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Decreased YAP activity reduces 
proliferative ability in human 
induced pluripotent stem cell 
of duchenne muscular dystrophy 
derived cardiomyocytes
Hideki Yasutake1,2, Jong‑Kook Lee2*, Akihito Hashimoto1,3, Kiyoshi Masuyama1, Jun Li1,2, 
Yuki Kuramoto1, Shuichiro Higo4, Shungo Hikoso1, Kyoko Hidaka5, Atsuhiko T. Naito6, 
Shigeru Miyagawa7, Yoshiki Sawa7, Issei Komuro8 & Yasushi Sakata1

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration 
accompanied by dilated cardiomyopathy. Recently, abnormality of yes-associated protein (YAP) 
has been reported as the pathogenesis of muscle degeneration of DMD; however YAP activity 
remains unclear in dystrophic heart of DMD. Herein, we investigated YAP activity using disease-
specific induced pluripotent stem cell (iPSC) derived cardiomyocytes (CMs) in DMD. DMD-iPSCs 
were generated from DMD patient with exon 48–54 deletion in DMD, and genome-edited (Ed)-DMD-
iPSCs with in-frame (Ed-DMD-iPSCs) were created using CRISPR/Cas9. Nuclear translocation of 
YAP [nuclear (N)/cytoplasmic (C) ratio] was significantly lower in DMD-iPSC-CMs than in Ed-DMD-
iPSC-CMs. In addition, Ki67 expression, indicating proliferative ability, was significantly lower in 
DMD-iPSC-CMs than Ed-DMD-iPSC-CMs. Therefore, immunofluorescent staining showed that actin 
stress fibers associated with YAP activity by mechanotransduction were disorganized in DMD-iPSC-
CMs. Lysophosphatidic acid (LPA), a known lipid mediator on induction of actin polymerization, 
significantly increased YAP activity and actin dynamics in DMD-iPSC-CMs using live cell imaging. 
These results suggested that altered YAP activity due to impaired actin dynamics reduced proliferative 
ability in DMD-iPSC-CMs. Hence, decreased YAP activity in dystrophic heart may contribute to DMD-
cardiomyopathy pathogenesis.

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease that affects 1 in 3500 males with degenera-
tive muscular damage1. DMD is caused by defect in dystrophin protein encoded by DMD, a gene with 79 exons in 
the p21.1 region of the X chromosome. Both skeletal and cardiac muscles in DMD are fragile and most patients 
with DMD die of heart failure due to cardiomyopathy1. Defects in dystrophin excessively increase intracellular 
calcium concentration, reactive oxygen species production, and apoptosis with mitochondrial dysfunction2–4, 
however, the pathological mechanism underlying DMD is not clear.

Most mutations in DMD are deletions that occur in the “hot spot” between exons 45 and 555. Currently, 
CRISPR/Cas9, a new genome editing technology, is being considered for DMD therapy. Dystrophin was 
repaired in animal models of DMD using CRISPR/Cas96, and this technology has been used for elucidating the 
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pathogenesis of various diseases. Disease-specific induced pluripotent stem cells (iPSCs) harboring mutations 
found in patients and isogenic controls of disease-specific iPSCs edited using CRISPR/Cas9 act as effective disease 
models4,7,8. The results obtained using disease-specific iPSCs established from patients with DMD (DMD-iPSCs) 
can complement the observations made in MDX mice, the animal model of DMD, as the phenotypes of MDX 
mice and human differ1,9. A previous study has demonstrated that dystrophin repaired using CRISPR/Cas9 
improved the abnormal phenotype in DMD-iPSCs10,11. Thus, CRISPR/Cas9 and DMD-iPSCs are important tools 
for elucidating the pathogenesis of DMD.

Yes-associated protein (YAP) is a transcriptional cofactor that promotes cell proliferation, organ size during 
growth, and regeneration12. It has been reported that YAP promotes cardiomyocyte proliferation and regeneration 
via regulation of the Hippo pathway, which consists of mammalian Ste20-like (MST) or large tumor suppressor 
(LATS) kinase12. Hippo pathway that regulates YAP is expected as molecular target for heart failure13. A recent 
study showed that YAP activity is suppressed in muscle of patients with DMD, and that poor regeneration ability 
associated with decreased YAP activity causes muscular damage in dystrophic skeletal muscles14. However, YAP 
activity has not been reported in the dystrophic heart of patients with DMD, and whether DMD cardiomyopathy 
is related to YAP activity is not known. Activated YAP translocates from the cytoplasm to the nuclei and promotes 
gene expression associated with cell proliferation and anti-apoptosis12,15. YAP exhibits mechanosensitive activity 
by sensing the features of the surrounding microenvironment, such as cell density and substrate stiffness16,17. YAP 
activity increases due to mechanotransduction, which converts physical stimulus to electrochemical stimulus18. 
Mechanotransduction is regulated by the actin filament, an important cytoskeletal stress fibers organized via 
the dynamics between F actin and G actin19,20. YAP activity changes due to actin dynamics, which is modulated 
by the G protein-coupled receptor (GPCR) signaling pathway21. Lysophosphatidic acid (LPA), a phospholipid 
mediator that acts through GPCR, was reported to promotes actin dynamics via Rho-Rock kinase and increase 
YAP activity and cell proliferation22,23.

