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Abstract

Unravelling the genetic architecture underlying yield components and agronomic traits is

important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population,

developed from ICC 4958 and DCP 92–3 cross, was used for constructing linkage map and

QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®-

CicerSNP array, which enabled the development of a high-density genetic map consisting

of 3,818 SNP markers and spanning a distance of 1064.14 cM. Analysis of phenotyping

data for yield, yield components and agronomic traits measured across three years together

with genetic mapping data led to the identification of 10 major-effect QTLs and six minor-

effect QTLs explaining up to 59.70% phenotypic variance. The major-effect QTLs identified

for 100-seed weight, and plant height possessed key genes, such as C3HC4 RING finger

protein, pentatricopeptide repeat (PPR) protein, sugar transporter, leucine zipper protein

and NADH dehydrogenase, amongst others. The gene ontology studies highlighted the role

of these genes in regulating seed weight and plant height in crop plants. The identified geno-

mic regions for yield, yield components, and agronomic traits, and the closely linked markers

will help advance genetics research and breeding programs in chickpea.

Introduction

Chickpea (Cicer arietinum L.) is a major dietary grain legume cultivated widely in South Asia

and the Middle East, with a genome size of ~740 Mb [1]. Globally, about 14.25 million metric

tonnes of chickpea is produced annually on an area of 13.72 million hectares, and India with

approximately 70% of the global production is the largest chickpea producer [2]. Chickpea is
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highly valued for its intrinsic potential for symbiotic nitrogen fixation and its dietary proteins,

vitamins and essential minerals [3]. Despite its capability to produce 3.5–4.0 tonnes per hectare

under optimum growing conditions, the global average chickpea productivity is approximately

1 tonne per hectare [4].

To ensure global food security and fulfil nutrient deficiency for 2 billion people worldwide

in the coming decades [5], it is essential to increase chickpea production by developing high

yielding varieties with consumer preferred traits. Genetic enhancement in yield components

of chickpea is required to address the issues of low productivity. To develop improved high

yielding chickpea varieties, it is crucial to understand the genetic basis of yield, yield compo-

nents and associated agronomic traits [6]. Several attempts have been made to understand the

genetic mechanisms associated with yield and its component traits in chickpea, and multiple

QTLs have been identified for these traits. For instance, QTLs associated with plant height [7],

flowering time [8], seed size/100-seed weight [9, 10], double poddedness [11], Fusarium wilt

[12–14], Ascochyta blight [15, 16],Helicoverpa armigera resistance component traits [17],

plant vigour [18], drought tolerance [4, 19], salinity tolerance [20–22] and heat tolerance [23]

have been mapped in chickpea. Even though a large number of QTLs have been identified for

multiple traits, very few have been deployed for marker-assisted selection (MAS) because

QTLs for complex traits tend to have small effects and strong environmental influence. Fur-

ther, they also need to be validated before being incorporated into MAS programs for chickpea

genetic improvement.

Recent breakthroughs in genome sequencing technologies have reduced the cost of

sequencing by several folds during the last decade [5]. This reduction in sequencing/genotyp-

ing cost has enabled the development of cost-effective low- to high-density genotyping plat-

forms, resulting in the advancement of genomic resources for chickpea [24]. For instance, a

high-throughput genotyping platform, ‘Axiom1CicerSNP array’, has facilitated high resolu-

tion genetic mapping by constructing high-density genetic maps to support genetics and

breeding programs in chickpea [4, 20]. Such high-throughput genotyping platforms are very

useful for trait mapping through genome-wide association mapping as well as for fine map-

ping of QTLs/trait in several crop species [25, 26].

The present study focused on constructing a high-density genetic map and identifying

QTLs for yield, yield components and agronomic traits using a recombinant inbred line (RIL)

population derived from ICC 4958 and DCP 92–3 cross. A dense genetic map developed in

this study will help in the genetic dissection of other traits that differ between the two parental

genotypes. Furthermore, potential genes underlying the marker intervals of the QTLs identi-

fied for 100-seed weight and plant height were retrieved. The QTLs and candidate genes

detected in this study hold enormous potential to advance genetics research and breeding

applications in chickpea.

Results

Phenotypic variation in the ICC 4958 × DCP 92–3 RIL population

The parental lines and RILs were analysed for their phenotypic performance across three

years. Descriptive statistics, along with analysis of variance for six traits evaluated in the RIL

population (ICC 4958 × DCP 92–3) across three years, have been provided in S1 Table. The

mean squares and genetic parameters of the RILs showed highly significant (p<0.01 or

p<0.001) variation for all the studied traits across three years (S1 Table). The highest coeffi-

cient of variation (%CV) was recorded for the number of primary branches (PB), followed by

the number of secondary branches (SB) and the least for plant height (PLHT) (S1 Table). The

magnitude of phenotypic coefficient of variation (PCV) was found to be higher than their
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corresponding environmental coefficient of variation (ECV) for yield per plant (YPP),

100-seed weight (100SW), pods per plant (PPP), and PLHT. The frequency distribution of the

phenotypic data for the traits under study across three years indicated a marked variability and

quantitative nature of the traits (S1–S3 Figs). Furthermore, the phenotypic trait value of many

RILs surpassed their parental trait value in both directions for all the traits, except 100-seed

weight, indicating the presence of transgressive segregation in this mapping population (S1

Table, S1–S3 Figs).

