the 

assumption that the host is not in its proper conformation and the host and guest are allowed 

to associate on their own [43, 96]. It would be interesting to see the predictive accuracy of 

this approach on the remaining TrimerTrip host-guest systems, and which systems if any 

prove to be troublesome.

Two of these methods, AMOEBA/DDM/BAR and MD/DOCKING/GAFF/xtb-GNF, tended 

to yield binding free energies which were too unfavorable while the FSDAM/GAFF2/OPC3 
ranked method was too favorable (Figure 6). Thus, most predictions with errors larger in 2 
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kcal/mol in magnitude err in the direction of not predicting binding to be favorable enough, 

especially with AMOEBA/DDM/BAR and MD/DOCKING/GAFF/xtb-GNF are 

underpredicted (Figure 7). On the other hand, as shown by Figures 6 and 7, the FSDAM/
GAFF2/OPC3 method errs in both directions more frequently.

We sought to determine whether some hosts/guests are particularly challenging to predict, 

across all ranked methods, so we examined the RMSE and ME by host and guest for ranked 

free energy predictions for all individual host-guest systems. This is shown in Figure 8. The 

ranked predictions of all methods for the TrimerTrip/”clip” host-guest systems (shown in 

blue in Figure 8) were in general the most problematic, especially clip-g6, clip-g9, clip-g10, 

clip-g11, clip-g18, and clip-g19 which had an RMSE of about 4 kcal/mol or greater. All of 

the guests with an adamantane moiety fall within this list of “problematic” molecules. The 

computed binding affinities for these host-guest systems are mostly too weak with ΔG ME 

of −2.5 kcal/mol or greater, the exception being clip-g10 which was predicted to be too 

favorable with a ΔG ME of 2 kcal/mol.

Overall for the TrimerTrip/clip-based systems, when we consider both ranked and non-

ranked submissions, we believe the results suggest that any combination of the following 

may be limiting predictive accuracy: (a) chosen host conformer, (b) guest binding mode, (c) 

chosen energy model, and (d) water model. More specifically the general performance of the 

AMOEBA-based submissions pointed towards multipoles, polarization and/or shielding 

effects being important, especially as the guest becomes more hydrophobic, but the 

AMOEBA work (using multiple host conformers) [43, 94] also suggested host sampling 

could be an important issue since host conformers did not interconvert at nanosecond 

simulation timescales.

7.1.2 GDCC—The GDCC dataset, which includes OA and exo-OA host-guest systems, 

had the most submissions, probably because this host is familiar to many participants since it 

has formed part of a variety of previous SAMPL challenges. The statistical analysis of 4 sets 

of ranked methods are shown in Figure 9. For the entire GDCC dataset there was not a clear 

top performing method in terms of RMSE, R2, τ, and slope, but the RESP/GAFF/
MMPBSA-Cor and AMOEBA/DDM/BAR methods were the two top performing methods. 

Again, the AMOEBA/DDM/BAR method emerged among the top performers, but unlike in 

the TrimerTrip challenge it is not the top method by all error metrics. The RESP/GAFF/
MMPBSA-Cor method had the top ΔG RMSE, R2, and τ values of 1.24 kcal/mol, 0.94, and 

0.83 respectively. Essentially, the latter approach seems to have done slightly better at 

ranking compounds for binding than the AMOEBA-based approach, but with a slope which 

is systematically incorrect. Full performance statistics are in Table S2.

Figure 10 shows performance of ranked methods relative to experiment. In general, the 

AMOEBA/DDM/BAR method tends to yield GDCC binding free energies which are too 

unfavorable, while all other ranked methods tend to predict binding free energies that are too 

favorable. The AMOEBA/DDM/BAR method gave calculated values that most directly 

correlated with experimental ones, as evidenced by a slope, m, of 1.11. With this approach, 

only exoOA-g4 had an error larger than 2 kcal/mol. The exoOA-g2 host-guest system was 

the only outlier for the RESP/GAFF/MMPBSA-Cor method, and the participants suggested 
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this was likely due to guest g2 containing a chlorine atom. The QM-based method 

B2PLYPD3/SMD QZ-R had large prediction errors in more cases than any other method, in 

part because it overestimated the dynamic range of predictions and led to calculated binding 

free energies that were often far too negative. The xtb-GNF/MachineLearning/CORINA MD 
had smaller errors, but the correlation between calculated and experimental free energies 

was poor.

The xtb-GNF/MachineLearning/CORINA MD, RESP/GAFF/MMPBSA-Cor, and 

AMOEBA/DDM/BAR methods have greater prediction errors for systems with negatively 

charged guests, which could potentially relate to the challenges alchemical methods have 

with charged guests (Section 3.1). Both xtb-GNF/MachineLearning/CORINA MD and 

RESP/GAFF/MMPBSA-Cor use the GAFF energy model, and its combination with explicit 

fixed charge water models typically results in predicted free energies that are too favorable 

(particularly, prior work has shown that GAFF with TIP3P leads to a consistent error in this 

direction for guests containing carboxylates and alcohols [49]). This is exactly the case here 

for systems with guests containing a carboxylate for the xtb-GNF/MachineLearning/
CORINA MD method, where an AM1-BCC charging scheme, explicit TIP3P water, and 

GAFF energy model is used. The RESP/GAFF/MMPBSA-Cor method also used the GAFF 

energy model, but with implicit (PB/SA) water and a RESP charging scheme. During the 

SAMPL7 virtual workshop [43] the RESP/GAFF/MMPBSA-Cor participants noted that in 

their methodology comparison of RESP and AM1-BCC charging schemes, RESP resulted in 

better accuracy; it would be interesting to know if this holds true more generally. For the 

AMOEBA/DDM/BAR method, the single outlier was exoOA-g4, with a ΔG prediction error 

of 2.5 kcal/mol.

The Ponder group’s data suggests that the quality of torsional parameters for the upper rim’s 

diphenyl ether torsions can change predictions by 3 – 4 kcal/mol [43, 94]. In our reference 

calculations, we observe this guest folding in on itself and becoming effectively bulkier, 

which may mean host torsional parameters play a larger role for this particular guest.

On the other hand, the B2PLYPD3/SMD-QZ-R quantum method had larger prediction errors 

for guests with a positive charge. Particularly, the method’s ΔG prediction error for exoOA-

g6 and exoOA-g7 was 10 kcal/mol, and 5 kcal/mol for exoOA-g5. Similarly, for the OA-g7 

system which contains a positive guest, the method had a ΔG prediction error of 5 kcal/mol. 

These prediction errors substantially affected molecule statistics (Figure 8) for these 

systems.

7.1.3 Cyclodextrins—Method performance on the CD dataset is shown in Figure 12. 

Partly because of the narrow range of experimental binding free energies, we observe little 

difference in performance between the two better performing ranked methods. The third 

ranked submission AM1-BCC/MD/GAFF/TIP4PEW/QMMM method was not included in 

these plots because the range of binding free energies is so dramatically overestimated 

(Figure 13) that including it in the graph makes performance of the other two methods 

appear identical. In this analysis, optional systems bCD-g1 and bCD-g2 are not included, 

since these free energies have been previously reported. Of the two better performing 

techniques here (FSDAM/GAFF2/OPC3 and Noneq/Alchemy/consensus), performance was 
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remarkably similar, as were the nonequilibrium free energy techniques employed. The third 

method – which typically predicted binding to be far too strong – was the AM1-BC/MD/
GAFF/TIP4PEW/QMMM method, which had a ME and slope of 31.27 kcal/mol and 7.62 

respectively. Since the GAFF force field is shared between this method and one of the more 

successful methods, it seems likely the larger error in this case is due to the QM/MM energy 

calculation approach.

7.2 Non-Ranked Submissions

7.2.1 TrimerTrip—Several groups submitted multiple methods, often changing just one 

aspect of their approach. Such tests can help establish which aspects of an approach impact 

accuracy and how. Results for all submissions, ranked and non-ranked, are shown in Table 3. 

Results are listed in ascending order based on ΔG RMSE values. Here we discuss the 

analysis of these results and what we find that we can learn from them.

On TrimerTrip, two non-ranked submissions with the AMOEBA force field using the same 

approach, but alternate handling of host conformations (AMOEBA/DDM/BAR/ALT1 and 

AMOEBA/DDM/BAR/ALT2), were used to examine how the selected TrimerTrip 

conformer impacts calculated binding free energies. The submitters examined so-called 

“indented” and “overlapping” host conformers which they identified in exploratory 

simulations. They find that these do not interconvert on the timescale of typical free energy 

calculations. The indented conformer resembles the annealed structure we provided in the 

SAMPL7 GitHub repository, while the overlapping conformer is very similar to the 

previously published structure of the unligated clip analog with four glycoluril units [43, 94] 

and interconverts relatively rapidly with a so-called “spiral” conformer with staggered 

triptycene walls [43, 94].

Since some of these conformations interconvert slowly, this introduces a conformation-

dependence in calculated binding free energies. Not only may guests bind differently to the 

different host conformations, but calculated binding free energies depend on the host 

conformation because different unligated host conformations have different free energies in 

solution (e.g. some will likely be more strained/less populated than others) and do not relax 

back on simulation timescales.

To address these issues, the Ponder group used a separate set of free energy calculations to 

compute the binding free energy to each host conformation (indented and overlapping). 