Dystrophin is a cytoskeletal component anchoring actin stress fibers to the dystrophin-glycoprotein complex 
(DGC). We hypothesized that defects in dystrophin in patients with DMD may result in dysfunction of actin 
stress fibers and inhibit YAP activity. We investigated YAP activity and actin dynamics using disease-specific 
iPSC-derived cardiomyocytes generated from patients with DMD (DMD-iPSC-CMs) compared to iPSC-CMs 
generated from a healthy human control (Con-iPSC-CMs) and genome-edited (Ed)-DMD-iPSC-CMs repaired 
using CRISPR/Cas9 (Ed-DMD-iPSC-CMs). Moreover, we analyzed actin dynamics by treatment of LPA using 
live cell imaging in DMD-iPSC-CMs.

Results
Genome editing in DMD‑iPSCs using CRISPR/Cas9.  Disease-specific iPSCs, previously generated 
from DMD patient with exon 48–54 deletion who had heart failure24, were used in this study. Additionally, 
201B7 cells (RIKEN BRC Cell Bank, Tsukuba, Japan) generated from a healthy human, were used as Con-iPSCs. 
We confirmed the exon deletion area of DMD in DMD-iPSCs. Genotyping of the genomic DNA of iPSCs showed 
that compared to Con-iPSCs, DMD-iPSCs harbored deletion from exons 48 to 54 (Figure I in Data Supplement). 
This was consistent with the clinical diagnosis of the patient. Next, we attempted to edit the genome of DMD-
iPSCs. Each sgRNA on introns both upstream and downstream of exon 55 was designed to modify “out of frame” 
mutation to “in frame” using exon skipping via double site genome editing in this study (Fig. 1A). pX459, encod-
ing each sgRNA, was co-transfected into DMD-iPSCs via electroporation. We selected certain co-transfected 
colonies and performed genotyping to acquire Ed-DMD-iPSCs. PCR with complementary DNA (cDNA) as the 
template, with forward primer on exon 47 and reverse primer on exon 56 showed that the exon sizes of Con-
iPSCs, DMD-iPSCs, and Ed-DMD-iPSCs were 1478 bp, 363 bp, and 173 bp, respectively (Fig. 1B). This showed 
that exon 55 of 190 bp was resected in Ed-DMD-iPSCs. Sanger sequencing showed that exons 47 and 56 were 
connected in Ed-DMD-iPSCs (Fig. 1C). Thus, we acquired Ed-DMD-iPSCs with the expected genome editing.

Cardiomyocyte differentiation from iPSCs.  We generated iPSC-CMs according to the cardiomyocyte 
differentiation protocol. The expression of dystrophin in Con-iPSC-CMs was confirmed at each time point of 
cardiac differentiation. Troponin T was used for labeling the cardiomyocytes in Con-iPSC-CMs. The percent-
ages of dystrophin-positive cells in troponin T-positive cells were 40%, 69%, and 91% after 10, 20, and 30 days 
of differentiation (Figure  IIA–C in Data Supplement). The expression of dystrophin was low in 10-days-old 
iPSC-CMs, though troponin-T was expressed. This showed that 10-days-old iPSC-CMs were inappropriate for 
studying the function of dystrophin and iPSC-CMs > 30 days after differentiation should be used. Next, we con-
firmed the expression of dystrophin in DMD-iPSC-CMs and Ed-DMD-iPSC-CMs 30 days after differentiation. 
Dystrophin expression was defective in DMD-iPSC-CMs, while full length dystrophin was expressed in Con-
iPSC-CMs and short length dystrophin with deletion of exon 48–55 was expressed in Ed-DMD-iPSC-CMs, as 
observed using western blotting (Fig. 1D) and immunofluorescence staining (Fig. 1E). Short length dystrophin 
was repaired through exon skipping, which modified DMD from “out of frame” to “in frame”. Therefore, we used 
iPSC-CMs 30 days post differentiation (iPSC-CMs 30 days) in all the subsequent experiments.