Correlation among traits

To scrutinize the relationships between yield, yield components and agronomic traits evalu-

ated across three years, a principal component analysis (PCA) was performed. For the experi-

ment conducted during the Rabi season of 2015–16, the first two components explained ~59%

of the total variability (S4 Fig). Here, YPP was closely related to PPP and PLHT. Similarly,

100SW and PB were found to be closely associated with PLHT and SB, respectively. For 2016–

17 and 2017–18, the first two components explained about 60% and 71% of the total variation,

respectively (S4 Fig). For both years, plant height favoured an increase in 100SW, while SB was

closely related to YPP. Variation in the number of PB was tightly correlated with PPP. Further-

more, Pearson correlation analysis was performed to identify trait correlations within and

between experimental trials (Table 1, S5 Fig). Here, 100SW displayed a significant and positive

correlation with PLHT across all three years, viz. 2015–16 (r = 0.41, p<0.001), 2016–17

(r = 0.55, p<0.001) and 2017–18 (r = 0.47, p<0.001). A significant negative relationship was

observed between 100SW and PPP for 2015–16 (r = -0.25, p<0.01) and 2017–18 (r = -0.19,

p<0.05). A combined correlation analysis for all traits across three years was also undertaken

to detect trait correlations (Table 1). The results indicated that, except for 100SW, all other

traits displayed a moderate to low degree of correlation (ranging from r = ± 0.01 to r = ± 0.41)

between years.

High-density genetic map

Out of the 50,590 SNPs available on the Axiom1CicerSNP array, a total of 17,173 SNPs were

found polymorphic between two parents and displayed segregation within the mapping popu-

lation. A genetic map was constructed using 3,818 SNPs that covered a distance of 1064.14 cM

(Table 2), with a cumulative average distance of 0.30 cM between adjacent markers. The num-

ber of SNP markers mapped across eight linkage groups ranged from 126 (CaLG08) to 995

(CaLG04), spanning from 20.4 cM (CaLG08) to 230.4 cM (CaLG04) with a cumulative mean

of 133.02 cM (Table 2). A large variation in marker density was observed across the linkage

groups. The highest marker density of 6.16 SNPs/cM was observed on CaLG08, while CaLG03

displayed the lowest marker density of 1.80 SNPs/cM (Table 2).

QTL mapping for yield, yield components and agronomic traits

A total of 16 QTLs were identified for all studied traits, except for SB. These include 9 QTLs

for yield and yield component traits (2 QTLs for YPP, 6 QTLs for 100SW, and 1 QTL for PPP)

and 7 QTLs for agronomic traits (5 QTLs for PLHT, and 2 QTLs for PB) across three years.

QTLs that contributed phenotypic variation explained (PVE)� 10% were considered as

major-effect QTLs, while QTLs with <10% PVE were considered as minor-effect QTLs. Based

on these premises, a total of 10 major-effect QTLs were identified for five traits, viz., 2 QTLs

for YPP, 3 QTLs for 100SW, 1 QTL for PPP, 3 QTLs for PLHT, and 1 QTL for PB (Fig 1). In

addition, three minor-effect QTLs were identified for 100SW and three QTLs for agronomic

traits (2 QTLs for PLHT, and 1 QTL for PB) across three years (Table 3).
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Furthermore, if a QTL for a particular trait was identified for more than one year, it was

considered a consistent QTL, as described previously [19]. Accordingly, one consistent QTL

for PLHT (qPLHT4.1) was identified on CaLG04 (Table 3). When a particular marker was

found to flank more than one QTL, that particular region was considered a single genomic

region. The sequences and physical positions of the markers flanking the identified QTLs are

provided in the S2 Table.

QTLs for yield and yield component traits. Yield per plant (YPP). Two major QTLs, one

each on CaLG04 (qYPP4.1) and CaLG01 (qYPP1.1), explaining 10.1% PVE (2015–16) and

36.2% (2016–17), respectively, were identified (Table 3).