However, the resulting free energies are sensitive to the choice of host conformation, since it 

does not relax back on simulation timescales, so they needed to estimate the relative free 

energy of the two unligated host conformations. In their submissions, their ranked 

AMOEBA/DDM/BAR submission assumes the indented TrimerTrip conformer is 2.84 

kcal/mol more stable than the overlapping conformer, while the AMOEBA/DDM/BAR/
ALT1 method assumes the overlapping conformer is 2.41 kcal/mol more stable than the 

indented, and the AMOEBA/DDM/BAR/ALT2 assumes both conformers are equal in free 

energy. The non-ranked AMOEBA submissions performed better than their ranked 

counterpart by almost all of the error metrics (Table 3). Most of the improvement was 

attributed to better agreement for clip-g6, clip-g7, clip-g8, clip-g9, and clip-g11 when using 

an overlapping conformer. The Ponder group suggests that these results indicate that larger 

Amezcua et al. Page 22

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and bulkier guests prefer the overlap/spiral conformer(s), while the smaller guests prefer the 

indented conformer [43, 94]. TrimerTrip’s flexibility seems to allow it to alter its 

conformation when binding guests of various size – a feature we noticed in our reference 

calculations and one also reported by the Ponder group [43].

Overall, TrimerTrip predictions using the AMOEBA force field and alchemical absolute 

binding free energy calculations were consistently the best.

Our in-house reference calculations provided the only other non-ranked submissions for 

TrimerTrip. Our two sets of reference calculations (Docking/GAFF/YANK_REF and 

Docking/GAFF/YANK_REF_2) differed only in the choice of host conformer for clip-g11, 

where the latter submission used an alternate, relatively open host conformation to allow it 

to relax and adapt to the bulky cyclic guest in g11 (see Section 6.1.1), though this approach 

ended up not resulting in substantially different predicted binding free energies. Performance 

statistics for these reference calculations ended up being particularly poor in general (Tables 

3 and S3). The reference method gives free energies for all TrimerTrip host-guest complexes 

which are too unfavorable, similar to ranked MD/DOCKING/GAFF/xtb-GNF predictions. 

Both submissions used docking (VINA) to obtain guest poses without any MD (except that 

the MD/DOCKING/GAFF/xtb-GNF technique used SA-MD to obtain poses for four 

guests), GAFF parameters, the TIP3P water model, and AM1-BCC charges, so it may not be 

surprising that performance was similar. However, the MD/DOCKING/GAFF/xtb-GNF 
approach performed better for the case of the four guests where starting poses were 

established by SA-MD, with errors under 1 kcal/mol in those cases.

We can perhaps learn a bit more from these non-ranked submissions by comparing to the 

ranked submission called FSDAM/GAFF2/OPC3, which uses the OPC3 classical 3-point 

rigid water model with the GAFF2 force field and performed better than methods using its 

TIP3P counter part with GAFF, though there were other methodological differences between 

these submissions. The prediction error values for this method were the closest to the top 

performing methods using free energy methods with the AMOEBA force field, however its 

correlation values were similar to the methods using GAFF/TIP3P. The OPC3 water model 

has been shown to be significantly more accurate for pure water properties compared to 

other popular 3-point water models (i.e TIP3P and SPCE) of the same class [99] which may 

be particularly important in this system. Given the results reported in ref [99] for OPC3 and 

ref [81] for GAFF2; it is tempting to attribute this method’s better performance to use of the 

OPC3 water model and GAFF2, though without comparison to other methods which differ 

by only small molecule force field or water model, it is difficult to know this for certain.

7.2.2 GDCC—There were 11 non-ranked submissions for the GDCC dataset in addition 

to the 4 ranked predictions (Table 3). Three of the four participants with ranked submissions 

included at least two non-ranked submissions which were different in only a single factor, 

allowing easy sensitivity analysis. For example, all three alchemical AMOEBA-based 

methods had RMSEs below 2 kcal/mol, including the ranked AMOEBA/DDM/BAR 
submission and the non-ranked AMOEBA/DDM/BAR_2 and AMOEBA/DDM/BAR_3 
submissions. These methods differed by key AMOEBA torsional parameters describing the 

flexibility of the middle and upper rim of the cavity of OA and exo-OA. These differences 
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appear to have substantially affected performance (Table 3). The non-ranked 

AMOEBA/DDM/BAR_2 RMSE was the best of all methods and all predicted binding free 

energies were within 2 kcal/mol of the experimental values, including those for exoOA-g4, 

which was poorly predicted by other AMOEBA methods. The host parameters used in 

AMOEBA/DDM/BAR_2 were similar to those used in previous SAMPL challenges, while 

the other predictions used modified parameters. Overall, these AMOEBA submissions 

suggest guest binding to GDCCs is particularly sensitive to the host’s diphenyl ether 

torsions, and especially so for guest g4 binding to exo-OA and guests g7 and g8 binding to 

OA.

Another ranked submission which performed well used MM/PBSA, and non-ranked variants 

of this explored variations based on both MM/PBSA and MM/GBSA. One variation 

assessed the charge model, and found that the RESP charge scheme led to improved 

performance compared to the AM1-BCC charge scheme (RESP/GAFF/MMPBSA vs AM1-
BCC/GAFF/MMPBSA), as shown by RMS errors of 7.59 kcal/mol vs 10.96 kcal/mol. These 

methods predicted binding free energies to be too favorable, a common issue with such 

endpoint free energy methods, especially when entropy changes are neglected, as here. An 

additional variation assessed the difference between MM/PBSA and MM/GBSA by 

changing the solvent model; the use of PB solvation resulted in significantly lower RMS 

errors here (RESP/GAFF/MMPBSA vs RESP/GAFF/MMGBSA), though the correlation 

with the GB approach was modestly better. A further variation added an accounting for 

entropy via normal mode analysis (RESP/GAFF/MMPBSA/Nmode) while maintaining 

RESP charges and PB solvation. This improved typical errors, but hurt correlation and 

resulted in binding free energies often not being favorable enough. One other key difference 

between the ranked submission in this series, and many of the others was that it actually 

used an empirical correction to binding free energies. Particularly, RESP/GAFF/MMPBSA-
Cor used a linear correction derived from an analysis of previous SAMPL challenges [43, 

95]. Indeed, this correction led to much better agreement with experiments. With RMSE and 

ME values of 1.32 and 1.01 kcal/mol, the RESP/GAFF/MMPBSA-Cor performance was on 

par with alchemical AMOEBA results, and for some guests performed even slightly better. 

In terms of correlation, the ranked RESP/GAFF/MMPBSA-Cor was similar to that of RESP/
GAFF/MMPBSA. However, such an approach could not be applied without prior binding 

studies for the specific system(s) of interest.

A series of density functional theory (DFT)-based methods, including ranked and non-

ranked submissions, were also used here. In SAMPL6, a DFT-based approach yielded good 

quantitative results [4, 5, 43], though without geometry optimizations employed in the 

current challenge. Here, the QM DFT-based B2PLYPD3/SMD submissions use B3PW91 

with GD3BJ [2, 95] to treat dispersion, B2PLYPD3 for single point energy calculations [1, 

95], and the SMD implicit solvation model [95, 100]. Different submissions in this series 

differed in which basis set was chosen for geometry optimization [43, 95]. Overall, these 

methods were roughly in the middle of all submitted methods in terms of predictive 

accuracy. All of these QM methods yield binding free energies for most guests which are too 

negative, with ME values of 2.69 kcal/mol or greater, and this is especially true for cationic 

guests binding exo-OA. The participants also highlighted particular difficulties with 

chlorine-containing guest g2. In initial tests, the OA-g2 binding free energy was estimated to 
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be close to −30 kcal/mol, while experimental value in literature was −6.91 kcal/mol [43]. In 

the combined GDCC dataset, the ranked B2PLYPD3/SMD_QZ-R method was within 2 

kcal/mol of experiments in three of nine cases and correctly predicted exoOA-g1 to be a 

non-binder. Overall, it appears that QM methods are not yet competitive with the best other 

approaches for these systems, and potentially, that molecules containing halogens can be 

particularly problematic.

Two of the non-ranked methods do not allow for straightforward sensitivity analysis based 

on a single factor, because only a single version was submitted (FSDAM/GAFF2/OPC3 and 

reference calculation DOCKING/GAFF/YANK). Both of these methods were also used for 

TrimerTrip and the cyclodextrin challenge. The error metrics for both of the methods were 

relatively similar, although the DOCKING/GAFF/YANK method performed slightly better 

by a number of metrics. However, the ME for FSDAM/GAFF2/OPC3 is quite low – less 

than 1 kcal/mol – because the method tends to predict binding free energies for OctaAcids 

with guests bearing a carboxylate group which are too favorable, and too unfavorable for 

guests with cationic ammoniums. In comparison, DOCKING/GAFF/YANK errs for all 

guests with carboxylate group are too favorable. Still, enough things differ between these 

two submissions that it is difficult to attribute performance differences to any particular 

source. Such simple variations provide the greatest opportunity for the community to learn.

