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Abstract

Single-cell RNA sequencing (scRNA-seq) provides an unprecedented view of cellular diver-
sity of biological systems. However, across the thousands of publications and datasets gen-
erated using this technology, we estimate that only a minority (<25%) of studies provide cell-
level metadata information containing identified cell types and related findings of the pub-
lished dataset. Metadata omission hinders reproduction, exploration, validation, and knowl-
edge transfer and is a common problem across journals, data repositories, and publication
dates. We encourage investigators, reviewers, journals, and data repositories to improve
their standards and ensure proper documentation of these valuable datasets.

Single-cell RNA sequencing (scRNA-seq) has empowered discoveries of cell heterogeneity and
state transitions at unprecedented resolution and throughput. New technological develop-
ments have broadened the scope of measurable molecules, extending beyond RNA to measure
cell surface proteins [1,2]. Every single experiment potentially generates thousands to millions
of cell transcriptomes spanning diverse cell types, subtypes, transition phases, or perturbed
states, so increasing effort has been applied to the reanalysis of published datasets. The large
amount of public data provide a rich resource for comparative analysis between and within
cell types, and for building databases of consensus cell types based on molecular profiles [3-5].
Single-cell data analysis has become increasingly user-friendly. However, much of the anal-
ysis time is devoted to tuning unsupervised clustering parameters and assigning clusters to a
particular cell type. This is a crucial step in the analysis to determine whether cell type annota-
tions are congruent with previously characterized cell types and to justify the discovery of
novel ones. Many tools have been developed to simplify cell type annotation by comparing
new single-cell datasets to existing reference single-cell datasets [6], so that known cell types
can be assigned to clusters in an automated fashion based on the similarity of their gene-
expression profiles to cell types in public single-cell datasets [7-10]. Additionally, scRNA-seq
batch-correction methods, such as Seurat’s integration method, fastMNN, and Harmony,
enable fine-grained reanalysis and comparison of published scRNA-seq datasets at the individ-
ual cell level [11-13]. Another popular reanalysis method uses marker genes or gene signatures
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for each cell type to generate gene-set module scores for each cell [14,15]. However, reanalysis
of single-cell datasets using these methods requires proper documentation of the cell types
present in the reference dataset to provide interpretable comparisons between the query data-
sets and reference publication data.

Reporting the minimal data necessary to replicate cell types
identified in single-cell datasets

Replicating the transcriptomes of cell types described in a published scRNA-seq dataset at
minimum requires 2 pieces of data: a count matrix and a table of cell-level metadata (Fig 1A).
The count matrix quantifies RNA abundance in each cell, which most typically takes the form
of a matrix with genes as rows, cell identifiers as columns, and integer counts of observed RNA
molecules. The cell identifiers are generally DNA barcodes indicating single droplets (10x
Genomics or DropSeq) or sample identifiers indicating a well or chamber with a single cell
captured in well-based methods (Smart-Seq2). The count matrix is commonly generated by
software pipelines such as Cellranger from 10X Genomics, Kallisto-Bustools, or Alevin [16-
18].

The second piece of data, a metadata table, contains cell-level annotations describing the
inferred cell type and other descriptive information for each cell identifier present in the count
matrix. Cell-level metadata are defined based on information learned from the analysis and
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Fig 1. Processed data files necessary for replicating single-cell studies. (A) Example of a gene-by-cell count matrix containing single-cell measurements
and a cell-level metadata table containing annotations inferred from the analysis of the single-cell dataset. (B) Workflow of analysis steps for regenerating
cell type or gene-expression signatures from public datasets for comparative analysis of single-cell datasets. * indicates a step requiring an analyst to make
subjective decisions; ** indicates a step that often includes a nondeterministic algorithm.

https://doi.org/10.1371/journal.pbio.3001077.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001077 May 4, 2021 2/10


https://doi.org/10.1371/journal.pbio.3001077.g001
https://doi.org/10.1371/journal.pbio.3001077

PLOS BIOLOGY

Metadata enhances scRNA-seq reproducibility

depends on the specific analyses conducted by the analyst, which makes these annotations
unlikely to be replicated by an automated software pipeline. It also contrasts with sample-level
metadata (e.g., sequence library type, cell isolation method, sequencing instrument), which
describe the experimental procedures used to generate the data. Data repositories, such as
GEO and ArrayExpress, were built at a time when one sequencing library or microarray chip
generally only contained data for one biological sample. Each sample is the subject of analysis
and is described by sample-level metadata to identify the biological sample. This annotation
framework can provide adequate documentation for single-cell studies using low-throughput
well-based methods such as Smart-Seq2, where each cell is considered a single sample and pro-
cessed as an independent sequencing library. However, single-cell studies using popular drop-
let-based platforms such as the 10x Genomics chromium or Drop-Seq now generate
thousands of cells per biological sample and sequencing library. Cell-level annotations there-
fore do not conform to the sample-level documentation framework, and the depositor must
provide this information as an additional processed file.