100-seed weight (100SW). A total of 6 QTLs were identified for 100SW across three years. In

2015–16, one major QTL on CaLG06 (q100SW6.1) explaining 13% PVE, and one minor QTL

on CaLG07 (q100SW7.1; 8.1% PVE), were identified. In 2016–17, one major QTL on CaLG06

(q100SW6.2) that explained 11.3% PVE, and two minor QTLs, one each on CaLG03

(q100SW3.1; 6.5% PVE) and CaLG07 (q100SW7.2; 7.8% PVE), were identified. In 2017–18,

only one major QTL was identified on CaLG04 (q100SW4.1), which explained 16.6% PVE.

Interestingly, this QTL was also found to overlap with a consistent QTL identified for plant

height (qPLHT4.1) (Table 3).

Pods per plant (PPP). Analysis of PPP data led to the identification of only one major-effect

QTL on CaLG06 (qPPP6.1), explaining 15.2% PVE for 2015–16 (Table 3).

QTLs for agronomic traits. Plant height (PLHT). One consistent major-effect QTL was

identified on CaLG04 (qPLHT4.1), explaining 18.5% and 13.3% PVE in 2015–16 and 2016–17,

respectively. In addition, one major-effect QTL on CaLG01 (qPLHT1.1) explaining 14.2% PVE

was identified for 2016–17. Furthermore, two minor-effect QTLs, one each on CaLG05

(qPLHT5.1; 8.7% PVE) and on CaLG08 (qPLHT8.1; 8.1% PVE), were also identified for 2016–

17 (Table 3).

Number of primary branches (PB). Two QTLs for PB trait were detected for 2015–16. These

include one major-effect QTL on CaLG03 (qPB3.1), explaining 59.7% PVE, and one minor-

effect QTL on CaLG02 (qPB2.1), explaining 8.7% PVE (Table 3).

Analysis of epistatic interactions

The combinations of two- and three-loci interactions were scrutinized for all the studied traits

across three years. Epistatic QTLs (E-QTLs) were identified only for 100SW evaluated during

Table 2. Summary of the genetic map constructed for ICC 4958 × DCP 92–3 RIL population using Axiom1Ci-
cerSNP array.

Linkage

group

Number of SNPs mapped Map distance (cM) Inter-marker distance (cM) Density (SNPs/cM)

CaLG01 560 122.00 0.22 4.59

CaLG02 532 139.90 0.26 3.80

CaLG03 351 194.50 0.55 1.80

CaLG04 995 230.43 0.23 4.32

CaLG05 249 112.98 0.45 2.20

CaLG06 491 103.84 0.21 4.73

CaLG07 514 140.04 0.27 3.67

CaLG08 126 20.45 0.16 6.16

Total 3818 1064.14 0.30 3.91

SNPs, single nucleotide polymorphisms; cM, centimorgan.

https://doi.org/10.1371/journal.pone.0251669.t002
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the years 2015–16 (S3 Table), and 2016–17 (S4 Table). Using the two-loci interaction model, a

total of 95 E-QTLs were identified each for 2015–16 and 2016–17. The majority of these inter-

actions were observed between CaLG04 and CaLG06. For instance, two-loci interactions

between AX-123632830(AA) and AX-123624139(AA) explained 62.48% PVE during 2015–16,

and 64.16% PVE during 2016–17. In addition, a total of 356 E-QTLs were detected for 2016–

17, using the three-loci interaction model. These E-QTLs were also mainly detected between

CaLG04 and CaLG06 and explained about 64.15–65.55% PVE observed for this mapping pop-

ulation. For instance, three-loci interactions between the alleles AX-123632830(AA), AX-

123640164(AA) and AX-123624139(AA) explained about 65.55% PVE.

Candidate genes underlying the QTLs detected for 100-seed weight and

plant height

The genes underlying the marker intervals of 6 QTLs for 100SW and 4 unique QTLs for PLHT

were retrieved, and a total of 1,476 genes were detected (S5 and S6 Tables). The 6 QTLs detected

for 100SW were found to harbour 417 genes (S5 Table). Based on the gene ontology (GO) anno-

tation, out of 417 genes, 11 key genes were prioritized based on their role in controlling seed

parameters in chickpea and other crops. These include one gene on CaLG03 [pentatricopeptide

repeat-containing protein At2g03880 (Ca_06269)], 5 genes on CaLG04 [tubby-like F-box pro-

tein 8 (Ca_04384), pentatricopeptide repeat-containing protein At5g52850 (Ca_04422), penta-

tricopeptide repeat-containing protein At1g55630-like (Ca_04472), homoserine kinase

(Ca_04479), transcription factor bHLH118 (Ca_04526)], and 5 genes on CaLG06 [ethylene-

responsive transcription factor ERF043-like (Ca_15786), bidirectional sugar transporter

SWEET2-like (Ca_23961), zinc finger, C3HC4 type (RING finger) protein (Ca_19553), cyto-

chrome P450 83B1-like (Ca_15917), cytochrome P450 72A15-like (Ca_19813)].

