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Deep learning for diagnosis of acute promyelocytic leukemia
via recognition of genomically imprinted morphologic features
John-William Sidhom 1,2,3, Ingharan J. Siddarthan1,2, Bo-Shiun Lai1,2, Adam Luo2, Bryan C. Hambley 2, Jennifer Bynum4,
Amy S. Duffield4,6, Michael B. Streiff5, Alison R. Moliterno 5, Philip Imus2, Christian B. Gocke2, Lukasz P. Gondek 2, Amy E. DeZern2,
Alexander S. Baras 1,2,4, Thomas Kickler4, Mark J. Levis2 and Eugene Shenderov 1,2✉

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), classified by a translocation between
chromosomes 15 and 17 [t(15;17)], that is considered a true oncologic emergency though appropriate therapy is considered
curative. Therapy is often initiated on clinical suspicion, informed by both clinical presentation as well as direct visualization of the
peripheral smear. We hypothesized that genomic imprinting of morphologic features learned by deep learning pattern recognition
would have greater discriminatory power and consistency compared to humans, thereby facilitating identification of t(15;17)
positive APL. By applying both cell-level and patient-level classification linked to t(15;17) PML/RARA ground-truth, we demonstrate
that deep learning is capable of distinguishing APL in both discovery and prospective independent cohort of patients. Furthermore,
we extract learned information from the trained network to identify previously undescribed morphological features of APL. The
deep learning method we describe herein potentially allows a rapid, explainable, and accurate physician-aid for diagnosing APL at
the time of presentation in any resource-poor or -rich medical setting given the universally available peripheral smear.
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INTRODUCTION
APL is a subtype of myeloid leukemia that is distinguished
clinically by its rapidly progressive and fatal course due to its
propensity to cause intracranial bleeding due to fibrinolysis and
thrombocytopenia1–4. The effective and life-saving treatment of
choice for APL is not a chemotherapeutic agent as for other
leukemias, but rather all-trans retinoic acid (ATRA) which is an
agent that differentiates malignant clonally expanded promyelo-
cytes resulting from the t(15;17) translocation5–9. As a true
oncologic emergency, obtaining a rapid and accurate diagnosis
is of utmost importance in the clinical management of these
patients3,10. However, definitive widely utilized genetic testing
(cytogenetics, fluorescence in situ hybridization (FISH) for t(15;17)
or polymerase chain reaction (PCR) for PML/RARA)11, can take days
to confirm a diagnosis as workflows relating to this rare disease,
vary by clinical center, and dictate that tests are often run in
batches weekly or sent out externally. Delays of even 48 h to
treatment increase morbidity and mortality. Newer confirmatory
tests such as reverse transcription-quenching loop-mediated
isothermal amplification12 and anti-promyelocytic leukemia (anti-
PML) antibody13,14 have been described, but are not widely used,
validated, or incorporated into clinical workflows especially
outside of developed countries and tertiary-care centers. There-
fore, early treatment decisions are based on clinical suspicion at
the time of presentation while additional workup is being
pursued.
In an effort to improve diagnostic reasoning, clinicians have

utilized the peripheral smear to identify morphological
features associated with promyelocytes associated with APL
including presence of coarse granules, Auer rods, bilobed

nuclei, as well as a low percentage of blasts in the peripheral
blood with monocytoid features15. Unfortunately, a definitive
diagnosis of APL by inspection of the smear can be challenging
even for the most experienced hematopathologists. This reality
is further compounded by the fact that APL is a rare leukemia
with an annual incidence of only 600–800 cases in the United
States making prompt recognition especially difficult for
providers with limited experience with leukemia16. Definitive
diagnosis of APL requires molecular confirmation of PML-RARA
translocation, but these techniques require time and are not
available in many countries with limited healthcare resources.
In contrast, the peripheral smear is universally available, and
easily and rapidly obtained in all healthcare settings. To this
end, we hypothesized that deep learning could be used to
differentiate and diagnose APL from other subtypes of myeloid
leukemias solely from cellular morphology resulting from
genomic imprinting that could be assessed by the power of
deep learning pattern recognition17,18. In this study, we
present a deep learning approach for both descriptive and
predictive purposes to learn the morphological features of APL
linked to molecular translocation status and leverage this
information to rapidly distinguish APL from other forms of
myeloid leukemia.