Analysis of YAP localization in DMD‑iPSC‑CMs.  We confirmed YAP localization in iPSC-CMs. 
Twenty-four hours after seeding iPSC-CMs on the imaging plate, YAP was detected using immunofluorescence 
staining and analyzed using the high content imaging system. YAP mostly accumulated in the nuclei, and not 
the cytoplasm, of Con-iPSC-CMs (Fig. 2A). For detailed analysis of YAP localization, we estimated the nuclear/
cytoplasmic (N/C) ratio from the nuclear region YAP intensity/cytoplasm region YAP intensity in iPSC-CMs 
labeled using troponin T (Fig. 2A). The imaging analysis was performed in a number of iPSC-CMs of the 59 
fields; the size of one field was 500 µm × 650 µm. We confirmed the percentages of troponin T-positive cells in 
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Figure 1.   Repair of dystrophin in DMD-iPSC-CMs using CRISPR/Cas9. (A) Strategy of genome editing using 
CRISPR/Cas9. Exon 55 in DMD-iPSCs was deleted using each sgRNAs designed upstream and downstream 
of exon 55 to modify from “out of frame” to “in frame.” (B) Exon size from exon 47 to exon 56 in Con-iPSCs, 
DMD-iPSCs, and Ed-DMD-iPSCs determined using PCR with complementary DNA (cDNA) as the template. 
(C) Sanger sequencing of DMD-iPSCs (Δexon 48–54) and Ed-DMD-iPSCs (Δexon 48–55). (D,E) Expression of 
dystrophin in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs determined using western blotting 
and immunofluorescence staining (scale bar 50 µm).
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Figure 2.   Analysis of YAP activity in DMD-iPSC-CMs. (A) YAP localization was analyzed using 
immunofluorescence staining. The N/C ratio is the intensity of the YAP nuclear region divided by the 
cytoplasmic intensity in iPSC-CMs labeled using troponin T (scale bar 100 µm). (B) Scatter plots of one field 
in Con-iPSC-CMs labeled using troponin T. Red frame indicates troponin T-positive cells. (C) Percentage of 
troponin T-positive cells was evaluated in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs (n = 6 
sessions, mean analyzed cell number = 2971 ± 1965, 1546 ± 953, and 3566 ± 2889 cells, respectively, mean ± SD). 
(D) Scatter plots of one field in Con-iPSC-CMs, DMD-iPSC-CMs and Ed-DMD-iPSC-CMs. Red bars indicate 
mean N/C ratio in troponin T-positive cells. (E) YAP localization demonstrated using immunofluorescent 
staining in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs (scale bar 50 µm). (F) N/C ratio in 
troponin T-positive cells was evaluated in Con-iPSC-CMs, DMD-iPSC-CMs and Ed-DMD-iPSC-CMs (n = 6 
sessions, mean analyzed troponin T-positive cell number = 985 ± 576, 805 ± 716, and 744 ± 845 cells, respectively, 
mean ± SD, **P < 0.01, N.S. not significantly different).
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iPSC-CMs 30 days. The percentages of troponin T-positive cells were 73%, 78%, and 71% in Con-iPSC-CMs, 
DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs 30 days, respectively. There was no significant difference among 
these iPSC-CMs (Fig. 2B,C). We estimated the changing of N/C ratio by the microenvironment in terms of 
cell density and substrate stiffness. High cell density (1 × 105 cells in 96-well plate) resulted in lower N/C ratio 
than low cell density (1 × 104 cells in 96-well plate) in troponin T-positive cells in Con-iPSC-CMs (2.39 ± 0.8 vs. 
1.53 ± 0.09, P < 0.05; Figure IIIA–C in Data Supplement). In substrate stiffness which ranged from 0.5 to 32 kPa 
using biocompatible silicone, hard substrate (32 kPa) showed higher N/C ratio than soft substrate (0.5 kPa) in 
Con-iPSC-CMs (2.17 ± 0.15 vs 3.13 ± 0.60, P < 0.05; Figure IVA–C in Data Supplement). These results indicated 
changing of YAP activity due to contact inhibition with cell density and mechanotransduction through sub-
strate stiffness. Hence, we determined the N/C ratio in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-
CMs to assess YAP activity. The N/C ratio in DMD-iPSC-CMs was lower than that of Con-iPSC-CMs and Ed-
DMD-iPSC-CMs (2.88 ± 0.34 vs. 1.67 ± 0.24 vs. 2.31 ± 0.19, P < 0.01; Fig. 2D–F). These results showed that YAP 
activity decreased in DMD-iPSC-CMs and improved in Ed-DMD-iPSC-CMs.