Fig 1. Graphical representation of linkage map with major-effect QTLs mapped for yield, yield components and agronomic traits in the ICC 4958 × DCP 92–3

RIL population. Major-effect QTLs for five traits are represented using their QTL names on the genetic map.

https://doi.org/10.1371/journal.pone.0251669.g001
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A total of 1059 genes were found underlying the four QTL regions detected for PLHT. Out

of these 1059 genes, 13 putative genes (two on CaLG01, five on CaLG04 and six on CaLG05)

were prioritized based on their role in regulating plant height in crop plants (S6 Table). These

included type-II homeodomain-leucine zipper protein (Ca_21404), and basic-leucine zipper

transcription factor I (Ca_19454) on CaLG01; ethylene-responsive transcription factor

ERF110-like isoform (Ca_04370), protein IQ-DOMAIN 14-like (Ca_04493), ethylene respon-

sive transcription factor ERF027-like (Ca_04503), cytochrome P450 704C1-like isoform

(Ca_04534), and C2H2-like zinc finger protein (Ca_04451) on CaLG04; probable basic-leucine

transcription factor I (Ca_18221), NADH ubiquinone oxidoreductase (Ca_20087), NADH

dehydrogenase [ubiquinone] 1-alpha subcomplex assembly factor 2 (Ca_20086), cytochrome c

biogenesis C (Ca_20073), cytochrome c biogenesis C (Ca_20070), and NAD(P)H-quinone oxi-

doreductase subunit N (Ca_08896) on CaLG05.

Table 3. List of QTLs identified for yield, yield components and agronomic traits in ICC 4958 × DCP 92–3 RIL

population.

Trait

Name

QTL name Year Linkage

group

Left

marker

Right

marker

Left

marker

position

(cM)

Right

marker

position

(cM)

LOD PVE

(R2%)

Additive

effect

Yield per

plant

(YPP, g)

qYPP4.1 2015–

16

CaLG04 AX-

123642038

AX-

123630146

86.44 87.52 3.50 10.10 -9.5

qYPP1.1 2016–

17

CaLG01 AX-

123644170

AX-

123645113

15.00 46.80 5.00 36.20 4.3

100-seed

weight

(100SW,

g)

q100SW6.1 2015–

16

CaLG06 AX-

123642585

AX-

123663334

43.66 43.70 5.70 13.00 4.0

q100SW7.1 2015–

16

CaLG07 AX-

123637282

AX-

123637281

47.61 47.77 3.60 8.10 1.7

q100SW3.1 2016–

17

CaLG03 AX-

123621911

AX-

123621900

153.40 167.60 3.30 6.50 2.3

q100SW6.2 2016–

17

CaLG06 AX-

123634395

AX-

123634519

87.91 88.02 5.20 11.30 3.6

q100SW7.2 2016–

17

CaLG07 AX-

123635676

AX-

123663528

139.78 140.04 3.70 7.80 1.7

q100SW4.1 2017–

18

CaLG04 AX-

123615349

AX-

123623881

216.23 223.07 6.90 16.60 2.6

Pods per

plant

(PPP)

qPPP6.1 2015–

16

CaLG06 AX-

123633331

AX-

123633450

0.75 1.27 6.80 15.20 2.9

Plant

height

(PLHT,

cm)

qPLHT4.1 2015–

16

CaLG04 AX-

123615349

AX-

123623881

216.23 223.07 8.10 18.50 3.0

qPLHT1.1 2016–

17

CaLG01 AX-

123617652

AX-

123644833

12.70 13.40 6.20 14.20 3.2

qPLHT4.1 2016–

17

CaLG04 AX-

123615349

AX-

123623881

216.23 223.07 6.60 13.30 3.6

qPLHT5.1 2016–

17

CaLG05 AX-

123653052

AX-

123631649

1.07 7.62 3.50 8.70 2.4

qPLHT8.1 2016–

17

CaLG08 AX-

123638424

AX-

123657820

13.74 14.30 3.60 8.10 2.2

Number

of

primary

branches

(PB)

qPB.2.1 2015–

16

CaLG02 AX-

123621195

AX-

123621154

111.10 111.40 3.40 8.70 -0.1

qPB.3.1 2015–

16

CaLG03 AX-

123622729

AX-

123622639

14.30 14.40 6.50 59.70 -0.3

LOD, logarithm of odds; PVE, phenotypic variance explained; cM, centimorgan.

https://doi.org/10.1371/journal.pone.0251669.t003
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Discussion

Breeding for yield, yield components and agronomic traits could enhance crop productivity.