One exoOA guest posed a bit of a surprise, in that binding of g1 to exoOA was not detected 

experimentally (Section 6.2 and Figure 2). Since no clear evidence of binding was observed 

experimentally at the detection threshold via ITC or H-NMR, this indicates a binding 

constant (Ka) to be less than 5 M−1 or a ΔG more positive than −0.95. Of the 15 GDCC 

submissions, 7 predicted this correctly with computed free energies ranging between −0.98 

and 6.40 kcal/mol. Of the methods which incorrectly predicted g1 to bind, computed binding 

free energies ranged from −2.45 to −11.54 kcal/mol. All of the QM based submissions 

(B2PLYPD3/SMD) predicted exoOA-g1 to be a nonbinder, with values between 2.70 and 

6.40 kcal/mol, and the AMOEBA-based alchemical methods also correctly recognized this 

as a nonbinder. Most MM/PBSA and MM/GBSA submissions failed to recognize this as a 

nonbinder, except for the RESP/GAFF/MMPBSA/Nmode method utilizing empirical 

corrections. The other GAFF-based methods predicted exoOA-g1 to be a binder. Predicted 

binding free energies of xtb-GNF/MachineLearning/CORINA_MD, RESP/GAFF/
MMPBSA-Cor, RESP/GAFF/MMGBSA, AM1-BCC/GAFF/MMPBSA, RESP/GAFF/
MMPBSA, FSDAM/GAFF2/OPC3, and DOCKING/GAFF/YANK were all more favorable 

than −3.84 kcal/mol. Perhaps for this guest, the proximal carboxylates of the host and guest 

repel one another too strongly for binding. This guest has relatively less hydrophobic 

character than other guests, perhaps meaning that the hydrophobic effect is not enough to 

offset this potential electrostatic clash. Perhaps only the AMOEBA absolute binding free 

energy calculations and the QM based methods can capture the relevant polarization effects 

well enough to recognize this complex is unfavorable.

7.2.3 Cyclodextrins—The cyclodextrin challenge proved to be the least challenging of 

the SAMPL7 challenges as measured by RMS error, as all submissions except one had 

RMSE values less than 2.74 kcal/mol (the exception was the AM1-BCC/MD/GAFF/
TIP4PEW/QMMM method, with RMSE and ME metrics over 30 kcal/mol). However, the 
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dynamic range was particularly small for this challenge, with most host-guest complexes 

showing similar binding free energies. This meant that correlations between calculated and 

predicted values were typically quite poor (Table 3).

First we compare the ranked FSDAM/GAFF2/OPC3_ranked and non-ranked FSDAM/
GAFF2/OPC3_JB methods, where the ranked method performed slightly better; these 

methods used the same simulation approach but differ in that the former used a Gaussian 

approximation for computing nonequilibrium free energies, whereas the latter used a 

“boosted Jarzynski” approach for analysis [93, 98]. Both analysis approaches ought to give 

equivalent binding free energies in certain limits, but their underlying assumptions and the 

amount of data available result in substantially different performance here. Here, despite its 

limitations in the SAMPL6 “SAMPLing” challenge [5], the Gaussian approximation was 

modestly superior, with 15 of 16 binding free energies predicted within 2 kcal/mol, versus 

11 of 16 for FSDAM/GAFF2/OPC3_JB.

Three other nonequilibrium free energy methods participated for the cyclodextrin challenge 

– Noneq/Alchemy/CGENFF, Noneq/Alchemy/consensus, and Noneq/Alchemy/GAFF. All 

three methods used the TIP3P water model, included NaCl ions at 25mM, and considered 

multiple binding poses (primary and secondary orientation) and free energies reported as 

Boltzmann weighted averages across these poses. These methods differed only by force field 

– CGENFF (Noneq/Alchemy/CGENFF) or GAFF (Noneq/Alchemy/GAFF). The third 

submission, Noneq/Alchemy/consensus, gives “consensus” results obtained by averaging 

across both force fields. In this case the RMSE was under 2 kcal/mol for both methods, but 

CGENFF resulted in very slightly better performance by most metrics. Problematic systems 

for this method were MGLab23-g1, MGLab24-g1, MGLab24-g2, MGLab36-g1, and 

MGLab36-g2, and what they have in common is larger cyclodextrin side chains. 

Cyclodextrins with amino acid side chains tend to be the more accurately predicted systems 

for this method, suggesting the methods may be limited by forcefield parameters.

Our reference calculations (Docking/GAFF/YANK_REF performed reasonably well for this 

dataset (Table S3), and surprisingly had better correlation to experiments compared to other 

methods (Table 3). Predicted binding free energies were within 2 kcal/mol for 9 of 16 host-

guest systems, and similar conditions and water model were used as for Noneq/Alchemy/
GAFF, though different free energy estimation techniques were used. These submissions 

also differed in handling of binding modes; our reference calculations used only a single 

initial binding mode for each (determined by the top scoring pose from docking) whereas 

Noneq/Alchemy/consensus considered up to two poses whenever a second orientation was 

considered stable and was in better agreement with experiments. Thus, suggesting secondary 

guests orientations may need to be considered, and guest and/or host side chain sampling 

may be an issue.

When we compare the diverse methods submitted, some observations stand out. First, 

performance of Noneq/Alchemy/GAFF and Docking/GAFF/YANK_REF methods was quite 

similar with an RMS difference of 0.8 kcal/mol – likely due to use of the same force field 

(GAFF) and water model (TIP3P) despite the fact that the former used nonequilibrium free 

energy techniques and the latter used equilibrium, suggesting the force field played a larger 
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role. Along the same lines, several nonequilibrium methods (FSDAM/GAFF2/OPC3, 

Noneq/Alchemy/CGENFF, and Noneq/Alchemy/GAFF) all used similar techniques but 

different force field/water model, and performance was thus reasonably similar with an RMS 

difference of at most 0.32 kcal/mol. In addition, binding free energy calculations have been 

shown to be more accurate using GAFF2 opposed to GAFF in previous computational 

studies [81]. Finally, the most challenging case seems to be binding of cyclodextrins with 

large side chains to rimantadine (g2), though the reason for this is not known.

7.2.4 Reference Calculations—In this section we survey additional retrospective tests 

with reference calculations and analyze the results. For most of the reference calculations, 

simulations which had the greatest error in binding affinity had poor sampling/mixing of the 

states within replicas. Moreover, many of the free energy estimates were not converged, or 

converged to a value which disagreed with experiment at timescales up to 30 ns per window. 

Convergence to a value which differs from experiment may indicate force field problems. 

These errors was particularly prevalent for TrimerTrip and Cyclodextrin derivatives while 

also in the presence of a guest with a formal charge (Figures S1 and S3). Interestingly, free 

energy estimates seemed to converge better for the GDCC dataset depending on whether the 

guest was positively or negatively charged (Figure S2). In addition, in simulations for 

exoOA with guests with a negatively charged carboxyl group had poor mixing of states 

within replicas, while with positively charged guests mixing of states was generally better. 

To check the contribution of the charged protocol in mixing of states between replicas and 

estimate error in reference calculations, additional calculations for exoOA-g1, exoOA-g3, 

and clip-g1 were done.

For the exoOAg3 and clip-g1 systems, the automatic pipeline in YANK (while additional 

simulation options remained the same) was used to determine individual and unique 

alchemical paths. Ideally, this should improve replica exchange overlap, thus improve 

sampling. Despite using unique alchemical protocols (with additional lambda windows) for 

these systems the sampling did not improve and the free energy was not convincingly 

converged or inaccurate even after simulations up to 30ns per iteration.

In addition, separate experiments were done with exoOA-g1 using the charged protocol, 

however this time changing simulation options. First, we added YANK’s ‘PME_treatment’ 

option meant to speed up and improve convergence of systems where a guest/ligand has a 

formal charge. Second, we tested a double annihilation scheme with soft core potentials 

rather than double decoupling. In both cases and with a combination of both we observed 

significant improvement in sampling of states between replicas for both the complex and 

solvent phase, and convergence of free energy estimates within a 10 ns timescale per 

iteration. However, agreement with experimental free energy for the exoOA-g1 test case did 

not improve. In retrospect, this is perhaps not surprising since only the AMOEBA and QM 

based methods predicted this with convincing accuracy. It would be interesting to see in 

future challenges how our methods simulation options affect the accuracy of the other 

systems of this challenge.

Our final test case involved changing the charge scheme option for the guest in exoOA-g1 

from AM1-BCC to AM1-BCCELF10 with OpenEye Toolkits, otherwise retaining the same 
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protocol. The change in charging scheme essentially made g1 slightly less polar, thus we 

thought this would result in less favorable binding to exoOA. However, that was not the 

case, the resulting binding free energy was slightly more negative at −8.813 ± 0.070 

kcal/mol compared to our submitted prediction of −7.629 ± 0.090 kcal/mol.

In retrospect, perhaps the results of our follow up simulations should not be surprising since 

only the AMOEBA and QM based methods predicted binding of this guest accurately, 

perhaps indicating polarizability is particularly important in this case. Overall, these follow-

up investigations did not find factors which dramatically affected the accuracy of the 

reference calculations on the exoOA-g1 system. It would be interesting to further assess this 

on the other systems considered.

8 Conclusions and Lessons Learned

The SAMPL7 host-guest blind challenge provided a platform to test the reliability of 

computational methods and tools to accurately predict binding free energies. Since hosts in 

the cucurbituril and cavitand families have been featured in previous SAMPL challenges 

(and likely in future challenges) these provide a mechanism to assess how the field 

progresses across a series of challenges. In addition, the amount of attention these have 

received helps us identify some potential lessons learned and give suggestions for 

improvement.