RESULTS
In order to train and test our models, we collected a total of 106
patients that were seen at The Johns Hopkins Hospital from 2010
to 2020, divided into a discovery and independent prospective
validation cohort. Patients were required to have both a peripheral
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smear and molecular testing by both PCR and/or FISH, collected
from the first peripheral smear obtained upon admission, and
retrieved from the Johns Hopkins CellaVision database, for the
purpose of training and testing the deep learning models
(Supplementary Fig. 1 and Supplementary Table 1).

Single-cell deep learning predicts and reveals morphological
features of APL
We first trained a deep learning model that took input Wright
stain images from CellaVision, already incorporated into clinical
practice workflows at the Johns Hopkins Cancer Center, and
utilized convolutional layers to extract morphological features of
the cell for classification (Fig. 1a). We hypothesized that the
morphological differences between APL and non-APL leukemias
should be present in the immature myeloid compartment and
therefore, first applied this model to distinguish APL/non-APL
from solely immature myeloid cells (blasts, promonocytes,
promyelocytes, myelocytes, metameylocytes). This model had a
ROC AUC of 0.822 in the discovery cohort and 0.739 in the
validation cohort (Fig. 1b i,iv). Notably, promyelocytes were not
the only cell type to carry the predictive signature (Fig. 1b ii,v). To
examine the sample classification performance, we took the
average per-cell prediction over all cells in an individual as
the probability of that individual having APL (Fig. 1b iii,vi). While

the performance was high in the discovery cohort, the model did
not generalize as well to the validation cohort, even though the
model outperformed the proportion of promyelocytes (as a
diagnostic biomarker) in both the discovery and validation
cohorts. Of note, the proportion of promyelocytes was used as a
comparator biomarker for another measurement that could be
obtained quickly at the time of admission from the CellaVision
algorithm and would be expected to display a monotonic
relationship with the probability of a patient having APL given
an arrest in cellular differentiation should result in an accumula-
tion of promyelocytes in APL.
In order to reduce our reliance on the CellaVision cell type

classifier, we attempted to train a per-cell classifier on all cells
regardless of their CellaVision classification (Fig. 1b vii–x). This
resulted in improved performance on sample-level classification in
the validation cohort when using all cell types even though a
model trained on all cells did not generalize as well onto the
validation cohort at the per-cell level (Fig. 1b ix,x). When looking at
the per-cell predictions by CellaVision cell type, we noted that
other cell types carried predictive signatures of APL including
platelets (Fig. 1b xi,xii). This finding, while surprising, is consistent
with the known propensity of APL to cause bleeding, thrombosis,
and DIC. While there are morphological differences in the myeloid
compartment between APL and AML, other cell types also provide
information useful for distinguishing APL from non-APL leukemia.

Fig. 1 Cell classification from peripheral smears. a A deep learning architecture was designed to train cell-level classification of white blood
cells taken from peripheral smears. The proposed model takes in each segmented cell from CellaVision and applies four convolutional layers
before conducting a global max-pooling operation followed by three fully connected layers and one classification layer to classify each cell as
being non-APL/APL. b The proposed model was trained where CellaVision data was available on a discovery cohort of 82 patients and tested
on an independent prospective validation cohort of 24 patients for which performance metrics are shown. Initially, the model was trained
only on immature myeloid cells, here denoted as Blasts, and performance was assessed both at the cell (i,iv) and sample/patient (iii,vi) level for
the discovery and validation cohort. Performance was assessed in the discovery cohort in Monte–Carlo (MC) cross-validation and was assessed
in the validation cohort by applying the 100 MC models trained in discovery onto the validation cohort in ensemble. Probability of a cell being
APL is shown per CellaVision cell type (ii,v). Cell-level predictions were averaged over a given sample to arrive at a per-sample probability of
being APL. Sample-level performance was benchmarked against the proportion of promyelocytes within a sample (iii,vi,viii,x). In addition, the
model was trained on all cell types from CellaVision, here denoted as All Cells, and performance was assessed both at the cell (vii,ix) and
sample/patient (viii,x) level for the discovery and validation cohort. Probability of being APL is shown for all CellaVision cell types in the
discovery (xi) and validation (xii) cohorts. c After the trained model was applied to the blasts of the validation cohort to assess performance,
per-cell predictions were collected and most predictive cells for non-APL/APL were collected and visualized (top row). In addition, integrated
gradients were applied to localize the discriminative pixels to provide further information about how the model classified a given cell
(bottom row).
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Finally, we wanted to understand the morphological differences
the neural network had learned in the immature myeloid
compartment that distinguished APL from non-APL leukemia. To
accomplish this, we used an established method of integrated
gradients to identify the distinguishing pixels of the most
predictive APL vs non-APL cells (Fig. 1c)19. We noted that the AI
focused on cytoplasmic pixels in non-APL leukemias and nuclear
pixels in APL, possibly consistent with the appearance of the
chromatin on Wright staining in the non-APL leukemias being
more dispersed and focused at the edge of the cell whereas, in
APL, chromatin was more condensed and focused at the center of
the cell. These morphological features, taught to us by the model,
have not been previously reported in the literature as being useful
for distinguishing APL from non-APL.