Recent developments in plant genomics have led to new and improved breeding methodolo-

gies, which have vastly accelerated the breeding process [27–29]. These advances have facili-

tated detecting genomic regions/QTLs linked with desirable traits and, thereby, identification

of genes controlling both simple and complex traits [20, 24, 30, 31]. Trait linked markers have

facilitated marker-assisted breeding [13, 19, 32] and positional cloning for different traits in

crop plants [4, 26, 33, 34]. Detection of polymorphism in chickpea has been a major constraint

due to the limited genetic diversity [15, 35]. Such low levels of genetic diversity in the culti-

vated gene pool entailed the need for targeting the inter-specific polymorphisms between wild

and cultivated chickpea accessions [36, 37]. Recent advances in genome-based capabilities

have enabled the development of high-throughput approaches for genotyping, allowing the

detection of desirable alleles and multiple QTLs having the potential to affect desired

responses. Therefore, the current study aimed to utilize the high-density genetic map of ICC

4958 × DCP 92–3 RIL population for detecting main-effect QTLs for yield, yield components,

and agronomic traits; and aimed to identify potential candidate genes for 100SW and PLHT.

Detailed analysis of phenotyping data revealed a substantial genotypic variation among the

RILs for all studied traits across three years. In the present study, the extent of genotypic vari-

ances was more than their corresponding environmental variances for PLHT, PPP, 100SW

and YPP, indicating a greater contribution of the genotypic component to the total variation

in these traits [19, 38–40]. All traits, except 100SW, displayed transgressive segregation in both

directions, suggesting that both parental lines contributed favorable alleles for these traits. For

100SW, transgressive segregation, mostly in a negative direction, was observed for multiple

RILs across all three years, which might be because of unwanted linkages between desirable

and undesirable alleles contributed by parental lines. Combined correlation analysis results

displayed a high degree of correlation for 100SW between years, which is predicted to be due

to the high heritability of this trait observed in chickpea [19]. Furthermore, PLHT displayed a

moderate correlation between 2015–16 and 2016–17, and between 2016–17 and 2017–18.

However, all remaining traits displayed a low degree of correlation between years, which may

be due to the significant influence of the genotypes’ environment. Significant genotypic and

environmental differences and a low correlation observed for traits between years might be the

reasons for the absence of any consistent QTL detected for the evaluated traits.

In the present study, the genotyping of RILs using a high-throughput Axiom1CicerSNP
array facilitated the construction of a dense genetic map. The genetic map comprising of 3,818

SNPs, with an average inter-marker distance of 0.30 cM and an average density of 3.91 SNPs/

cM, is one of the most saturated maps developed for chickpea, which is superior to some of the

previously reported inter-specific maps [9, 36, 41, 42]. Furthermore, a total of 16 QTLs were

mapped for five traits, with PVE ranging from 6.5% to 59.70%. Here, two major-effect QTLs

(qYPP4.1 and qYPP1.1) for yield per plant were identified for 2015–16 and 2016–17, with PVE

ranging from 10.10 to 36.20%. In contrast to earlier studies [19, 43, 44], the major-effect QTL

qYPP1.1 explained the highest phenotypic variance of 36.20% and may hold potential for

deployment in chickpea breeding efforts by marker-assisted breeding approach. Despite high

PVE values obtained for yield per plant and the number of primary branches QTLs, only a

marginal additive effect was observed for these traits across different years. This suggested the

absence of any significant difference in trait values between parents. The high phenotypic vari-

ation explained by QTLs for YPP and PB may be due to the sample size of the mapping popu-

lation (N = 161), density of markers used in the linkage map, and QTL mapping software.

Recent QTL mapping studies suggest epistasis to be a crucial genetic component underlying
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complex quantitative traits such as 100-seed weight, plant height, yield and components [19].

Importantly, the use of epistatic effects in marker-assisted selection holds the potential to

achieve a higher genetic gain in breeding programs. In the present study, two-loci and three-

loci epistatic QTL interactions were identified for 100-seed weight across two years. Inclusion

of these epistatic effects in sophisticated biological models will provide an opportunity to opti-

mize long-term selection response and a comprehensive understanding of the genetic base

underlying improvement of 100-seed weight. Moreover, deployment of the identified epistatic

QTLs will enable marker-assisted selection to bear a longer persistence response and may lead

to a considerable increase in genetic gain.

Yield trait is complex and governed by several components such as pod weight, haulm

weight, harvest index, seed weight, pod to flower ratio, etc., and QTLs associated with these

traits are favourable targets for selection. Furthermore, plant height represents a crucial factor

for machine harvest because the losses incurred during machine harvest is more for semi-erect

genotypes (about 20%) and less in tall and erect genotypes (2.6–5.0%) [45]. Given the shortage

in the workforce and to address drudgery among farmers, there is a huge demand for tall and

erect varieties suitable for machine harvesting. A total of 6 QTLs for 100SW were identified

across three years, including two QTLs each on CaLG06 and CaLG07, and one QTL each on

CaLG03 and CaLG04, explaining phenotypic variation ranging from 6.50% to 16.60%. Many

studies have reported QTLs for 100SW in different genetic backgrounds of chickpea in the last

few years [10, 46–48]. For example, the QTLs for 100SW were identified on CaLG01 and

CaLG04 and accounted for 37% of the phenotypic variance across two environments [10].