Proliferative ability of DMD‑iPSC‑CMs.  We assessed the cardiomyocyte proliferation rate of the iPSC-
CMs. We counted the number of troponin T-positive cells, 1 day after seeding the iPSC-CMs (2 × 104 cells in 
96-well plate), using immunofluorescence staining to determine the baseline number. The iPSC-CMs were cul-
tured for 4 days and the number of troponin T-positive cells was counted using immunofluorescence staining in 
the same session of cardiac differentiation. The proliferation rate of iPSC-CMs was evaluated as the number of 
troponin T-positive cells in the baseline/the number of troponin T-positive cells after 4 days. DMD-iPSC-CMs 
exhibited significantly lower proliferation rate than Con-iPSC-CMs and Ed-DMD-iPSC-CMs (1.52 ± 0.42 vs. 
0.85 ± 0.12 and 1.16 ± 0.08, P < 0.05; Fig. 3A–C). We assessed the proliferative ability of these iPSC-CMs using 
Ki67 expression as a cell cycle marker. Ki67 expression was evaluated in troponin T-positive cells in Con-iPSC-
CMs on imaging plates 1 day and 4 days from seeding to confirm the phase of the cell cycle. Ki67 expression 
in troponin T-positive cells was negligible in Con-iPSC-CMs after 1 day, whereas Ki67 expression in troponin 
T-positive cells significantly increased after 4 days (7 ± 3% vs. 33 ± 4%, P < 0.001, Figure VA–C in Data Supple-
ment). This showed that Con-iPSC-CMs were in the resting phase of the cell cycle for at least 1 day after seeding; 
however, proliferation of Con-iPSC-CMs happened from day 1 to day 4. Therefore, we assessed Ki67 expression 
in troponin T-positive cells in these iPSC-CMs after 4 days to evaluate their proliferative ability. DMD-iPSC-
CMs showed significantly lower Ki67-positive cells in troponin T-positive cells than Con-iPSC-CMs and Ed-
DMD-iPSC-CMs (51 ± 16% vs. 26 ± 9% vs. 50 ± 14%, P < 0.05, Fig. 3D,E). These results showed that DMD-iPSC-
CMs possess poor proliferative ability, which might be because of decreased YAP activity.

Cell morphology and actin filament status in DMD‑iPSC‑CMs.  We assessed the actin state to deter-
mine whether the actin filament was associated with altered YAP activity in DMD-iPSC-CMs. We recorded the 
cell morphology in troponin T-positive cells in the iPSC-CMs on day 1 and day 4 after seeding, using immu-
nofluorescence staining. Troponin T-positive cells in DMD-iPSC-CMs were smaller and rounder on day 1 than 
those in Con-iPSC-CMs and Ed-DMD-iPSC-CMs (P < 0.05, Fig. 4A,B). Morphology of troponin T-positive cells 
in DMD-iPSC-CMs drastically changed between day 1 and day 4, compared to those in Con-iPSC-CMs and Ed-
DMD-iPSC-CMs (P < 0.01, Fig. 4A,B). However, iPSC-CMs exhibited an expanded cell shape on day 4, while 
the cell morphology parameters in troponin T-positive cells in DMD-iPSC-CMs were not significantly differ-
ent from those in Con-iPSC-CMs and Ed-DMD-iPSC-CMs (Fig. 4A,B). Con-iPSC-CMs and Ed-DMD-iPSC-
CMs were multinucleated, while DMD-iPSC-CMs had lower number of nuclei. These results indicated that the 
change in the morphology between the cells on day 1 and day 4 was because of the varying proliferative ability 
in the iPSC-CMs. In addition, we evaluated the actin state in troponin T-positive cells in iPSC-CMs on day 1. 
Immunofluorescence staining showed that the structure of F actin in actin stress fibers in DMD-iPSC-CMs 
was disrupted compared to that in Con-iPSC-CMs and Ed-DMD-iPSC-CMs after 1 day (Fig. 4C). The ratio 
of F actin intensity to G actin intensity (F/G actin) decreased significantly in DMD-iPSC-CMs (4.58 ± 1.09 vs. 
1.96 ± 0.39 vs 4.42 ± 1.64, P < 0.05, Fig. 4D). These results indicated that impairment of actin stress fibers might 
affect cell morphology and decrease YAP activity in DMD-iPSC-CMs by reducing mechanotransduction.

Effect of LPA for DMD‑iPSC‑CMs.  We investigated whether LPA (Sigma-Aldrich) that promotes actin 
dynamics via Rho GTPase improved YAP activity and proliferative ability of DMD-iPSC-CMs. We treated iPSC-
CMs with various concentrations of LPA (0, 0.1, 1. 10 µmol/L). iPSC-CMs on the imaging plate were treated with 
LPA for 2 days after seeding and the N/C ratio in troponin T-positive cells in iPSC-CMs was determined. The 
N/C ratio in DMD-iPSC-CMs increased after 1 µmol/L LPA treatment, while none of the LPA concentrations 
increased N/C ratio in Con-iPSC-CMs and Ed-DMD-iPSC-CMs. Interestingly, N/C ratio in DMD-iPSC-CMs 
increased after treatment with 1 µmol/L LPA (without LPA vs. 1 µmol/L LPA in DMD-iPSC-CMs; 1.76 ± 0.06 vs. 
2.20 ± 0.19; P < 0.05; Fig. 5A,B), but plateaued after treatment with 10 µmol/L LPA. Improvement of N/C ratio 
by 1 µmol/L LPA treatment was reversed by 10 µmol/L Y-27632 (Wako), a ROCK inhibitor, in DMD-iPSC-CMs 
(P < 0.05, Fig. 5C). These results indicated that LPA partially improved YAP activity in DMD-iPSC-CMs, but 
not in Con-iPSC-CMs and ED-DMD-iPSC-CMs. In addition, we investigated the effect of verteporfin (Cayman 
Chemical), a YAP inhibitor associated with disruption of YAP-TEAD interaction. N/C ratio did not change sig-
nificantly with 10 µmol/L verteporfin in DMD-iPSC-CMs (Fig. 5D). Verteporfin did not affect YAP translocation 
from the cytoplasm to the nuclei, possibly because of direct YAP inhibitor-independent mechanotransduction.