Multiple-instance deep learning improves predictive
performance
While training a cell classifier provided good performance in the
discovery cohort, there was a significant decrease in performance
in the validation cohort (discovery AUC: 0.890 vs validation AUC:
0.743). We hypothesized that since the label of APL or non-APL
applies to the patient, with a known t(15;17) translocation status,
and not to any individual cell, applying a multiple-instance
learning (MIL) deep learning model would be better suited to
solve this problem (Fig. 2a). Our model applies the same
convolutional and fully connected layers at the per-cell level as
the single-cell classifier and performs a cell-level assignment
within the model. However, after this assignment, the average
assignment over all the cells is calculated within the network and
used to predict whether the collection of cells comes from a
patient with APL or non-APL. When comparing the performance of
this MIL model with the single-cell classifier, we noted improved
performance and better generalization in the validation cohort
when using all the cells (Fig. 2b vi,x). Furthermore, when
comparing this performance to 10 practicing academic
leukemia-treating hematologists, oncologists, and hematopathol-
ogists on the validation cohort, the deep learning model
demonstrated equivalent or better classification performance
(Fig. 2b x).

Visualization of learned latent space reveals differentiation
signature of APL
To identify what the model had learned, we took the outputs of
the MIL model for the last four layers of the network and used
these outputs on a per-cell basis within the validation cohort to
construct a feature space to visualize these cells in UMAP
representation as described in a similar method by Esteva
et al.20 as well as color them by their probability of being from
an APL patient. When visualizing this UMAP representation,
stratified by non-APL vs APL (Fig. 3a i,ii), we noted multiple areas
of the feature space that were specific for discriminating between
non-APL and APL. Furthermore, when analyzed by cell type, we
noted that there were differences in the proportion of other cell
types that may not have been previously appreciated (i.e.,
erythroblasts in non-APL, segmented neutrophils in APL) (Fig.
3b). And when looking at the area of the UMAP that corresponded
to the immature myeloid compartment, the cellular distribution
within this space was consistent with the known biology of
finding clonally arrested promyelocytes within APL and more
differentiated monocytoid cells within non-APL (Fig. 3c), suggest-
ing that the model had learned the relevant and known biology
that distinguishes APL from non-APL.

DISCUSSION
With future development and prospective validation, the
algorithm described herein, already trained on molecular linked

imaging data, could be envisioned to serve as a crucial
physician-support tool in conjunction with CellaVision or as a
cloud application on a smartphone mounted to a microscope for
reading peripheral smears in a resource-poor settings that may
not have readily accessible molecular diagnostics. Recent work
in myelodysplastic syndromes (MDS) showed that using classical
morphologic classification criteria, possible pathognomonic
relationships between the MDS phenotype and genotype could
be identified21. In contrast, while this prior work used
pathologists to identify the various morphological features
associated with the genomic truth, we describe an algorithm
using deep learning to learn the morphological features that are
predictive of the genotype in acute promyelocytic leukemia.
The current work is limited by lack of external validation using

images from outside hospitals (with different scanners) and
prospective validation of real-life efficacy in increasing diagnostic
performance of clinicians (comparing clinicians plus AI vs.
clinicians alone), which will be the focus of future work. Notably,
the largest limitation of the work presented is the number of
patients we were able to collect data from over the course of this
study, explained largely by the low prevalence of APL. Therefore,
the findings and conclusion presented within this work should be
taken together with this knowledge. In order to best counter this
limitation, we made sure to divide our training/validation cohort in
time to provide for a prospective validation cohort. However,
given the ability of our model to generalize across time within our
institution, we hypothesize that as the currently proposed model
is able to be trained on data from different institutions, the model
would become more robust and generalize more broadly across a
variety of clinical sites.
Another limitation of the study was around the number of