Cell-level annotations are generated during analysis by software suites, such as Seurat, sca-
ter, or Scanpy, and can include cluster assignments from unsupervised clustering algorithms,
cell type assignments inferred from automated methods or manual inspection of gene expres-
sion signatures by experts in the field, and additional cell-level attributes such as inferred cell
cycle stage [10,19,20]. The cluster or cell-type assignments are a critical piece of information as
these assignments identify the exact cells that are compared in differential gene expression
tests, allowing users to replicate marker genes or gene expression signatures described in a
study. The coordinates of dimensionality reductions (PCA, UMAP, tSNE) can also be included
as cell-level metadata. These coordinates allow users to replicate dimension reduction projec-
tions, which are frequently the most common visualization in scRNA-seq publications but are
also not guaranteed to be reproduced upon reanalysis.

In the absence of per-cell metadata, the effort, time, and field-specific expertise required to
compare cell subpopulations described in a publication to new single-cell datasets is dramati-
cally increased. Instead of easily leveraging peer-reviewed expertise contained in the cell-level
metadata, researchers are forced to rerun pipelines, which can take several hours, and scour
the original text for a handful of marker genes described to assign cell type/states subjectively.

Even with careful reanalysis, several factors can limit the original study’s reproducibility if data
have to pass through the entire analysis pipeline (Fig 1B). First, the exact parameters used for the
data processing and analysis are rarely fully reported in a manuscript. Subtle differences in algo-
rithm or parameter choices can lead to different downstream results. For example, during quality
control, the algorithm selected for distinguishing cell-containing from empty droplets influences
which cell populations are retained in the downstream analysis and can lead to excluding cells
with low RNA content [21]. Second, multiple steps in the analysis rely on nondeterministic algo-
rithms, including the results from clustering and dimensionality reduction. The output of these
algorithms cannot be guaranteed to be reproducible across operating systems and software ver-
sions. Finally, rapid development in the scRNA-seq software field leads to inevitable deprecation
of outdated functionalities and possibly silent yet impactful alterations to the underlying algo-
rithms. Due to these potential pitfalls, even inclusion of original analysis code, while also valuable
and should be encouraged, is a poor replacement for generated cell-level metadata.

Public single-cell RNA-seq datasets frequently omit cell-level
metadata necessary for reanalysis

In an effort to curate reference atlases of diverse cell types, we attempted to identify cell-by-
gene count matrices and associated cell-level metadata from single-cell studies in public data
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repositories. We found that many studies failed to provide cell-level annotations for the depos-
ited data. To determine how frequently studies contain cell-level annotations, we queried the
Gene Expression Omnibus (GEO), which is the most commonly used data repository for sin-
gle-cell studies (used by 78.1% of studies with public data in a curated database of single-cell
studies) [22]. To assess the extent of missing cell-level annotations, we crafted a custom query
string to recover single-cell experiments because there is no specific annotation that can be
used to identify single-cell datasets in GEO. A query string of "expression profiling by high
throughput sequencing” AND ("single nuclei” OR "single cell” OR "scRNAseq” OR "scRNA-seq"”
OR "snRNAseq" OR "snRNA-seq") coupled with further keyword filtering using the GEOquery
R package returned 3,902 GEO entries (after merging GEO SuperSeries). These included
97.4% of the GEO studies previously manually curated in Svensson and colleagues, supporting
the performance of our query [22]. We then programmatically identified supplemental files
with names containing common terminology associated with cell-level metadata reporting,
“meta,” “annot,” “type,” “clustering,” and “colData,” as well as R and python-readable data for-
mats "rds,” “rda,” “rdata,” “loom,” and “h5ad.” Only 13.5% of GEO entries contain cell-level
metadata (19.7% for entries within the Svensson and colleagues—curated database).