The TrimerTrip dataset of SAMPL7, like cucurbiturils from previous challenges, posed the 

largest challenge for participants, as judged by method performance. Specifically, most 

methods performed poorly at computing binding free energies for cationic guests with 

cyclic, aromatic, and adamantane based moieties. In addition, most methods were relatively 

inconsistent at predicting binding free energies of hydrocarbon chains of increasing length, 

but the AMOEBA alchemical binding free energy methods did very well predicting 7 of 8 

within 2 kcal/mol. Both of the best performing methods here used alchemical free energy 

calculations. Predictions from the best fixed-charge force field submission, based on 

nonequilibrium free energy calculations (FSDAM/GAFF2/OPC3), had errors above 2 

kcal/mol for 8/16 host-guest systems considered. In contrast, performance with the 

AMOEBA polarizable force field and alchemical methods was significantly better here, 

suggesting that one key source of error may be polarization effects and/or multipoles.

In the TrimerTrip case, participants also found evidence that binding free energies may be 

more accurate if different potential host conformations are considered, especially for bulkier 

guests such as those with adamantane moieties. This exploration of sensitivity to host 

conformation also provided insight into modeling the host’s flexibility; participants found 

binding free energies to be sensitive to the geometry of the triptycene rings [43, 94]. Our 

reference calculations showed poor sampling of interconversion between alchemical states in 

our simulations, despite use of Hamiltonian Replica Exchange.

Given these results, it appears that force field accuracy and choice of force field (e.g. GAFF, 

GAFF2, AMOEBA) may be a dominant factor limiting accurate binding affinity predictions.
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On the Gibb deep cavity cavitands (GDCCs), OA and exoOA, as in previous SAMPL 

challenges, simulation based methods with empirical fixed charge energy models performed 

relatively well. Binding affinities for guests with adamantane, aromatic and saturated cyclic 

carboxlylates with OctaAcids were predicted with greater accuracy than TrimerTrip. 

Performance of methods within the GDCC dataset (OA and exoOA) demonstrates 

significant variation by guest, and especially when the formal charge of guest differs 

(negative vs positive).

In part because of the relatively extensive prior work on GDCCs, some submissions applied 

empirical corrections before making predictions, and/or utilized machine learning 

approaches. These tended to help performance, here, but rely on availability of training data 

on closely related systems – which is not always available for prospective applications.

On the GDCCs, as for TrimerTrip, submissions using the AMOEBA force field and absolute 

alchemical binding free energy techniques performed particularly well. Additionally, along 

with a QM based method, these AMOEBA-based approaches correctly predicted exoOA 

with g1 a non-binder. Perhaps only AMOEBA and QM methods capture relevant 

polarization effects well enough to accurately describe this particular complex well in 

general, though one MM/PBSA approach also recognized this as a nonbinder.

For the current challenge, the AMOEBA-based free energy calculations had the most 

consistent performance across the different host-guest complexes, and across datasets 

(TrimerTrip, OctaAcid, exoOA). Despite the lower variation for this method, guest g4 was 

particularly sensitive to diphenyl ether torsional parameters which worked very well in all 

other GDCC systems. The AMOEBA-based approach did rather well in SAMPL7, but 

improvements in the approach relative to prior SAMPL challenges were entirely in the 

sampling protocol and torsion values, indicating that these can provide gains in accuracy.

The cyclodextrin derivatives were new to SAMPL, and many methods achieved relatively 

low RMS errors – though this may partly be due to the low dynamic range of the set; a 

hypothetical method which predicted a constant binding free energy of −4 kcal/mol for all 

guests would achieve an RMS error of only 0.70 kcal/mol. This low dynamic range also 

meant that correlation metrics were typically poor. The force field used in this dataset played 

a role in computing accurate binding free energies, with GAFF2 seemingly giving more 

accurate results, followed by CGenFF and GAFF (a more detailed comparison of these force 

fields can be seen in Ref [92] and Ref [93]). In addition, nonequilibrium approaches appear 

to perform slightly better with cyclodextrin systems. The performance of methods for the 

cyclodextrin dataset varied across host-guest systems, but predicting reliable binding free 

energies for cyclodextrins with large side chains to rimantadine was frequently challenging. 

There were no AMOEBA submissions for this aspect of SAMPL7, but the use of a 

polarizable force field may help ameliorate agreement between computational methods with 

experiments and facilitate accurate modeling of cyclodextrin host-guest interactions.

Finally, note that two methods included predictions for all three datasets, DOCKING/GAFF/
YANK and FSDAM/GAFF2/OPC, though not all of the submissions were ranked. The 

performance of these methods varied across different datasets and across different host-guest 
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systems within the same dataset. For both methods, binding predictions for larger and more 

hydrophobic guests were apparently more difficult.

In terms of overall lessons learned in this challenge, we found that methods which only 

varied a single factor (such as force field or water model, with a fixed method) were 

particularly valuable in terms of providing insight into accuracy, thus we urge participants to 

continue with such explorations in the future. Another important area of work is to ensure 

that methods which ought to be equivalent do, in fact, give equivalent results across different 

simulation packages [5].

Overall, SAMPL7 showed marked progress in binding prediction relative to previous 

challenges, and in particular results with binding free energy calculations using the 

AMOEBA force field were particularly promising for two of the challenge components. For 

future challenges it will be interesting to continue investigations of host/guest sampling, 

polarization effects, and possibly salt behavior in similar systems. We look forward to 

continuing to work with the community to use the SAMPL challenge to drive accuracy 

improvements in binding predictions.

9 Code and Data Availability

All SAMPL7 host-guest challenge instructions, submissions, experimental data and analysis 

are available at https://github.com/samplchallenges/SAMPL7/tree/master/host_guest. An 

archive copy of SAMPL7 GitHub repository host-guest challenge directory is also available 

in the Supplementary Documents bundle (SAMPL7-supplementary-documents.tar.gz). Some 

useful files from this repository are highlighted below.

• Table of participants submission filenames and their submission ID: https://

github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/

SAMPL7-user-map-HG.csv

• Submission files of prediction sets: https://github.com/samplchallenges/

SAMPL7/tree/master/host_guest/Analysis/Submissions

• Python analysis scripts and outputs: https://github.com/samplchallenges/

SAMPL7/tree/master/host_guest/Analysis/Scripts

• Table of performance statistics calculated for ranked methods for TrimerTrip 

dataset: https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/

Analysis/Accuracy_ranked/TrimerTrip/StatisticsTables/statistics.csv

• Table of performance statistics calculated for all methods for TrimerTrip dataset: 

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/

Reference/Accuracy/TrimerTrip/StatisticsTables/statistics.csv

• Table of performance statistics calculated for ranked methods for GDCC dataset: 

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/

Accuracy_ranked/GDCC_no_optional/StatisticsTables/statistics.csv

• Table of performance statistics calculated for all methods for GDCC (without 

optionals) dataset: https://github.com/samplchallenges/SAMPL7/blob/master/
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host_guest/Analysis/Reference/Accuracy/GDCC_no_optional/StatisticsTables/

statistics.csv

• Table of performance statistics calculated for all methods for GDCC (with 

optionals) dataset: https://github.com/samplchallenges/SAMPL7/blob/master/

host_guest/Analysis/Reference/Accuracy/GDCC/StatisticsTables/statistics.csv

• Table of performance statistics calculated for ranked methods for Cyclodextrin 

dataset: https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/

Analysis/Accuracy_ranked/CD_no_optional/StatisticsTables/statistics.csv

• Table of performance statistics calculated for all methods for Cyclodextrin 

(without optionals) dataset: https://github.com/samplchallenges/SAMPL7/blob/

master/host_guest/Analysis/Reference/Accuracy/CD_no_optional/

StatisticsTables/statistics.csv

• Table of performance statistics calculated for all methods for Cyclodextrin (with 

optionals) dataset: https://github.com/samplchallenges/SAMPL7/blob/master/

host_guest/Analysis/Reference/Accuracy/CD/StatisticsTables/statistics.csv

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

AM1-BCC Austin model 1 bond charge correction

RESP Restrained electrostatic potential

REST Replica exchange with solute tempering

FSDAM Fast switching double annihilation method

B2PLYPD3 Beck 2-parameter Lee-Yang-Parr D3 exchange-correlation functional 

[1]

B3PW91 Becke 3-parameter Perdew-Wang 91 exchange-correlation functional 

[2]

GAFF Generalized AMBER force field

CGenFF CHARMM generalized force field

AMOEBA Atomic multipole optimized energetics for biomolecular simulations
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DDM Double decoupling method