cells per sample being collected at our institution. For the
purpose of our study, only one smear was collected per patient
with a maximum of 200 cells per smear being collected via
CellaVision. When looking at the performance of our model as a
function of the number of cells per patient (Supplementary Fig.
2), we noted that our model was particularly under performing
with samples with a low number of cells. Therefore, while a
limitation in this current study, a change in future protocol to
collect multiple smears per patient would be a low-cost and
easily implemented change to improve the robustness of
the model.
While the predictive power of the models illustrated within

this work is limited by the number of patients within the study,
by exploring the interpretability of the learned models, we
were able to assess whether the information learned was
consistent with already known information about APL. In
particular, our models highlighted two key findings including
(1) the number of promyelocytes within a given patient was
predictive of APL as was appreciated by both using an
integrated gradients method to visualize the discriminative
features of the most predictive cells as well as visualizing all
the cells within a UMAP representation and (2) the presence of
other cell types that are associated with known pathology in
APL (such as thrombocytes in DIC). The ability to interpret the
model and correlate these findings with clinical experience not
only provides further confidence in its robustness but provides
a method by which a clinician using the tool can understand
why the model produced a given prediction, further providing
value as a physician-aid in the diagnostic process.
Our work presents deep learning models capable of rapid and

accurate diagnosis of APL from universally available peripheral
smears. In addition, explainable artificial intelligence is provided
for biological insights to facilitate clinical management and reveal
morphological concepts previously unappreciated in APL. The
deep learning framework we have delineated is applicable to any
diagnostic pipeline that can leverage the universally available
peripheral blood smear. In the future, we envision a robustly
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Fig. 2 Sample classification via multiple-instance learning approach. a A deep learning architecture was designed to train sample-level
classification of collections of white blood cells from peripheral smears. The proposed model takes a collection of cells from a given sample/
individual and applies the same convolutional and fully connected layers described in Fig. 1 to arrive at per-cell predictions for APL/AML. The
per-cell predictions are then averaged over all the cells to arrive at a sample-level prediction. b The proposed model was trained where
CellaVision data was available on a discovery cohort of 82 patients and tested on an independent prospective validation cohort of 24 patients
for which performance metrics are shown. Initially, the model was trained only on immature myeloid cells, here denoted as Blasts, and
performance was assessed both at the cell (i,iv) and sample/patient (iii,vi) level for the discovery and validation cohort where cell-level
predictions come from cell assignment layer within network and sample/patient predictions come from aggregation layer within the network.
Performance was assessed in the discovery cohort in Monte–Carlo (MC) cross-validation and was assessed in the validation cohort by applying
the 100 MC models trained in discovery onto the validation cohort in ensemble. Probability of a cell being APL is shown per CellaVision cell
type (ii,v). Sample-level performance from the MIL model was benchmarked against the proportion of promyelocytes within a sample (iii,vi,viii,
x). In addition, the model was trained on all cell types from CellaVision, here denoted as All Cells, and performance was assessed both at the
cell (vii,ix) and sample/patient (viii,x) level for the discovery and validation cohort. CellaVision cells from patients in the validation cohort were
provided to 10 clinicians to assess clinician diagnostic specificity/sensitivity against deep learning model (x) (+ denotes an individual clinician.
* denotes two individuals with the same performance). Probability of being APL is shown for all CellaVision cell types in the discovery (xi) and
validation (xii) cohorts.
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Fig. 3 UMAP representation of learned feature space. a Per-cell features were obtained by extracting the outputs of the last 4 layers of the
trained MIL neural network on all cells in the validation cohort and dimensionality reduction via PCA followed by UMAP was applied to create
visualizations. (i) Cells were stratified by non-APL/APL labels and kernel density estimations were calculated to visualize the distribution of
cells in this learned feature space where red denotes high-density and blue denotes low-density areas. (ii) Per-cell predictions were extracted
from the network and were visualized within UMAP representation (red= high probability, blue= low probability). b UMAP labeled by
CellaVision cell types. c Selected area in UMAP corresponding to immature myeloid cells is highlighted with cell images in respective UMAP
coordinates. Color of the surrounding box corresponds to the cell-level probability of being APL (red= high probability of APL, blue= low
probability of APL).
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trained and validated algorithm using molecular data linked to
morphological features as described herein that can be deployed
as a physician-aid in the standard peripheral smear workflow that
will allow operator-independent, automated, fully objective
scanning of all peripheral smears to alert providers to the
probabilistic likelihood of APL, thereby allowing for efficient
diagnosis and early treatment of disease in both resource-poor
and -rich clinical settings.