We also confirmed whether LPA improved the proliferative ability of DMD-iPSC-CMs. The proliferation rates 
of these iPSC-CMs were evaluated by treating them with 1 µmol/L LPA for 2 days. LPA improved the prolifera-
tion rate of DMD-iPSC-CMs (1 µmol/L LPA treatment vs. control without LPA, P < 0.05, Fig. 6A,B). However, 
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Figure 3.   Proliferative ability of DMD-iPSC-CMs. (A) Troponin T-positive cells was identified using immunofluorescence staining 
in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs, on days 1 and 4 post seeding (scale bar 200 µm). (B) Number of 
troponin T-positive cells according to the time course from day 1 to day 4 (n = 4 sessions). (C) Proliferation rate was evaluated in 
Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs (n = 4 sessions, mean ± SD, *P < 0.05, N.S. not significantly different). 
(D) Ki67 expression was detected using immunofluorescence staining in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-
CMs (scale bar 50 µm). Arrowheads indicate Ki67-positive cells in troponin T-positive cells. (E) Percentage of Ki67-positive cells in 
troponin T-positive cells was evaluated in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs (n = 4 sessions, mean analyzed 
troponin T-positive cell number = 1974 ± 651, 1560 ± 971, and 3512 ± 3547 cells, respectively, mean ± SD, *P < 0.05, N.S. not significantly 
different).
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LPA did not significantly increase the proliferation rate of Con-iPSC-CMs and Ed-DMD-iPSC-CMs. In addi-
tion, the Ki67 expression was assessed in troponin T-positive cells in these iPSC-CMs in response to treatment 
with 1 µmol/L LPA for 2 days. Ki67 expression was significantly higher in LPA-treated DMD-iPSC-CMs than 

Figure 4.   Actin stress fibers and cell morphology in DMD-iPSC-CMs. (A) Cell morphology was analyzed 
using immunofluorescence staining. Trace of cell shape in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-
iPSC-CMs labeled using troponin T on days 1 and 4 post seeding (scale bar 50 µm). (B) Cell area and 
roundness of troponin T-positive cells according to the time course from days 1 to 4 (n = 4 sessions, mean 
analyzed troponin T-positive cell number = 68 ± 21, 27 ± 9, and 63 ± 24 cells, respectively, mean ± SD, *P < 0.05, 
**P < 0.01 day 1 vs. day 4, †P < 0.05, ††P < 0.01 Con-iPSC-CMs vs. DMD-iPSC-CMs, #P < 0.05 DMD-iPSC-CMs 
vs. Ed-DMD-iPSC-CMs). (C) F actin and G actin in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-
CMs, day1 from seeding were visualized using immunofluorescence staining. F actin and G actin were labeled 
using phalloidin and DNase I, respectively (scale bar 50 µm). (D) F/G actin ratio in troponin T-positive cells 
was evaluated by dividing the intensity of phalloidin by the intensity of DNase I in the cytoplasmic region of 
Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs, day1 post seeding (n = 4 sessions, mean analyzed 
troponin T-positive cell number = 649 ± 80, 750 ± 253, and 730 ± 261 cells, respectively, mean ± SD, *P < 0.05, N.S. 
not significantly different).
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in untreated DMD-iPSC-CMs (without LPA vs. 1 µmol/L LPA, 33 ± 9% vs. 48 ± 8%, P < 0.05, Fig. 6C,D). Ki67 
expression in Con-iPSC-CMs and Ed-DMD-iPSC-CMs did not increase after LPA treatment. These results 
indicated that LPA improved YAP activity and proliferative ability of DMD-iPSC-CMs.