DFT Density functional theory

QM/MM Mixed quantum mechanics and molecular mechanics

MMPBSA Molecular mechanics Poisson Boltzmann/solvent accessible surface 

area

MMGBSA Molecular mechanics generalized born/solvent accessible surface 

area

TIP3P Transferable interaction potential three-point

TIP4PEw Traansferable interaction potential four-point Ewald

OPC3 Optimal 3-point charge

SEM Standard error of the mean

RMSE Root mean squared error

MAE Mean absolute error

ME Mean signed error

τ Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

QM Quantum Mechanics

MM Molecular Mechanics
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Figure 1. Structures of the TrimerTrip host and guest molecules for the SAMPL7 Host-Guest 
Blind Challenge.
The acyclic CB[n]-type receptor, TrimerTrip, is shown on the top. It is composed of a 

glycoluril trimer with aromatic triptycene sidewalls at both ends, and four sulfonate groups 

to increase its solubility. The host can take on a C-shape (though other conformers can be 

possible) and binds guests inside the cavity. The guests for the SAMPL7 challenge have the 

characteristics of typical CB[n] binders. The guests are named g1 through g19 (g4, g13, g14 

were not included in the challenge).
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Figure 2. Structures of the GDCC host and guest molecules for the SAMPL7 Host-Guest Blind 
Challenge.
(top left) OctaAcid, (top right) exo-OctaAcid; (bottom) guests. The difference between the 

hosts is the placement of the carboxylate groups near the cavity opening. While the 

carboxylates protrude outward away from the cavity in OA, in exoOA they are at the rim of 

the cavity opening. The guests for SAMPL7 are named g1 - g8. Four guests have a 

carboxylate group, and four a quaternary ammonium group. For the OA host, guests g1 - g6 

have binding free energies which were previously reported and thus calculation of values 

was made optional for participants.
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Figure 3. Structures of the cyclodextrin host derivatives and guests for the SAMPL7 Host-Guest 
Blind Challenge.
The cyclodextrin derivatives are a series of macrocycles composed of seven glucose subunits 

linked by 1,4 glycosidic bonds. The native β-cyclodextrin (bCD) contains the primary 

(2’OH) and secondary glucose subunit hydroxyls, while all of the cyclodextrin derivatives 

(MGLab#) differ by a substituent at either of these positions. MGLab8, MGLab9, 

MGLab19, MGLab23, MGLab24, and MGLab36 have substituents out from the top or 

primary face (wide opening), while MGLab34 and MGLab35 have the substituents out from 

the bottom or secondary face (narrow opening). The two guests are trans-4-

methylcyclohexanol (g1) and cationic R-Rimantadine (g2).
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Figure 4. βCD host structures.
Shown are two views of βCD. It and its derivatives are known to bind guests in two 

orientations, primary and secondary. The primary binding orientation is when an asymmetric 

guest’s polar head group projects out towards the glucose primary alcohols or the smaller 

opening (down). The secondary binding orientation is when a guest’s polar head group 

projects towards the secondary alcohol or the larger opening (up).
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Figure 5. SAMPL7 submission breakdown.
The SAMPL7 challenge saw 7 TrimerTrip submissions, of which 3 were ranked (blue) and 4 

were non-ranked (orange). There were 16 GDCC submissions, with 4 ranked (green) and 12 

nonranked (red), and 7 CD submissions, with 3 ranked (purple) and 4 nonranked (brown).
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Figure 6. TrimerTrip Error Metrics for Ranked Methods.
Shown is the distribution of performance for TrimerTrip submissions, ordered based on the 

median for each metric. The median is indicated by the white circle in the violin plots. The 

violin plots were generated by bootstrapping samples with replacement (including 

experimental uncertainties), and the plots describe the shape of the sampling distribution for 

each prediction. The black horizontal bar represents the first and third quartiles. From top to 

bottom the error metrics are RMSE, ME, R2, τ, and slope (m).
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Figure 7. Correlation plots for TrimerTrip ranked submissions.
Shown are correlation plots comparing calculated versus experimental values for (Left to 

Right) AMOEBA/DDM/BAR, FSDAM/GAFF2/OPC3, and MD/DOCKING/GAFF/xtb-
GNF ranked predictions for the TrimerTrip dataset. The R2 and slope for each ranked 

prediction were 0.50 and 1.25, 0.12 and 0.60, and 0.00 and −0.10 respectively.

Amezcua et al. Page 45

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. RMSE and ME statistics by host-guest system for ranked methods.
Shown are free energy error statistics by host-guest system, across methods/participants. The 

ΔG root mean square error (RMSE) and mean signed error (ME) were computed via 

bootstrapping with replacement (including experimental uncertainties) for all host-guest 

systems (except optional systems OA-g1, OA-g2, OA-g3, OA-g4, OA-g5, OA-g6, bCD-g1, 

and bCD-g2) and includes all ranked methods submitted (except the AM1-BCC/MD/GAFF/
TIP4PEW/QMMM method for the cyclodextrin dataset which is omitted from this analysis 

because errors were so large for that method). The black error bars represent the 95-

percentile bootstrap confidence intervals. The host-guest datasets for the SAMPL7 challenge 

were TrimerTrip (blue), GDCC (separated into OA (yellow) and exo-OA (red) sub-datasets 

to analyze each host-guest system), and cyclodextrin derivatives (green)
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Figure 9. GDCC Error Metrics for Ranked Methods.
Shown is accuracy of GDCC submissions, with the median value for each metric indicated 

by the white circle in the violin plots. The violin plots were generated by bootstrapping 

samples with replacement, and the plots describe the shape of the sampling distribution for 

each prediction. The black horizontal bar represents the first and third quartiles. From top to 

bottom the error metrics are RMSE, ME, R2, τ, and slope (m).
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Figure 10. Correlation plots for GDCC (combined OA and exo-OA) and exo-OA ranked 
submissions.
Shown are correlation plots comparing calculated and experimental values for (Left to 

Right) AMOEBA/DDM/BAR, RESP/GAFF/MMPBSA-Cor, B2PLYPD3/SMD_QZ-R, and 

xtb-GNF/Machine Learning/CORINA MD ranked predictions for GDCC (top row) and exo-

OA (bottom row). The AMOEBA/DDM/BAR approach performed particularly well by a 

variety of metrics, as did RESP/GAFF/MMPBSA-Cor. The former had the slope closest to 1 

and its RMS error was among the lowest, whereas the latter performed better on error and 

correlation metrics but had a slope which was systematically incorrect. (See Table 3)
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Figure 11. exo-OA Error Metrics for Ranked Methods.
Shown are exo-OA methods, with the median indicated by the white circle in the violin 

plots. The violin plots for RMSE, ME, R2, τ, and slope describe the shape of the sampling 

distribution after bootstrapping for each method. The black horizontal bar represents the first 

and third quartiles. From top to bottom the error metrics are RMSE, ME, R2, τ, and slope 

(m).
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Figure 12. Cyclodextrin derivatives error metrics for ranked methods.
Shown are CD submissions ordered based on the median and is indicated by the white circle 

in the violin plots. The violin plots were generated by bootstrapping samples with 

replacement, and the plots describe the shape of the sampling distribution for each 

prediction. The black horizontal bar represents the first and third quartiles. From top to 

bottom the error metrics are RMSE, ME, R2, τ, and slope (m). AM1-BCC/GAFF/TIP4PEW/
QMMM method was not included in these plots. In addition, the optional bCD-g1 and bCD-

g2 host-guest systems are not included in this analysis.
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Figure 13. Correlation plots for CD ranked submissions
Shown are correlation plots comparing calculated versus experimental values for (Left to 

Right) FSDAM/GAFF2/OPC3, Noneq/Alchemy/consensus, and AM1-BCC/MD/GAFF/
TIP4PEW ranked predictions for the CD dataset. The R2 and slope for each ranked 

predictions were 0.04 and 0.17, 0.03 and 0.18, and 0.04 and 7.62 respectively. Note: the 

optional bCD-g1 and bCD-g2 host-guest systems were not included in the analysis.
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Table 1.
Binding orientations of guests g1 (methylcyclohexanol) and g2 (rimantadine) with 
cyclodextrin hosts.

Binding orientations of guests complexed with hosts determined by NOESY NMR by the Gilson lab [64]. The 

orientations are summarized here to cross check with binding mode(s) used by SAMPL7 participants and 

ascertain the binding mode(s) which may contribute to accurate binding affinity predictions (or lack thereof). 

In some cases, experiments did not allow determination of a binding mode; such cases are labeled ND.

Host Location of Mono-substituent (Face) Guest Binding Orientation

G1 - Methylcyclohexanol

β-CD N/A Primary and Secondary

MGLab8 Secondary Secondary

MGLab9 Secondary Primary and Secondary

MGLab19 Secondary Primary

MGLab23 Secondary Primary and Secondary

MGLab24 Secondary Primary

MGLab34 Primary Secondary

MGLab35 Primary Primary

MGLab36 Secondary Primary and Secondary

G2 - Rimantadine

β-CD N/A Secondary

MGLab8 Secondary Secondary

MGLab9 Secondary ND

MGLab19 Secondary Primary

MGLab23 Secondary Primary

MGLab24 Secondary Secondary

MGLab34 Primary Primary

MGLab35 Primary ND

MGLab36 Secondary Secondary
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Table 2.

Experimental binding details for all host-guest systems.