To confirm the accuracy of our classification approach, we performed manual inspection of
173 randomly selected studies that we identified as single-cell datasets through querying GEO.
We found that 9.8% of studies that we classified as single-cell datasets were instead other
sequencing modalities (e.g., bulk RNA-seq), highlighting the importance of having standard-
ized metadata terms to identify single-cell sequencing datasets. Of the remaining true single-
cell studies, 6.4% (10/156) contained metadata files that were missed by our automated classifi-
cation, while 88.9% (24/27) of called-positive cases truly contained cell-level metadata (and 22/
27 contained actual cell type information). Based on this analysis, we estimate that at most
25% of studies deposited in GEO contain cell-level annotations. This number is comparable to
analyses we conducted on ArrayExpress records, where we estimate that 15% of scRNA-seq
datasets generated from the 10x Genomics platform deposited cell-level annotations. GEO rec-
ords do not have single cell-specific library preparation metadata terms (e.g., Smart-Seq2,
Drop-Seq, Fluidigm-C1), which limited our ability to programmatically identify studies that
deposited each cell as an independent record. These studies may have included relevant cell-
level annotations; however, the absence of a standardized metadata term (e.g., cell-type) pre-
vented systematic examination of the annotations in these records.

Further exploring the GEO entries with publication information linked through GEO and
PubMed, we found that the percentage of metadata-containing entries have slowly improved
with time, as pipeline standards matured and awareness of this issue has grown. However,
even for studies published in 2020, the fraction with metadata remains at 20.6% (Fig 2A). In
addition, the issue is widespread through journals of every family and tier (Fig 2B). While
enforcement of data deposition through journals has been highly effective at improving data
accessibility, once again the lack of specific guidelines towards scRNA-seq supporting infor-
mation hurts the overall goal.

Next, to corroborate with our own data analysis experience, we explored whether publica-
tions with annotated per-cell metadata potentially lead to more citations by facilitating mini-
mal-effort comparison of reported data and cell type gene-expression signatures to new
experiments (Fig 2C). Without rigorous statistical testing, due to the limited number of meta-
data-containing studies and the numerous confounding factors affecting citations, we note
that we observe a general trend encouraging the habit of presenting cell metadata. We also
examined datasets deposited by authors on publications describing scRNA-seq informatics
tools. Tools developed by these authors generally require cell-level metadata, and therefore we
hypothesized that associated publications would be more likely to include cell-level metadata.
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Fig 2. The majority of single-cell sequencing datasets archived on GEO do not have cell-level annotations. (A) Number of single-cell datasets in GEO annotated
with the proportion that contain cell-level metadata per year, either as plain text tables or binary objects. (B) Fraction of studies published in each group of journals
compared to the total number of studies published by each group. (C) Comparison of the number of citations for studies containing or lacking cell-level metadata in
2016, 2017, or 2018. (D) Fraction of studies, since 2017, containing cell-level annotations published by authors with a previous publication of a single cell-related
software tool. The numerical data underlying plots may be found at https://github.com/rnabioco/someta/tree/master/inst/manuscript and http://doi.org/10.5281/

zen0d0.4695069.

https://doi.org/10.1371/journal.pbio.3001077.g002

We identified these authors by querying software curated by the scRNA-tools database [23]
and discovered that GEO entries with contribution from these authors tend to have better, yet
still limited, cell metadata deposition (Fig 2D).

Suggestions for improving documentation of scRNA-seq datasets

We believe that the lack of cell-level annotations severely limits the reanalysis of public datasets
and that addressing this problem will require a community-wide effort, from authors to jour-
nals and data repositories (Box 1). Primary analysts, who are responsible for conducting the
single-cell analysis, are aware of the importance of cell-level annotations for single-cell
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Box 1. Recommendations for depositing scRNA-seq datasets
For investigators and reviewers

1. Require that analysts provide a metadata table containing cell-level metadata and a
count matrix with RNA abundance measurements. The cell-level metadata should
contain the cell identifiers present in the matrix and provide the inferred cell-type
or other cell-level annotations described in the associated publication. A binary
object saved from the analysis framework could also be supplied (e.g.,.rds for R or.
h5ad for Python).

2. When reviewing single-cell sequencing studies, ensure that the authors have
deposited the proper cell-level metadata alongside the raw data into a suitable
repository (e.g., GEO, ArrayExpress).

3. Encourage previous depositors of single-cell sequencing data to update their rec-
ords with cell-level metadata, if it was not included in the original submission.

