Skip to main content
. 2021 May 7;2021:6636907. doi: 10.1155/2021/6636907

Table 4.

Bivariate analysis for computer vision syndrome among bank workers in Addis Ababa, Ethiopia, 2018, n = 359.

Variables Categories Computer vision syndrome COR (95% CI) P value
Yes (%) No (%)
Age ≤29 171 (65.3) 79 (88.8) 1
30–39 72 (27.5) 8 (9.0) 4.16 (1.9–9.04) 0.000 (<0.001)
≥40 19 (7.3) 2 (2.2) 4.39 (0.99–19.38) 0.05

Sex Female 92 (35.1) 43 (48.3) 1
Male 170 (64.9) 46 (51.7) 1.73 (1.06–2.8) 0.028

Work experience <5 years 138 (52.7) 86 (96.6) 1
≥5 years 124 (47.3) 3 (3.4) 25.7 (8–84) 0.000 (<0.001)

Job title Managerial 54 (20.6) 9 (10.1) 1
Others 208 (79.4) 80 (89.9) 2.31 (1.1–4.89) 0.029

Awareness No 122 (46.6) 42 (47.2) 1
Yes 140 (53.4) 47 (52.8) 1.025 (0.63–1.67) 0.919

Use of electronics out of work No 15 (5.7) 11 (12.4) 1
Yes 247 (94.3) 78 (87.6) 2.322 (1.024–5.265) 0.044

Habit of taking break No 183 (69.8) 50 (56.2) 1
Yes 79 (30.2) 39 (43.8) 0.55 (0.337–0.908) 0.019

Using eye glass No 223 (85.1) 88 (98.9) 1
Yes 39 (14.9) 1 (1.1) 15.4 (2–114) 0.007

Preexisting disease No 244 (93.5) 78 (87.6) 1
Yes 17 (6.5) 11 (12.4) 0.494 (0.222–1.1) 0.084

Habit of brightness and contrast adjustment No 120 (45.8) 42 (47.2) 1
Yes 142 (54.2) 47 (52.8) 1.057 (0.653–1.712) 0.820

Variables which were significant in the first model, 1: reference, COR: crude odds ratio, CI: confidence interval.