ID name Ka (M−1)
ΔG (kcal/

mol)
(a)

ΔH (kcal/
mol)

TΔS (kcal/

mol)
(b) n

clip-g1 4-azaniumylbutylammonium 31000.0 ± 9000.0 −6.1 ± 0.2 −6.1 ± 0.8 0.0 ± 0.8 0.86

clip-g2 5-azaniumylpentylammonium 1270000.0 ± 
80000.0 −8.32 ± 0.04 −8.8 ± 0.3 −0.4 ± 0.3 1.00

clip-g3 6-azaniumylhexylammonium 24000000.0 ± 
3000000.0

−10.05 ± 
0.07 −10.9 ± 0.3 −0.8 ± 0.3 0.90

clip-g15 trimethyl-[6-
(trimethylammonio)hexyl]ammonium

52000000.0 ± 
4000000.0

−10.52 ± 
0.05 −12.8 ± 0.4 −2.2 ± 0.4 0.97

clip-g12 hexyl(trimethyl)ammonium 1210000.0 ± 
70000.0 −8.29 ± 0.03 −8.4 ± 0.3 −0.1 ± 0.3 0.94

clip-g5 8-azaniumyloctylammonium 150000000.0 ± 
30000000.0 −11.1 ± 0.1 −11.4 ± 0.4 −0.3 ± 0.4 0.89

clip-g16 10-azaniumyldecylammonium 300000000.0 ± 
100000000.0 −11.5 ± 0.2 −11.2 ± 0.4 0.3 ± 0.4 0.89

clip-g17 12-azaniumyldodecylammonium 500000000.0 ± 
300000000.0 −11.8 ± 0.4 −10.4 ± 0.3 1.4 ± 0.5 0.97

clip-g9 1-adamantylammonium 360000.0 ± 
30000.0 −7.57 ± 0.05 −4.8 ± 0.2 2.8 ± 0.2 0.95

clip-g6 1-adamantyl(trimethyl)ammonium 11000000.0 ± 
2000000.0 −9.6 ± 0.1 −10.2 ± 0.4 −0.6 ± 0.4 0.83

clip-g11 1-(1-adamantyl)ethanamine 4100000.0 ± 
600000.0 −9.02 ± 0.08 −7.4 ± 0.3 1.6 ± 0.3 0.85

clip-g10 decahydro-2, 8, 4, 6-(epibutane[1, 2, 3, 
4]tetrayl)naphthalene-2, 6-diaminium

1000000.0 ± 
100000.0 −8.17 ± 0.08 −5.8 ± 0.2 2.3 ± 0.2 0.99

clip-g8 [4-(azaniumylmethyl)phenyl]methylammonium 8500000.0 ± 
700000.0 −9.45 ± 0.05 −10.6 ± 0.3 −1.1 ± 0.3 0.90

clip-g18 1-methyl-4-(1-methylpyridin-1-ium-4-
yl)pyridin-1-ium

54000000.0 ± 
8000000.0

−10.55 ± 
0.09 −12.4 ± 0.4 −1.8 ± 0.4 0.95

clip-g19 4-(1, 1-dimethylpiperidin-1-ium-4-yl)-1, 1-
dimethyl-piperidin-1-ium

360000000.0 ± 
80000000.0 −11.7 ± 0.1 −13.6 ± 0.4 −2.0 ± 0.5 0.79

clip-g7 (4-azaniumylcyclohexyl)ammonium 59000.0 ± 5000.0 −6.5 ± 0.05 −6.7 ± 0.3 −0.2 ± 0.3 0.83

OA-g1 hexanoate 4400.0 ± 200.0 −4.97 ± 0.02 −5.54 ± 0.1 −0.57 ± 
0.07 1.00

OA-g2 4-chlorobenzoate 116000.0 ± 5000.0 −6.91 ± 0.02 −9.6 ± 0.3 −2.6 ± 0.2 1.00

OA-g3 (4 S)-4-isopropenylcyclohexene-1-carboxylate 870000.0 ± 
40000.0 −8.1 ± 0.02 −12.0 ± 

0.02 −3.9 ± 0.02 1.00

OA-g4 (3 S)-3, 7-dimethyloct-6-enoate 91000.0 ± 7000.0 −6.76 ± 0.05 −6.7 ± 0.2 0.1 ± 0.1 1.00

OA-g5 trimethyl-2-phenylethanaminium 3000.0 ± 100.0 −4.73 ± 0.02 −7.48 ± 
0.05

−2.75 ± 
0.05 1.00

OA-g6 hexyl(trimethyl)ammonium 4400.0 ± 200.0 −4.97 ± 0.02 −7.3 ± 0.3 −2.3 ± 0.3 1.00

OA-g7 trimethyl-(4-methylcyclohexyl)ammonium 28000.0 ± 2000.0 −6.07 ± 0.05 −5.7 ± 0.2 0.3 ± 0.1 1.00

OA-g8 1-adamantyl(trimethyl)ammonium 1110000.0 ± 
40000.0 −8.25 ± 0.02 −7.8 ± 0.2 0.4 ± 0.1 1.00

exoOA-g1 hexanoate ND ± ND ND ± ND ND ± ND ND ± ND 1.00

exoOA-g2 4-chlorobenzoate 9.0 ± 4.0 −1.3 ± 0.3 ND ± ND ND ± ND 1.00
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ID name Ka (M−1)
ΔG (kcal/

mol)
(a)

ΔH (kcal/
mol)

TΔS (kcal/

mol)
(b) n

exoOA-g3 (4 S)-4-isopropenylcyclohexene-1-carboxylate 300.0 ± 40.0 −3.37 ± 0.07 −6.0 ± 0.1 −2.65 ± 
0.07 1.00

exoOA-g4 (3 S)-3, 7-dimethyloct-6-enoate 440.0 ± 20.0 −3.61 ± 0.02 −7.3 ± 0.7 −3.7 ± 0.7 1.00

exoOA-g5 trimethyl-2-phenylethanaminium 12100.0 ± 500.0 −5.57 ± 0.02 −6.17 ± 
0.02 −0.6 ± 0.02 1.00

exoOA-g6 hexyl(trimethyl)ammonium 18900.0 ± 800.0 −5.83 ± 0.02 −3.25 ± 
0.02 2.58 ± 0.02 1.00

exoOA-g7 trimethyl-(4-methylcyclohexyl)ammonium 130000.0 ± 
20000.0 −6.98 ± 0.1 −4.97 ± 

0.07 2.01 ± 0.05 1.00

exoOA-g8 1-adamantyl(trimethyl)ammonium 420000.0 ± 
20000.0 −7.67 ± 0.02 −5.04 ± 

0.05 2.63 ± 0.02 1.00

bCD-g1 trans-4-methylcyclohexanol 2100.0 ± 100.0 −4.52 ± 0.03 −2.6 ± 0.2 2.0 ± 0.2 0.88

bCD-g2 R-rimantadine 35000.0 ± 3000.0 −6.2 ± 0.04 −10.4 ± 0.7 −4.2 ± 0.7 1.00

MGLab_8-g1 trans-4-methylcyclohexanol 260.0 ± 20.0 −3.3 ± 0.05 −1.8 ± 0.4 1.5 ± 0.4 0.89

MGLab_8-g2 R-rimantadine 830.0 ± 50.0 −3.98 ± 0.04 −6.9 ± 0.5 −2.9 ± 0.5 1.03

MGLab_9-g1 trans-4-methylcyclohexanol 210.0 ± 20.0 −3.17 ± 0.05 −2.7 ± 0.8 0.4 ± 0.8 0.88

MGLab_9-g2 R-rimantadine 700.0 ± 40.0 −3.88 ± 0.03 −9.0 ± 0.6 −5.2 ± 0.6 1.00

MGLab_19-g1 trans-4-methylcyclohexanol 210.0 ± 20.0 −3.18 ± 0.04 −2.1 ± 0.2 1.1 ± 0.2 0.83

MGLab_19-g2 R-rimantadine 320.0 ± 20.0 −3.41 ± 0.04 −11.0 ± 1.0 −8.0 ± 1.0 0.94

MGLab_23-g1 trans-4-methylcyclohexanol 220.0 ± 20.0 −3.2 ± 0.05 −3.0 ± 1.0 0.0 ± 1.0 0.76

MGLab_23-g2 R-rimantadine 1510.0 ± 90.0 −4.33 ± 0.04 −7.6 ± 0.5 −3.3 ± 0.5 0.96

MGLab_24-g1 trans-4-methylcyclohexanol 280.0 ± 20.0 −3.34 ± 0.05 −1.6 ± 0.2 1.7 ± 0.2 0.92

MGLab_24-g2 R-rimantadine 1100.0 ± 70.0 −4.15 ± 0.04 −8.6 ± 0.6 −4.5 ± 0.6 1.03

MGLab_34-g1 trans-4-methylcyclohexanol 700.0 ± 100.0 −3.85 ± 0.09 −3.7 ± 0.3 0.1 ± 0.3 0.81

MGLab_34-g2 R-rimantadine 11000.0 ± 7000.0 −5.5 ± 0.4 −9.0 ± 2.0 −3.0 ± 2.0 0.99

MGLab_35-g1 trans-4-methylcyclohexanol 2300.0 ± 200.0 −4.58 ± 0.05 −4.5 ± 0.3 0.1 ± 0.3 0.85

MGLab_35-g2 R-rimantadine 27000.0 ± 2000.0 −6.04 ± 0.04 −7.3 ± 0.5 −1.2 ± 0.5 0.78

MGLab_36-g1 trans-4-methylcyclohexanol 200.0 ± 10.0 −3.15 ± 0.04 −3.0 ± 0.3 0.1 ± 0.3 0.87

MGLab_36-g2 R-rimantadine 350.0 ± 20.0 −3.48 ± 0.04 −11.0 ± 1.0 −7.0 ± 1.0 0.84

All quantities are reported as point estimate ± statistical error from the ITC data fitting procedure. The upper bound (1%) was used for errors 
reported to be < 1%. We also included a 3% relative uncertainty in the titrant concentration assuming the stoichiometry coefficient to be fitted to the 
ITC data [4] for the Isaacs (TrimerTrip) and Gilson (cyclodextrin derivatives) datasets, where concentration error had not been factored in to the 
original error estimates. For the OA/exo-OA sets, provided uncertainties already included concentration error. In some cases, exoOA-g1 binding 
constants were not detected (ND) by ITC or H NMR. Binding of guest g2 to exoOA was very weak so only H NMR spectroscopy could produce 
reliable free energy data. The stoichiometry for each host-guest system is defined in n

(a)
Statistical errors were propagated from the Ka measurements.