Actin dynamics in DMD‑iPSC‑CMs using live cell imaging.  We investigated organization of actin 
stress fibers via actin dynamics in iPSC-CMs using live cell imaging. pCAG–LifeAct–TagRFP and AAV2 encod-
ing CMV-EGFP-TNNT2 were co-transfected in iPSC-CMs. EGFP expression merged troponin T immunofluo-
rescent signals (Figure VIA in Data Supplement), and the EGFP was detected in the sarcomere structure in iPSC-
CMs (Figure VIB in Data Supplement). Actin dynamics was assessed by observation of actin retrograde flow 
that are driven by myosin II filament in EGFP-positive cell 24 h after seeding on imaging plates in a time lapse 
series. The imaging showed actin retrograde flow with organization of actin stress fibers in iPSC-CMs (Fig. 7A). 

Figure 5.   Effect of LPA on YAP activity in DMD-iPSC-CMs. (A) YAP localization was determined in DMD-
iPSC-CMs, not treated, and treated with LPA (scale bar 50 µm). (B) N/C ratio in troponin T-positive cells was 
evaluated at various concentrations of LPA in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs 
(n = 3 sessions, mean analyzed troponin T-positive cell number = 569 ± 177, 320 ± 175, and 271 ± 123 cells, 
respectively, mean ± SD, *P < 0.05, N.S. not significantly different). (C) N/C ratio in troponin T-positive cells was 
evaluated for not treated, treated with 1 µmol/L LPA, and treated with 1 µmol/L LPA and 10 µmol/L Y-27632 
in DMD-iPSC-CMs (n = 3 sessions, mean analyzed troponin T-positive cell number = 563 ± 77, 302 ± 179, and 
235 ± 133 cells, respectively, mean ± SD, *P < 0.05, N.S., not significantly different). (D) N/C ratio in troponin 
T-positive cells was evaluated for treatments with 0.1% DMSO and 10 µmol/L verteporfin in DMD-iPSC-CMs 
(n = 3 sessions, mean analyzed troponin T-positive cell number = 824 ± 143 and 852 ± 618 cells, respectively, 
mean ± SD, N.S., not significantly different).
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Actin dynamics with actin retrograde flow was activated during cell division in the non-cardiomyocytes of iPSCs 
(Movie 1 and Figure VII in Data Supplement). Actin dynamics with actin retrograde flow was quantified by 
estimating the tracking speed of actin filament (Fig. 7B). We measured the velocity of actin retrograde flow at 
the cell edge and in the cell body of iPSC-CMs, using actin tracking speed. Actin tracking speed was higher at 
the cell edge than in the cell body (cell edge vs. cell body, P < 0.01; Movie 2 and Figure VIIIA,B in Data Supple-
ment) of iPSC-CMs. These results indicated that actin dynamics with actin retrograde flow was activated at the 
cell edge, and not in the cell body. In addition, actin retrograde flow was slower in cardiomyocytes compared to 
that in the non-cardiomyocytes of Con-iPSCs (cardiomyocytes vs. non-cardiomyocytes, P < 0.01; Movie 3 and 
Figure IXA,B in Data Supplement). These results were consistent with that of a previous report showing that 
activity of actin dynamics is reduced in cardiomyocytes than in non-cardiomyocytes25. Hence, we assessed actin 
tracking speed at the cell edge in Con-iPSC-CMs, DMD-iPSC-CMs and Ed-DMD-iPSC-CMs. We observed 
that actin tracking speed in DMD-PSC-CMs was lower than that in Con-iPSC-CMs and Ed-DMD-iPSC-CMs 
(0.29 ± 0.12 µm/min vs. 0.19 ± 0.03 µm/min and 0.34 ± 0.09 µm/min, P < 0.01; Fig. 7C,D, Movies 4, 5, 6). These 
results indicated that actin dynamics with actin retrograde flow was impaired in DMD-iPSC-CMs. Next, we 
analyzed whether LPA promoted activity of actin dynamics in DMD-iPSC-CMs. We measured actin tracking 
speed in DMD-iPSC-CMs pre- and post-treated with 1 µmol/L LPA. Actin tracking speed increased in post 

Figure 6.   Proliferative ability of LPA-treated DMD-iPSC-CMs. (A) Troponin T-positive cells was identified 
using immunofluorescence staining in DMD-iPSC-CMs, not treated and treated with LPA (scale bar 500 µm). 
(B) Proliferation rate was evaluated in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs (n = 4 
sessions, mean ± SD, *P < 0.05, N.S. not significantly different). (C) Ki67 expression was assessed using 
immunofluorescence staining in DMD-iPSC-CMs, not treated and treated with LPA. Arrowheads indicate 
Ki67-positive cells in troponin T-positive cells (scale bar 50 µm). (D) Ratio of Ki67-positive cells in troponin 
T-positive cells was evaluated in Con-iPSC-CMs, DMD-iPSC-CMs, and Ed-DMD-iPSC-CMs, not treated and 
treated with LPA (n = 4 sessions, mean analyzed troponin T-positive cell number = 2924 ± 1155, 2454 ± 339, and 
2666 ± 2110 cells, respectively, mean ± SD, *P < 0.05, N.S. not significantly different).