For journals

1. Include language about requirements/recommendations for external single-cell
datasets to contain proper cell-level metadata.

2. Ask reviewers to review material deposited to external data repositories.
For data repositories

1. Introduce a standardized annotation specifying that the dataset contains single-
cell data. For GEO, commonly used single-cell sequencing methods could be
added to the library strategy annotation (e.g., SCRNA-seq, snRNA-seq, CITE-seq,
etc.).

2. Updating submission guidelines and examples to require metadata with cell-level
annotations for single-cell dataset submissions. For GEO, this would be accom-
plished by updating the “Processed data files” requirements to outline required
data types for single-cell sequencing submissions (Fig 1A).

“For single-cell sequencing data, in addition to standard count matrices (genes-by-cells),
we expect users to deposit metadata with cell-level annotations generated during the course
of analysis.”

analysis, as they are necessary to generate many of the figures presented in manuscripts. When
preparing a dataset for deposition, they should consider whether the processed data deposited
are sufficient for replicating the gene expression profiles of the cell types described in their
studies. Common scRNA-seq analysis data structures all incorporate cell-level annotations in a
table-like format, either as an R data.frame or a pandas DataFrame in Python (Fig 1A) which
are easily exported as comma or tab-separated text files along with the count matrix. An exam-
ple of a well-documented dataset, GEO accession GSE137710, contains a metadata file for each
sample (e.g., GSE137710_human_melanoma_cell_metadata_9315x14.tsv.gz) with cell-level
annotations identifying the cell type (e.g., “b_cell,” “melanoma,” “myeloid,” “T/NK”) [24].
Each cell barcode is annotated with the cell type described in the study, which enables very
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rapid (<5 minutes) downstream analyses to compare expression patterns and markers for
these newly described cell types to other single-cell datasets. Another example, ArrayExpress
record E-MTAB-6701, which characterized cells at the fetal maternal interface, includes 2 pro-
cessed files with descriptive names (raw_data_10x.txt and meta_10x.txt), identifying the count
matrix and cell-level metadata, respectively [25]. Because there is no standard file format or
naming convention for these data, using common language to describe these files will greatly
aid in their discovery via manual searches or programmatic API calls. Lastly, analysts should
request cell-level metadata from lead authors when it is not available in public repositories and
encourage them to update their records with these data.

A growing number of researchers are actively promoting reproducibility and data explora-
tion by presenting interactive data browsers or hosting code and metadata files on open-access
repositories such as GitHub. These interactive resources can enable researchers without exten-
sive programming experience to explore single-cell datasets. However, not all popular cell
browser solutions offer metadata export, and external datasets not linked and documented in
standardized repositories such GEO or ArrayExpress are difficult to navigate. Additionally,
public data browsers may require periodic maintenance to ensure their availability and there-
fore are at risk of becoming inaccessible.

Peer review can also help to improve documentation of single-cell datasets. Reviewers of
single-cell studies should request access to the GEO or ArrayExpress records and examine the
deposited processed data files. Cell-level metadata tables are generally small simple text files
that can be rapidly examined to see if they contain cell-level annotations describing the cell
types in the study. Journals can also assist in improving documentation standards by encour-
aging reviewers to examine deposited data and by providing language specific to single-cell
studies to recommend inclusion of cell-level metadata in datasets described in a publication.
In cases where annotation changes occurred through the revision process, journals could con-
sider sending reminders to update deposition records with the latest cell-level metadata at the
time of manuscript acceptance.

Data repositories could improve standards by providing guidelines for appropriate docu-
mentation and highlighting example datasets. Currently, the only scRNA-seq-specific require-
ment noted in the current GEO guideline is for raw data deposition (https://www.ncbi.nlm.
nih.gov/geo/info/seq.html). The requirements for supplemental processed data files are vague
and do not reference commonly generated single-cell data files. ArrayExpress recently adopted
new standards for single-cell dataset deposition, which provide documentation on how to
annotate the “inferred cell type” identified in the experiment. However, these guidelines are
only defined for well-based methods, where each cell is considered a single sample. For drop-
let-based methods, there is no clear guidance on the content or file format to include to anno-
tate the cell types inferred from the experiment. We believe that the absence of single cell-
specific guidelines, example datasets, or reccommendations of file formats for processed data
has led to many studies only depositing the cell-by-gene count matrix to satisfy the minimum
processed data requirements for data submissions.