(b)
All experiments were performed at 298 K.

(c)
Units of M−2.

(d)
Units of M−3.
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Table 3.
Error metrics for all (ranked and non-ranked) SAMPL7 methods for all host-guest 
systems.

The root mean square error (RMSE), mean absolute error (MAE), signed mean error (ME), coefficient of 

correlation (R2), slope (m), and Kendall’s rank correlation coefficient (Tau) were computed via bootstrapping 

with replacement. Shown are results for individual host categories, as well as the artificially separated exoOA 

sub-dataset. Statistics do not include optional host-guest systems OA-g1, OA-g2, OA-g3 OA-g4, OA-g5, OA-

g6, bCD-g1, and bCD-g2. Each method has an assigned unique submission ID (sid). Table S1 contains 

statistical data for submissions including optional system predictions.

ID sid RMSE [kcal/
mol]

MAE [kcal/
mol]

ME [kcal/
mol] R2 m τ

TrimerTrip

AMOEBA/DDM/BAR/
ALT-2 9 1.58 [1.19, 

2.56]
1.39 [0.95, 
2.23]

−0.36 [−1.36, 
0.68]

0.63 [0.18, 
0.83]

1.14 [0.54, 
1.76]

0.60 [0.17, 
0.80]

AMOEBA/DDM/BAR-
ALT1 8 1.68 [1.28, 

2.64]
1.56 [1.03, 
2.34]

−0.70 [−1.71, 
0.32]

0.70 [0.26, 
0.88]

1.28 [0.70, 
1.88]

0.67 [0.23, 
0.85]

AMOEBA/DDM/BAR 6 2.76 [1.83, 
3.98]

2.12 [1.35, 
3.33]

−1.69 [−2.98, 
−0.44]

0.50 [0.13, 
0.77]

1.25 [0.53, 
2.06]

0.47 [0.12, 
0.74]

FSDAM/GAFF2/OPC3 4 2.97 [2.11, 
5.13]

2.24 [1.62, 
4.22]

0.43 [−1.59, 
2.33]

0.12 [0.00, 
0.56]

0.60 [−0.51, 
1.60]

0.24 [−0.23, 
0.61]

MD/DOCKING/GAFF/
xtb-GNF/ 5 5.65 [3.87, 

7.36]
4.51 [3.01, 
6.40]

−4.23 [−6.19, 
−2.23]

0.00 [0.00, 
0.26]

−0.10 [−1.02, 
0.80]

−0.05 [−0.41, 
0.35]

Docking/GAFF/
YANK_REF REF2 7.18 [5.63, 

8.71]
6.57 [5.16, 
8.10]

−6.57 [−8.09, 
−5.16]

0.11 [0.00, 
0.59]

0.57 [−0.56, 
1.55]

0.12 [−0.35, 
0.56]

Docking/GAFF/
YANK_REF_2 REF3 7.21 [5.73, 

8.75]
6.63 [5.26, 
8.13]

−6.63 [−8.12, 
−5.26]

0.12 [0.00, 
0.59]

0.57 [−0.55, 
1.54]

0.12 [−0.34, 
0.57]

GDCC-OA and exoOA

RESP/GAFF/
MMPBSA-Cor 20 1.24 [0.73, 

2.45]
0.95 [0.57, 
2.13]

0.94 [−0.12, 
1.99]

0.94 [0.10, 
0.97]

0.65 [0.18, 
1.14]

0.83 [0.03, 
1.00]

AMOEBA/DDM/BAR 29 1.25 [0.68, 
2.55]

0.92 [0.54, 
2.13]

−0.36 [−1.59, 
0.83]

0.80 [0.36, 
0.97]

1.11 [0.58, 
1.94]

0.72 [0.17, 
1.00]

AMOEBA/DDM/
BAR_2 30 1.78 [0.86, 

3.24]
1.31 [0.67, 
2.70]

−0.62 [−2.09, 
0.77]

0.55 [0.04, 
0.96]

0.87 [0.14, 
1.92]

0.50 [−0.09, 
1.00]

xtb-GNF/Machine 
Learning/CORINA MD 28 2.26 [1.38, 

3.43]
1.91 [1.09, 
3.08]

0.37 [−1.27, 
2.13]

0.01 [0.00, 
0.78]

0.04 [−0.58, 
0.50]

0.06 [−0.68, 
0.78]

AMOEBA/DDM/
BAR_3 31 2.32 [1.42, 

3.58]
2.05 [1.13, 
3.22]

−0.29 [−1.95, 
1.52]

0.61 [0.21, 
0.92]

1.30 [0.54, 
2.41]

0.78 [0.24, 
1.00]

Docking/GAFF/
YANK_REF REF4 4.05 [1.54, 

5.88]
2.90 [1.21, 
4.93]

2.40 [0.41, 
4.67]

0.12 [0.00, 
0.65]

−0.30 [−1.06, 
0.53]

−0.11 [−0.70, 
0.60]

B2PLYPD3/SMD_QZ-
R 23 4.52 [2.55, 

6.41]
3.70 [1.95, 
5.69]

3.15 [0.85, 
5.50]

0.49 [0.02, 
0.92]

1.43 [−0.17, 
2.92]

0.37 [−0.33, 
0.88]

B2PLYPD3/SMD_QZ-
NR 24 4.64 [2.77, 

6.46]
3.95 [2.23, 
5.83]

2.69 [0.06, 
5.33]

0.58 [0.03, 
0.96]

1.84 [−0.24, 
3.28]

0.39 [−0.31, 
0.93]

FSDAM/GAFF2/OPC3 14 5.07 [3.12, 
8.84]

4.69 [2.53, 
7.86]

−0.79 [−5.32, 
3.40]

0.77 [0.01, 
0.94]

−1.26 [−2.65, 
0.18]

−0.59 [−1.00, 
0.24]

B2PLYPD3/SMD_TZ 22 5.08 [3.04, 
7.03]

4.22 [2.39, 
6.37]

3.36 [0.67, 
6.04]

0.58 [0.02, 
0.96]

1.85 [−0.29, 
3.31]

0.39 [−0.33, 
0.94]

RESP/GAFF/
MMPBSA/Nmode 18 5.84 [4.47, 

7.31]
5.60 [4.20, 
7.03]

−5.60 [−7.03, 
−4.20]

0.81 [0.44, 
0.98]

1.40 [0.79, 
2.40]

0.83 [0.31, 
1.00]

RESP/GAFF/MMPBSA 19 8.07 [6.96, 
9.33]

7.98 [6.81, 
9.20]

7.98 [6.81, 
9.20]

0.94 [0.54, 
0.99]

1.45 [0.96, 
1.99]

0.83 [0.39, 
1.00]
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ID sid RMSE [kcal/
mol]

MAE [kcal/
mol]

ME [kcal/
mol] R2 m τ

B2PLYPD3/SMD_DZ 21 8.13 [5.62, 
10.34]

7.17 [4.57, 
9.75]

7.17 [4.48, 
9.75]

0.55 [0.02, 
0.96]

1.80 [−0.36, 
3.28]

0.39 [−0.33, 
0.94]

AM1-BCC/GAFF/
MMPBSA 17 10.96 [9.02, 

12.80]
10.61 [8.59, 
12.59]

10.61 [8.59, 
12.59]

0.91 [0.59, 
0.99]

2.12 [1.55, 
2.83]

0.89 [0.43, 
1.00]

RESP/GAFF/
MMGBSA 16 11.85 [10.29, 

13.47]
11.68 [10.12, 
13.29]

11.68 [10.12, 
13.29]

0.88 [0.40, 
0.99]

1.69 [1.10, 
2.36]

0.78 [0.23, 
1.00]

GDCC-exoOA

AMOEBA/DDM/
BAR_2 30 1.23 [0.65, 

2.53]
1.02 [0.51, 
2.25]

−0.13 [−1.47, 
1.27]

0.83 [0.39, 
0.99]

1.21 [0.56, 
2.29]

0.62 [0.16, 
1.00]

AMOEBA/DDM/BAR 29 1.27 [0.56, 
2.72]

0.91 [0.45, 
2.31]

−0.66 [−1.98, 
0.61]

0.81 [0.30, 
0.99]

1.05 [0.45, 
2.12]

0.71 [0.05, 
1.00]

RESP/GAFF/
MMPBSA-Cor 20 1.32 [0.68, 

2.65]
1.03 [0.54, 
2.34]

1.01 [−0.18, 
2.20]

0.95 [0.04, 
0.99]

0.61 [0.04, 
1.20]

0.81 [−0.14, 
1.00]

AMOEBA/DDM/
BAR_3 31 1.72 [0.93, 

3.04]
1.57 [0.75, 
2.77]

−1.44 [−2.66, 
−0.19]

0.79 [0.15, 
0.99]

0.80 [0.22, 
1.72]

0.81 [−0.05, 
1.00]

xtb-GNF/Machine 
Learning/CORINA MD 28 2.43 [1.40, 

3.71]
2.11 [1.10, 
3.42]

0.82 [−1.12, 
2.77]

0.00 [0.00, 
0.91]

0.01 [−0.81, 
0.57]

0.05 [−0.78, 
1.00]