METHODS
Ethics statement
All experiments were conducted in accordance with the Declaration of
Helsinki and the International Ethical Guidelines for Biomedical Research
Involving Human Subjects. The Human Research Ethics Committee, Johns
Hopkins University School of Medicine approved the study.

Study population
Study patients with APL were identified via retrospective chart review
from a list of confirmed FISH t(15;17)-positive patients presenting at
The Johns Hopkins Hospital (JHH) who met the inclusion criteria (n=
34) of presentation at the time of initial diagnosis, without history of
remission, presentation prior to treatment initiation, and availability of
peripheral blood smear image uploaded to CellaVision. Other available
patient genetic studies, including bone marrow biopsy, cancer
karyotype, and PML/RARA mutation status by PCR were examined to
confirm the diagnosis for patient selection. Patients were separated
into a discovery cohort presenting prior to 1/2019 (n= 22) and a
validation cohort presenting on or after 1/2019 (n= 12).
Patients with AML were identified via retrospective chart review from a

list of patients presenting to JHH who at initial presentation had a bone
marrow biopsy showing >20% blasts and by acquiring a query of patients
who tested negative for the t(15;17) translocation by FISH and who were
then confirmed to have AML by bone marrow biopsy and other genetic
studies. Those who met the aforementioned inclusion criteria (n= 72)
were separated into a discovery cohort presenting prior to 1/2019 (n= 60)
and a validation cohort presenting on or after 1/2019 (n= 12). Detailed
data set descriptions can be found in Supplementary Fig. 1 and
Supplementary Table 1.

CellaVision
CellaVision™ DM 100 is an automated device for the differential counting
of white blood cells (WBCs) and characterization of red blood cells (RBCs). It
consists of a slide feeder unit, a microscope with three objectives (×10,
×50, and ×100), a camera and a computer system containing the
acquisition and classification software CellaVision™ blood differential
software. The number of WBC to be analyzed per patient smear at our
institution is set to 200 (user definable from 100 up to 400). To perform a
differential count, a thin film of blood is spread on a glass slide from a
peripheral blood sample and stained according to the Wright stain
protocol. The analyzer performs the acquisition and pre-classification of
cells and the operator subsequently verifies and modifies the classification,
if necessary.

Image pre-processing
Data were imported from CellaVision via OpenCV and all images were
resized to 360 × 360 pixels via bilinear interpolation for preparation for
use of the neural network. Due to a batch effect in the discovery cohort
where all individuals collected before 1/1/2018 were individuals with
APL, we adopted a novel strategy to deconfound batch effects
associated with age of the smear. In particular, the Wright stain used
to prepare peripheral smears changes color slightly with age and may
exhibit slight variations between preparations, and therefore, devised a
method by which to address these batch effects. To do this, we took all
training data and applied a gaussian blur, and then used these blurred
images as an outgroup for training the model. Therefore, there were
three groups of images for training; APL, non-APL, and blurred cells with
the goal of having the model learn to distinguish these three classes. The
size of the outgroup is equal to the total size of the data set (i.e., the total
number of images in the APL and non-APL cohorts). This approach is
analogous to conventionally used image augmentation techniques that

train a model with augmented images to make them invariant to these
features. The difference between using this method over more
conventional image augmentation is that we do not need to know, a
priori, the features we need to augment to overcome inherent batch
effects in the data. By using a blurred outgroup of images, the network is
encouraged to learn the differences in the morphology of the cells
regardless of confounding features such as those present when applying
different staining protocols.

Deep learning model
The single-cell classifier utilizes four convolutional layers which extract the
morphological features of the cells. Following the last convolutional layer,
a global max-pooling operation is applied to allow for translational
invariance. Following this global max-pooling layer, three fully connected
layers+ classification layer is used to classify each cell to its appropriate
class (APL vs non-APL vs blurred images).
The sample classifier utilizes the same architecture as the single-cell

classifier except for the final layers. The model takes in a collection of
cells from a given sample. Following per-cell assignment to the output
class (i.e., APL vs non-APL vs blurred images), the model takes an
average of these assignments (multiple-instance learning) over the
entire sample and uses this as the probability of a sample belonging to
the appropriate class. All models were built and tested with Google’s
TensorFlow™ (v. 1.15.2) deep learning library (https://github.com/
tensorflow/tensorflow).