QTLs for seed weight have also been reported on CaLG02 and CaLG05 in different genetic

backgrounds [9, 43, 48–52]. Many QTLs identified in the present study were found in close

proximity or overlapped earlier reported QTLs. For instance, q100SW4.1 on CaLG04 was

detected in close proximity of two QTLs consistent across years and locations reported earlier

[19, 53], but in a different mapping population. However, higher PVE and LOD scores of the

QTLs identified in the same region for previous studies compared to the present study could

be due to the difference in the RIL population used and genotype × environmental interaction

effects. The other two major-effect QTLs, including q100SW6.1 and q100SW6.2 on CaLG06,

reported in this study are novel QTLs. Similarly, for plant height, three major-effect and two

minor-effect QTLs with PVE ranging from 8.1% to 18.5% were identified. When flanking

markers of the QTLs identified for plant height in the present study were compared with the

markers for plant height QTLs identified in previous studies [7, 19, 40, 54, 55], it was observed

that all the QTLs identified in the present study were novel and did not exhibit any similarity

with previously reported QTLs. Hence, novelty and population-specific characteristics of the

identified QTLs governing plant height was observed in the present study.

Identifying candidate genes for a particular trait is the first important step to understand

the molecular mechanisms underlying the trait of interest. Integration of genomics-based

knowledge with conventional breeding efforts can decipher molecular mechanisms underlying

traits of interest. With the availability of the chickpea genome sequence [1], it is now possible

to identify genes governing traits like seed weight and plant height [26]. Genomic regions har-

boring QTLs for 100SW and PLHT were selected to identify putative candidate genes control-

ling these traits. Based on these premises, a total of 417 genes were found underlying 6 QTLs

detected for the 100SW, and several genes within this set were shown to play a significant role

in seed development in previous studies. For instance, a gene encoding C3HC4-type RING

finger protein (Ca_19553) was shown to control plant growth and fruit development in Nicoti-
ana benthamiana [56]. Genes including serine kinase (Ca_04479) and pentatricopeptide

repeat containing proteins (PPR) (Ca_06269, Ca_04422, Ca_04472) have been shown to play a

major role in seed development in different crops [57–59]. A sugar transporter protein
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encoding gene (Ca_23961) was also displayed to play a key role in the accumulation of seed

reserve and transport in wheat [60], Arabidopsis [61], and fava bean [62]. Furthermore, tubby-

like F-box protein 8 (Ca_04384), transcription factor bHLH-118 (Ca_04526), RING-H2 finger

protein (Ca_19553), and ethylene-responsive factor ERF (Ca_04503) displayed high expres-

sion in seed tissue, thereby predicting their role in regulating seed development in Arabidopsis
[63] and chickpea [46].

We also predicted the possible candidate genes underlying four unique QTLs for PLHT.

The potential gene underlying the qPLHT1.1 genomic region includes a leucine zipper protein

(Ca_21404). Moreover, the most promising genes underlying qPLHT5.1 genomic region on

CaLG05, include NADH dehydrogenase (Ca_20086), and cytochrome-c biogenesis

(Ca_20070, Ca_20073). Integrated genomic approaches elucidated the role of these genes in

regulating plant height. These genes are known to play a key role in the tricarboxylic acid

(TCA) cycle and electron transport chain (ETC) for regulating respiration and mitochondrial

organization in crop plants [64–67]. Another gene family underlying the qPLHT5.1 genomic

region on CaLG05 includes the bZIP transcription factor genes, which regulate plant morphol-

ogy using gibberellins (GAs) and GA homeostasis. It was shown that down-regulation of genes

involved in GA biosynthesis inhibits cell elongation and growth of stem internodes and results

in dwarf phenotype in monocot and dicot crop plants [68]. GA response modulators such as

dwarf 8 (d8), semi-dwarf (Sd1), reduced height (Rht) and gibberellin insensitive (GAI) that reg-

ulate plant height have been identified and validated in several crops, including wheat, maize,

rice and tobacco [68–71]. The interaction and similar expression characteristics of these genes

in a regulatory pathway underlying both mitochondrial respiration and GA biosynthesis are

necessary for maintaining the growth and development of organs, including plant height [72,

73].

Materials and methods

Development of RIL population

A RIL population was developed by crossing ICC 4958 (large seeded and drought tolerant

donor parent) with DCP 92–3 (small seeded and drought susceptible) chickpea genotype at

ICAR-IIPR. The segregants displayed variations in traits such as yield, 100-seed weight and

plant height. This mapping population containing 166 RILs (F8) was developed at ICAR-In-

dian Institute of Pulses Research (IIPR), Kanpur, India. The population was advanced by the

single seed descent (SSD) method to develop recombinant inbred lines.