Docking/GAFF/
YANK_REF REF4 4.48 [1.56, 

6.43]
3.25 [1.10, 
5.65]

2.60 [0.06, 
5.40]

0.37 [0.03, 
0.95]

−0.58 [−1.56, 
0.08]

−0.43 [−1.00, 
0.33]

B2PLYPD3/SMD_QZ-
R 23 4.76 [2.26, 

6.93]
3.90 [1.81, 
6.26]

3.50 [0.91, 
6.12]

0.72 [0.24, 
0.99]

1.97 [0.88, 
3.77]

0.59 [−0.06, 
1.00]

FSDAM/GAFF2/OPC3 14 4.85 [2.61, 
8.41]

4.38 [2.13, 
7.58]

0.62 [−3.93, 
5.08]

0.82 [0.01, 
0.99]

−1.24 [−2.89, 
0.30]

−0.59 [−1.00, 
0.33]

B2PLYPD3/SMD_QZ-
NR 24 4.90 [2.64, 

6.93]
4.23 [2.23, 
6.33]

2.91 [−0.26, 
5.90]

0.80 [0.26, 
0.99]

2.46 [0.99, 
3.87]

0.62 [0.00, 
1.00]

B2PLYPD3/SMD_TZ 22 5.36 [2.93, 
7.56]

4.57 [2.40, 
6.98]

3.60 [0.40, 
6.66]

0.81 [0.24, 
0.99]

2.48 [0.90, 
3.84]

0.62 [−0.05, 
1.00]

RESP/GAFF/
MMPBSA/Nmode 18 6.28 [4.78, 

7.92]
6.09 [4.54, 
7.71]

−6.09 [−7.71, 
−4.54]

0.76 [0.26, 
0.99]

1.26 [0.47, 
2.43]

0.81 [0.11, 
1.00]

RESP/GAFF/MMPBSA 19 7.59 [6.37, 
8.90]

7.53 [6.25, 
8.79]

7.53 [6.25, 
8.79]

0.95 [0.48, 
1.00]

1.36 [0.74, 
1.96]

0.81 [0.29, 
1.00]

B2PLYPD3/SMD_DZ 21 8.41 [5.40, 
10.95]

7.42 [4.31, 
10.43]

7.42 [4.23, 
10.42]

0.79 [0.22, 
0.99]

2.44 [0.84, 
3.81]

0.62 [0.00, 
1.00]

AM1-BCC/GAFF/
MMPBSA 17 10.05 [7.92, 

12.08]
9.73 [7.58, 
11.84]

9.73 [7.58, 
11.84]

0.93 [0.61, 
1.00]

2.06 [1.38, 
2.94]

0.90 [0.29, 
1.00]

RESP/GAFF/
MMGBSA 16 11.11 [9.58, 

12.68]
11.00 [9.46, 
12.56]

11.00 [9.46, 
12.56]

0.96 [0.66, 
1.00]

1.67 [1.09, 
2.38]

0.90 [0.37, 
1.00]

Cyclodextrin 
derivatives

FSDAM/GAFF2/
OPC3_ranked 12 1.28 [1.33, 

3.48]
1.04 [1.04, 
2.96]

0.63 [−0.83, 
2.09]

0.01 [0.00, 
0.50]

0.12 [−1.58, 
2.32]

0.21 [−0.44, 
0.58]

Noneq/Alchemy/
CGENFF 26 1.62 [1.21, 

2.39]
1.44 [0.98, 
2.13]

1.12 [0.33, 
1.88]

0.05 [0.00, 
0.41]

0.26 [−0.67, 
1.19]

0.10 [−0.46, 
0.51]

Noneq/Alchemy/
consensus 27 1.70 [1.28, 

2.26]
1.48 [1.03, 
2.04]

1.21 [0.52, 
1.88]

0.02 [0.00, 
0.30]

0.16 [−0.50, 
0.96]

−0.02 [−0.43, 
0.46]

FSDAM/GAFF2/
OPC3_JB 13 1.74 [1.50, 

3.85]
1.51 [1.18, 
3.27]

0.77 [−0.78, 
2.34]

0.00 [0.00, 
0.48]

−0.08 [−1.92, 
2.27]

0.13 [−0.45, 
0.56]

Noneq/Alchemy/GAFF 25 1.94 [1.41, 
2.69]

1.66 [1.12, 
2.38]

1.30 [0.42, 
2.15]

0.00 [0.00, 
0.29]

0.06 [−0.73, 
1.19]

0.02 [−0.38, 
0.44]

Docking/GAFF/
YANK_REF REF1 2.74 [1.88, 

3.58]
2.25 [1.49, 
3.08]

0.51 [−0.81, 
1.88]

0.17 [0.01, 
0.52]

−1.11 [−2.14, 
−0.18]

−0.28 [−0.57, 
0.05]
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ID sid RMSE [kcal/
mol]

MAE [kcal/
mol]

ME [kcal/
mol] R2 m τ

AM1-BCC/MD/GAFF/
TIP4PEW/QMMM 15 46.62 [22.85, 

65.69]
32.00 [17.92, 
49.22]

31.27 [16.89, 
48.87]

0.04 [0.00, 
0.33]

7.62 [−3.31, 
30.72]

0.24 [−0.13, 
0.52]
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Table 4.
Summary of methods (ranked and non-ranked) used in the SAMPL7 host-guest blind 
challenge for binding free energy calculations.

Alchemical calculations are flagged by an (A), the use of explicit and/or implicit solvation is flagged by an (E) 

or (I) respectively, and a linear correction approach was taken on methods flagged with a (C). The Noneq/
Alchemy/consensus method was an average of the energy models used in Noneq/Alchemy/CGENFF and 

Noneq/Alchemy/GAFF.

ID sid Energy Model Solvent Model Sampling Ranked SAMPL7 
Refs

TrimerTrip

AMOEBA/DDM/BAR/ALT-2 9 AMOEBA AMOEBA (E) Replica Exchange No [94]

AMOEBA/DDM/BAR-ALT1 8 AMOEBA AMOEBA (E) Replica Exchange No [94]

AMOEBA/DDM/BAR 6 AMOEBA AMOEBA (E) Replica Exchange Yes [94]

FSDAM/GAFF2/OPC3 4 GAFF2/AM1-BCC OPC3 (E) RESP Yes [93]

MD/DOCKING/GAFF/xtb-GNF/ 5 GAFF/AM1-BCC TIP3P (E) MD/SA-MD Yes [96]

Docking/GAFF/YANK_REF REF2 GAFF/AM1-BCC TIP3P (E) Replica Exchange No

Docking/GAFF/YANK_REF_2 REF3 GAFF/AM1-BCC TIP3P (E) Replica Exchange No

GDCC-OA and exoOA

RESP/GAFF/MMPBSA-Cor (C) 20 GAFF/RESP TIP4PEW/PBSA (I) MD Yes [95]

AMOEBA/DDM/BAR 29 AMOEBA AMOEBA (E) Replica Exchange Yes [94]

AMOEBA/DDM/BAR_2 30 AMOEBA AMOEBA (E) Replica Exchange No [94]

xtb-GNF/Machine Learning/
CORINA MD 28 GAFF/AM1-BCC TIP3P (E) MD/SA-MD Yes [96]

AMOEBA/DDM/BAR_3 31 AMOEBA AMOEBA (E) Replica Exchange No [94]

Docking/GAFF/YANK_REF REF4 GAFF/AM1-BCC TIP3P (E) Replica Exchange No

B2PLYPD3/SMD_QZ-R 23 DFT(B3PW91) SMD (I) MD Yes [95]

B2PLYPD3/SMD_QZ-NR 24 DFT(B3PW91) SMD (I) MD No [95]

FSDAM/GAFF2/OPC3 14 GAFF2/AM1-BCC OPC3 (E) RESP No [93]

B2PLYPD3/SMD_TZ 22 DFT(B3PW91) SMD (I) MD No [95]

RESP/GAFF/MMPBSA/Nmode 18 GAFF/RESP TIP4PEW/PBSA (I) MD No [95]

RESP/GAFF/MMPBSA 19 GAFF/RESP TIP4PEW/PBSA (I) MD No [95]

B2PLYPD3/SMD_DZ 21 DFT(B3PW91) SMD (I) MD No [95]

AM1-BCC/GAFF/MMPBSA 17 GAFF/AM1-BCC TIP4PEW/PBSA (I) MD No [95]

RESP/GAFF/MMGBSA 16 GAFF/RESP TIP4PEW/GBSA (I) MD No [95]

Cyclodextrin derivatives

FSDAM/GAFF2/OPC3_ranked 12 GAFF2/AM1-BCC OPC3 (E) RESP Yes [93]

Noneq/Alchemy/CGENFF 26 CGENFF/AM1-BCC TIP3P (E) MD No [92]

Noneq/Alchemy/consensus 27 NA NA NA NA Yes [92]

FSDAM/GAFF2/OPC3_JB 13 GAFF2/AM1-BCC OPC3 (E) RESP No [93]

Noneq/Alchemy/GAFF 25 GAFF/AM1-BCC TIP3P (E) MD No [92]

Docking/GAFF/YANK_REF REF1 GAFF/AM1-BCC TIP3P (E) Replica Exchange No

AM1-BCC/MD/GAFF/TIP4PEW/
QMMM 15 GAFF/AM1-BCC TIP4PEW (E) MD Yes
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