Training
The single-cell classifier was trained on the discovery cohort in
Monte–Carlo cross-validation where 75% of the data was used for training
while the other 25% was split in half for validation (to determine
convergence) and testing to assess cross-validation performance within
the discovery cohort. Notably, test/train was split at the patient/sample
level in order to ensure that per-cell performance was tested on individuals
the model had not been trained on during cross-validation. This approach
would prevent an overestimation of model performance by learning
patient-specific features. The single-cell classifier was trained for 100
Monte–Carlo simulations and per-cell predictions were collected only
when a given cell fell into the test split. Following training, there are 100
trained models that are used in ensemble on the prospective validation
cohort to assess performance in an independent prospective data set. This
model was trained for both just immature myeloid cells as well as on all
cells regardless of CellaVision cell type.
The sample-level classifier was trained on the discovery cohort in

Monte–Carlo cross-validation in the same way as the cell classifier where
75% of the data was used for training while the other 25% was used for
assessing cross-validation performance. Due to the small number of
samples (in comparison to the number of cells), the model was trained to a
certain training loss and then training was stopped. The sample-level
classifier was trained for 100 Monte–Carlo simulations in this way and per-
sample and per-cell predictions were collected only when a given sample,
and its corresponding cells, fell into the test set. The sample-level
prediction is collected from the last layer of the model whereas the cell-
level prediction is captured by extracting the per-cell assignment from the
middle of the network prior to the average aggregation step in the model.
In the same way as the cell classifier, the sample classifier was trained for
100 Monte–Carlo simulations and this ensemble of 100 models was
applied in ensemble to the prospective independent validation cohort.
Another feature of training the sample classifier was the use of sub-
sampling each sample per epoch of training where 25 randomly selected
cells were chosen for that sample for that particular epoch of training;
allowing us to train the model more rapidly while still leveraging all the
data over the course of training any individual model. This model was also
trained on immature myeloid cells and all cells regardless of CellaVision
cell type.

Integrated gradients
In order to extract interpretability of what the neural network had learned
to distinguish APL from non-APL leukemias, we utilized an established
method of integrated gradients to localize the predictive pixels for a given
input image to its prediction19. Our approach takes a given cell and creates
100 scaled images from the blurred version of the image to the original
image. These 100 images are sent through a given trained model and the
per-pixel gradient is computed between the delta prediction (P(APL)-P
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(non-APL)) with respect to each pixel to create the attribution map. This
was done for 25 pseudo-randomly selected models per image in order to
get a consensus of the most important pixels across multiple models for
robust and stable attribution maps. Attribution maps were then visualized
by overlaying a transparent color scheme over the original image.

Clinician assessment
De-identified CellaVision images organized by cell type, and representing
the whole blood smear as would normally be reviewed in Cellavision for a
case, for the 12 APL and 12 AML validation cohort patients were provided
to 10 practicing academic leukemia-treating hematologists, oncologists,
and hematopathologists who were asked to make a diagnosis solely from
the peripheral smear cell images. Their performance was assessed against
classifier performance on the validation cohort by determining the true
positive rate (TPR) and false-positive rate (FPR) for each of them and
plotting this against the ROC Curve for the deep learning model.

UMAP representations
In order to create visualizations of the learned latent space within the
neural network, we extracted the outputs from the last 4 layers of the
MIL model for the cells within the validation cohort. These outputs
were concatenated together to form a feature space of dimensionality
68. In addition, these 68 features were collected from all 100 models
trained in Monte–Carlo in the discovery cohort to total a feature space
of dimensionality 6800. Following this per-cell extraction, principal
component analysis (PCA) was applied to reduce the dimensionality
where enough dimensions were kept to maintain ≥99% of the
explained variance. At this point, the UMAP dimensionality reduction
technique was applied to bring down the dimensionality to 2 for the
purposes of visualization. Kernel density estimation was computed in
the UMAP space with the scipy gaussian_kde function. In addition, per-
cell predictions for APL were collected for visualization within this
UMAP space.

Statistics
Classifier performance was assessed via area under the receiving operating
characteristic (ROC) curve as calculated by scikit-learn (python).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The image data analyzed during the current study and a metadata table describing the
images are openly accessible from the figshare repository https://doi.org/10.6084/m9.
figshare.1429467522. The imaging data are also available from the Kaggle website
https://www.kaggle.com/eugeneshenderov/acute-promyelocytic-leukemia-apl.
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All code to reproduce the results from this manuscript as well as all the imaging data
can be found at https://github.com/sidhomj/DeepAPL.
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