Phenotypic evaluation of yield, yield components and agronomic traits

A total of 166 RILs were evaluated during the Rabi season for three years (2015–16, 2016–17

and 2017–18) at ICAR-IIPR, Kanpur (26˚ 20’ 22.884’’ N80˚ 17’ 34.584’’ E), India. The RIL pop-

ulation was sown in a plot size of 1.2 m2 (4 m × 3 m), and seed to seed distance of 10 cm was

maintained in a row. The field was prepared for sowing by applying diammonium phosphate

(18% N and 46% P2O5). During the crop season, rainfall ranged from 196 to 230 mm, and sur-

face irrigation was applied during the vegetative stage as and when required. The experiment

was conducted in augmented design. The traits that were evaluated during the experiment

include yield per plant (YPP), 100-seed weight (100SW), pods per plant (PPP), plant height

(PLHT), number of primary branches (PB), and number of secondary branches (SB). Three

plants were randomly selected from each plot, and the phenotypic data for the traits men-

tioned above was recorded. The mean value of the data recorded on three plants was computed

and used for further analysis.
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Genotyping of RILs

Genomic DNA was extracted from parents and RILs using a modified CTAB method as

described previously [74]. In brief, young leaves of 20–25 days old plants were used for DNA

isolation, and DNA quality was tested and quantified using NanoDrop 8000 spectrophotome-

ter (Thermo Scientific, USA). DNA concentration was normalized to a minimum of 40 ng/μL.

Based on the presence of high-quality total genomic DNA, 161 RILs were genotyped using the

Axiom1CicerSNP array containing 50,590 SNPs distributed across eight linkage groups of

chickpea as described earlier [4].

Genetic map construction and QTL analysis

The genotyping data obtained from the Axiom1CicerSNP array was utilised for the construc-

tion of a genetic map. SNPs indicating the presence of contrasting alleles between two parents

were targeted. For the 17,173 polymorphic SNPs thus obtained, a chi-square test was carried

out with a null hypothesis that two alleles at a given locus segregate in a 1:1 ratio for a RIL pop-

ulation. SNP markers that showed substantial deviation from the 1:1 ratio, and high missing

data were not used for further analyses. A high-density genetic map for ICC 4958 × DCP 92–3

RIL population was constructed using JoinMap v4.1 [75]. The logarithm of odds (LOD) score

for the test of linkages between marker pairs was set to 3.0, and the markers that were attrib-

uted to a linkage group at a LOD grouping threshold of 3.0 were utilized. The maximum-likeli-

hood mapping algorithm and Kosambi mapping function were used for constructing the

genetic map. In order to map QTLs associated with yield, yield components and agronomic

traits, the field phenotyping data for 161 RILs collected across three years was used. QTL map-

ping was performed using Windows QTL Cartographer software version 2.5. Here, composite

interval mapping using a genome-wide LOD threshold of 3.0 was performed at p<0.05 signifi-

cance, as described previously [47, 76, 77]. This led to the mapping of main-effect and minor-

effect QTLs associated with the traits evaluated in this mapping population.

Mining of candidate genes

To retrieve candidate genes underlying the QTL intervals of 100-seed weight and plant height,

the QTL flanking markers were selected and used for similarity search against chickpea refer-

ence genome assembly (CaGAv1.0) [1] using blastn (with the parameter “-task blastn-short”).

The flanking markers were then used to identify genes (between left and right markers) using

bedtools (v2.17.0) against the corresponding chickpea genome, and 1,476 genes in the QTL

regions were retrieved. Furthermore, the identified genes were functionally annotated using

blastx (E-value cutoff 1E-05) against the NCBI nr database, followed by GO annotation using

Blast2GO (v5.2).

Statistical analyses

Phenotyping data measured across three years were analysed individually to estimate the best

linear unbiased predictors (BLUPs) for each trait using the REML option in the PROC

MIXED procedure of SAS v9.0 (SAS Institute Inc., NC, USA). The performance of a genotype

for augmented randomized complete block design was modelled as:

Yij ¼ mþ bi þ cj þ ai þ εij

where Yij is the phenotype of the ith genotype in the jth block, μ is the overall mean, ßi is the

block effect which was considered as random, cj is the effect of the check in jth block which was

considered as fixed, αi is the random effect of the ith genotype, and εij is the residual considered
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as a random effect. The phenotyping data collected across three years were subjected to

ANOVA for RCBD using the ‘augmentedRCBD’ package in R [78]. The phenotypic variation

observed for each of the six traits was evaluated using the formulae described previously [79,

80]:

Coefficient of variation %CVð Þ ¼

ffiffiffiffiffiffiffiffiffi
MSg

p

�X
� 100

Phenotypic coefficient of variation PCVð Þ ¼

ffiffiffiffiffi
s2
p

q

�X
� 100

Environmental coefficient of variation ECVð Þ ¼

ffiffiffiffiffi
s2
e

p

�X
� 100

where �X indicates the grand mean for each trait.