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10351  | https://doi.org/10.1038/s41598-021-89603-8

www.nature.com/scientificreports/

Figure 7.   Actin dynamics in DMD-iPSC-CMs using live cell imaging. (A) Actin retrograde flow with 
organization of actin stress fibers was demonstrated using time lapse series of a confocal laser scanning 
microscope. Blue arrow shows centripetal direction of actin retrograde flow. White arrowheads indicate actin 
stress fibers that move with actin retrograde flow (scale bar 2 µm). (B) Actin tracking speed of actin filament was 
analyzed using live cell imaging to estimate actin dynamics (scale bar 10 µm, color bar: blue and red indicate 
range from 0 to 0.72 µm/min). (C) Actin dynamics in Con-iPSC-CMs, DMD-iPSC-CMs and Ed-DMD-iPSC-
CMs was demonstrated using live cell imaging (scale bar 20 µm) (Movies 4, 5, 6). White square frames show 
the field of cell edge where actin tracking speed was estimated. (D) Actin tracking speed was estimated at the 
cell edge of Con-iPSC-CMs, DMD-iPSC-CMs and Ed-DMD-iPSC-CMs (n = 5 sessions, 13 cells, mean ± SD, 
**P < 0.01, N.S. not significantly different). (E) Actin dynamics in DMD-iPSC-CMs pre-treated and post-treated 
with LPA was demonstrated using live cell imaging (scale bar 10 µm) (Movies 7, 8). White square frames show 
the field of cell edge where actin tracking speed was estimated. Arrowheads indicate activated actin dynamics 
at the cell edge of DMD-iPSC-CMs. (F) Actin tracking speed was estimated at the cell edge of DMD-iPSC-CMs 
pre-treated and post-treated with LPA (n = 7 session, 16 cells, mean ± SD, **P < 0.01).
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LPA-treated DMD-iPSC-CMs compared with pre LPA-treated DMD-iPSC-CMs (pre LPA vs post LPA, P < 0.01; 
Fig. 7E,F, Movies 7, 8). This showed that LPA improved activity of actin dynamics in DMD-iPSC-CMs.

Discussion
DMD causes degenerative muscular disorder; however, the molecular mechanism in pathogenesis of DMD 
remains unclear. This study aimed to elucidate the molecular mechanism of progressive DMD cardiomyopathy 
using disease-specific human iPSC-CMs. Furthermore, DMD-iPSC-CMs showed decreased YAP activity with 
impaired actin dynamics and CRISPR/Cas9-mediated repair of dystrophin improved YAP activity and actin 
dynamics in DMD-iPSC-CMs.

Recently, abnormal regeneration was speculated as a possible mechanism leading to the DMD phenotype. 
YAP is a transcriptional cofactor that promotes the expression of proliferation- and regeneration-related genes 
regulated by the Hippo pathway, which senses various modules such as tight junctions or adherens junctions26,27. 
Decreased YAP activity have already been described in skeletal muscle models of DMD, where regeneration is 
known to be highly critical28. Human samples of patients with DMD also showed decreased YAP activity and 
impaired regeneration of the skeletal muscle14. Thus, impaired regeneration of skeletal muscle in DMD is one 
of the causes of dystrophic muscular disease progression in DMD. In contrast, whether impaired regeneration 
and YAP activity are associated with dystrophic heart in DMD is not clear. Generally, adult cardiomyocytes pos-
sess limited regenerative ability, although neonatal cardiomyocytes show higher proliferative ability than adult 
cardiomyocytes. It is controversial whether this limited regeneration ability of cardiomyocytes also possibly 
contributes to the pathogenesis of cardiac dysfunction. YAP activity decreased in the cardiac tissue of patients 
who were diagnosed with ischemic heart disease and non-ischemic heart disease13. Micro RNA 302–367, a 
non-coding RNA that inhibited multiple components of the Hippo pathway such as MST or LATS, promotes 
cardiac regeneration29. Thus, the Hippo pathway, which regulates YAP activity, is a prospective therapeutic target 
for heart failure. On the other hand, the DGC composed of dystrophin interacts with phosphorylated YAP in 
cardiomyocytes30, and agrin, required for neuromuscular organization, interacted with DGC to promotes YAP 
activity31. The association of dystrophin and regulation of YAP activity in the dystrophic heart is reported in 
some previous studies.