Moving forward

Single-cell sequencing datasets have rapidly grown in number and complexity, with thousands
of datasets ranging up to millions of cells, providing a wealth of new information about cell
types and cell states. We hope that improved standards for public data deposition will encour-
age large-scale archiving and integration efforts for single-cell datasets akin to the efforts of
databases such as Recount2 generated for bulk sequencing methods [26]. Efforts to produce
single-cell atlases from public datasets will continue to require time-consuming curation in a
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study-by-study manner until the deposition of machine-readable standardized annotation files
becomes common practice in the community. In this pursuit, cell-level annotation reporting is
merely the first necessary step of many, including enforced naming conventions of files, file
formats, platform names, and controlled vocabulary for cell types [27], all of which will
improve data accessibility, reproducibility, and reuse of published results.

We do not intend to provide the single-cell sequencing equivalent of microarray standards
(e.g., MIAME, MINSEQE) [28], which has been recently explored in detail [29] but aim to
highlight this troubling issue, to encourage adoption of reproducible data deposition practices
[30], and to promote discussion of best practices within the community (Box 1). Large-scale
efforts to curate cell atlases are currently underway in the Human Cell Atlas, Allen Brain insti-
tute, and Fly Cell Atlas, and we hope that the standards implemented in these consortia can
contribute to the development of best practices for documenting single-cell datasets in the
wider community. A guided and standardized effort will facilitate scientific transparency and
communication and require minimal additional work on the part of authors.

Materials and methods

Analysis code is available on GitHub (https://github.com/rnabioco/someta). The repository
automatically monitors missing cell metadata and periodically generates updated reports.
With each completed automated analysis, the latest version of combined data are available on
GitHub as an RDS object and at https://raysinensis.shinyapps.io/clustifyr-web-app/?tab=
someta for interactive explorations. The numerical data underlying plots and quantification
mentioned in text, concerning scRNA-seq dataset identification overlap with Svensson and
colleagues, manual spot check results, and arrayexpress metadata analysis, may be found at
https://github.com/rnabioco/someta/tree/master/inst/manuscript and http://doi.org/10.5281/
zen0do.4695069.

GEO query and parsing

GEO snapshot of December 31, 2020 was obtained via NCBI E-utility calls using a query string
of "expression profiling by high throughput sequencing” AND ("single nuclei” OR "single cell” OR
"scRNAseq" OR "scRNA-seq” OR "snRNAseq” OR "snRNA-seq"). Series returned by this query
were further analyzed with the GEOquery R package, including further filtering of all descrip-
tive fields by keywords listed above, merging subseries from superseries into a single series
where applicable, and extraction of supplemental files names [31].

Programmatic identification of cell metadata files

To determine which GEO entries contain cell annotation metadata, the following assumptions
were made: (1) a stand-alone metadata file should contain “meta,” “annot,” “type,” “
ing,” or “coldata” (case-insensitive) in its file name; (2) metadata can also be housed in R and

» «

cluster-

python-readable data formats with the extensions of "rds,” “rda,” “rdata,” “loom,” or “h5ad.”
These target strings were determined from common terminology from analysis suites and
experience in navigating scRNA-seq records and corroborated by multiple researchers
involved in examining GEO records. In manual inspections, the most common inaccuracies
with these assumptions are: annotation files containing gene annotations rather than cell-level
metadata, data objects containing other data rather than Seurat/SingleCellExperiment/Scanpy
objects, and well-based samples using sample names or sample metadata fields to indicate cell
type annotation. These inaccuracies are difficult to identify with automated code and highlight
the need for better standardization in the field.
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Additional publication and journal-level analyses

For GEO entries providing linked PubMed IDs, additional publication information was
retrieved using R packages easyPubMed and rcrossref [32,33]. Cases where the journal name
from PubMed is incompatible with rcrossref records were manually fixed before downstream
analysis in R. For analysis of scRNA-seq bioinformatic tool authors, scRNA-tools database and
R package rbiorxiv were used [23,34].

ArrayExpress query

Initial query of datasets was conducted through ArrayExpress R package, using the recom-
mended term “RNA-seq of coding RNA from single cells.” We extracted the “library construc-
tion” annotation field and focused on datasets generated with the 10x Genomics platforms, as
these are cases where sample metadata cannot provide per-cell annotations. Associated file
names were extracted with custom code from IDF and SDREF files of each entry, and then sub-
jected to the programmatic identification of cell metadata files process used for GEO query as
above.
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