A Pearson correlation analysis and principal component analysis was computed using a

custom R script. The frequency distribution of the yield, yield components, and agronomic

traits within the RIL mapping population was analysed and plotted with the ‘UsingR’ package

in R. The analysis of epistatic interactions between the interacting QTLs was conducted using

Genotype Matrix Mapping (GMM) software (version 2.1; http://www.kazusa.or.jp/GMM)

[81]. For estimating the combinations of two-loci and three-loci interactions using the GMM

algorithm, the maximum length of locus combinations was set to 2 and 3, respectively. More-

over, the minimum number of corresponding samples was set to 1, and the default option of

‘automatic’ was used for defining the search range (d). Here, the syntax ‘AA’ refers to ICC

4958 alleles, while the syntax ‘BB’ refers to DCP 92–3 alleles.

Conclusion

In the present study, analysis of the genotyping data generated on ICC 4958 × DCP 92–3 RIL

mapping population using Axiom1CicerSNP genotyping array facilitated the construction of a

high-density genetic linkage map. Analysis of the phenotyping data for six traits evaluated

across three years along with the genotyping data led to the identification of 16 major- and

minor-effect QTLs for five traits, explaining up to 59.7% PVE. Genes underlying the identified

QTL regions for 100SW and PLHT were reported to play a key role in regulating seed attri-

butes, plant height, and plant growth and development. However, further fine-mapping and

experimental validation of these genes is needed to precisely determine the candidate gene(s)

underlying the QTLs identified. Nonetheless, the high-density linkage map, major-effect QTLs

and genomic regions identified in this study hold huge potential to be deployed in chickpea

improvement programs by the marker-assisted breeding approach to develop high yielding

chickpea varieties.
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S3 Table. List of epistatic QTLs (E-QTLs) identified for 100-seed weight measured during

2015–16.

(XLSX)

S4 Table. List of epistatic QTLs (E-QTLs) identified for 100-seed weight measured during

2016–17.

(XLSX)

S5 Table. List of genes underlying the major-effect QTL regions identified for 100-seed

weight.

(XLSX)

S6 Table. List of genes underlying the major-effect QTL regions identified for plant height.

(XLSX)

S1 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated

during 2015–16. Frequency distribution for (a) yield per plant (YPP_2015–16), (b) 100-seed

weight (100SW_2015–16), (c) pods per plant (PPP_2015–16), (d) plant height (PLHT_2015–

16), (e) number of primary branches (PB_2015–16) and (f) number of secondary branches

(SB_2015–16). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the

trait value for DCP 92–3.

(TIF)

S2 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated

during 2016–17. Frequency distribution for (a) yield per plant (YPP_2016–17), (b) 100-seed

weight (100SW_2016–17), (c) pods per plant (PPP_2016–17), (d) plant height (PLHT_2016–

17), (e) number of primary branches (PB_2016–17) and (f) number of secondary branches

(SB_2016–17). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the

trait value for DCP 92–3.

(TIF)

S3 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated

during 2017–18. Frequency distribution for (a) yield per plant (YPP_2017–18), (b) 100-seed

weight (100SW_2017–18), (c) pods per plant (PPP_2017–18), (d) plant height (PLHT_2017–

18), (e) number of primary branches (PB_2017–18) and (f) number of secondary branches

(SB_2017–18). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the

trait value for DCP 92–3.

(TIF)

S4 Fig. Principal component analysis for yield, yield components and agronomic traits

evaluated across three years. Principal component analysis for the years (a) 2015–16, (b)

2016–17 and (c) 2017–18 in the ICC 4958 × DCP 92–3 RIL population. In the PCA biplot, col-

ored dots represent diverse RILs and their position on the plot is relative to specific trait load-

ings corresponding to PC1 and PC2. Also, positively correlated variables are clustered

together, while variables that are negatively related are placed on the opposite side of the ori-

gin. YPP, yield per plant; 100SW, 100-seed weight; PPP, pods per plant; PLHT, plant height;

PB, number of primary branches; SB, number of secondary branches.

(TIF)

S5 Fig. Correlation heat-maps for yield, yield components and agronomic traits. Pearson

correlation analysis heat-maps for six traits evaluated across three years (a) 2015–16, (b) 2016–

17 and (c) 2017–18 in the ICC 4958 × DCP 92–3 RIL population. YPP, yield per plant; 100SW,

100-seed weight; PPP, pods per plant; PLHT, plant height; PB, number of primary branches;
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SB, number of secondary branches.

(TIF)
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