YAP possesses mechano-sensitivity, which is regulated by actin stress fibers18. Actin stress fibers are important 
cytoskeletal components regulating cell morphology, migration, or mitosis, and actin remodeling is essential for 
heart regeneration32. Impairment of actin stress fibers by cytochalasin D decreases YAP activity, and changes in 
cell morphology due to actin stress fibers strongly correlates with YAP activity19. Dystrophin is a cytoskeletal 
protein anchoring DGC and actin stress fibers. We hypothesized that defect in dystrophin is followed by impair-
ment of actin stress fibers and heart regeneration. Actin stress fibers are organized via actin dynamics with actin 
retrograde flow driven by myosin II filament. Quantitative evaluation of actin retrograde flow is useful as an 
indicator of actin dynamics activity33,34. A previous report has shown that actin retrograde flow is slower in car-
diomyocytes than in non-cardiomyocytes25. A cardiomyocyte is composed of sarcomeres with actin and myosin 
filament, which may result in reduced activity of actin dynamics compared to non-cardiomyocytes. In this study, 
defect in dystrophin disorganized actin stress fibers and impaired actin dynamics with actin retrograde flow, 
and decreased YAP activity in DMD-iPSC-CMs compared to Con-iPSC-CMs and Ed-DMD-iPSC-CMs. This 
result supported that impairment of actin stress fibers and decreased YAP activity deteriorated the proliferative 
ability of cardiomyocytes in DMD.

LPA promotes actin dynamics via the Rho-Rock kinase and increases YAP activity22. LPA stimulates cardiac 
differentiation and proliferation, and protects from myocardial infarction35,36. Our data showed that low con-
centrations of LPA improved YAP activity in DMD-iPSC-CMs. This might suggest that LPA treatment constitute 
cardiac protection in DMD cardiomyopathy. However, both low and high concentrations of LPA did not improve 
YAP activity in Con-iPSC-CMs and Ed-DMD-iPSC-CMs; high concentration of LPA had no additional effects in 
DMD-iPSC-CMs. We speculate that actin dynamics was at the highest in Con-iPSC-CMs and Ed-DMD-iPSC-
CMs under these culture conditions; while it was stabilized by low concentration of LPA in DMD-iPSC-CMs. In 
addition, some studies have shown that LPA induces cardiac dysfunction37, increases CTGF-dependent fibroblast 
proliferation38, and stimulates myocardin-related transcription factor (MRTF)-A and MRTF-B, which activate 
profibrotic genes39. Thus, we should consider the side effects of LPA-induced fibrosis, as it might cause cardiac 
dysfunction.

Cardiac regeneration involves dedifferentiation, proliferation, and redifferentiation (DPR) following cardiac 
impairment40,41. The dedifferentiation and redifferentiation of cardiac iPSC-CMs are characterized by the de-
organization of sarcomeric structures followed by the reorganization of these structures and restoration of cell 
morphology. Proliferation occurs in the early stages, between the dedifferentiation and redifferentiation. In this 
study, we confirmed the cardiac proliferative capacity a few days after seeding, following trypsinization. This 
represents the DPR process of iPSC-CMs, following cardiac damage. The altered YAP activity in DMD may be 
associated with the cardiac proliferation stage in the DPR process; however, the DPR process is not associated 
with DMD cardiomyopathy pathogenesis. The DPR process in DMD cardiomyopathy needs further elucidation.

In this study, there are several limitations to suggest altered YAP activity causes dystrophic heart as pathogen-
esis of DMD cardiomyopathy. Specifically, use of only a single cell line of DMD-iPSC-CMs does not fully reflect 
the in vivo phenotype and is not sufficient to conclusively determine the effect of YAP on dystrophic heart. We 
confirmed the proliferation ability and the actin dynamics of iPSC-CMs in the short term following seeding, 
but not in the long term. Therefore, it is unclear whether the regeneration process associated with YAP activity 
influences the progression of DMD cardiomyopathy. In addition, we must consider that the gene edited isogenic 
model of DMD-iPSCs has short length dystrophin without exon 48–55. Dystrophin with specific mutation of 
DMD gene is not adequate to elucidate the function of full-length dystrophin in association with YAP activity and 
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actin dynamics. More evaluations in various mutation of DMD gene are currently required to research function 
of dystrophin with actin binding site.

In conclusion, we observed improved YAP activity and actin dynamics in DMD-iPSC-CMs following repair 
of dystrophin via CRISPR/Cas9. These results indicate that decreased YAP activity and impaired actin dynamics 
may contribute to the pathogenesis of DMD cardiomyopathy.

Methods
Clinical diagnosis.  The patient was a male at 31 years old with muscle weakness and heart failure. The car-
diac function was measured by echocardiography, which showed the left ventricular ejection fraction (LVEF) 
was 44%. He was diagnosed as DMD by the lack of dystrophin by staining of biopsied skeletal muscle. Genetic 
test, multiplex ligation-dependent probe amplification (MLPA) carried the deletion of exon 48–54 of DMD gene 
in this patient.

iPSC culture.  iPSCs were cultured on a dish coated with iMatrix-511 (Nippi) in StemFit AK02 (Ajinomoto). 
To maintain pluripotency, these iPSCs were enzymatically passaged with StemFit AK02 containing 10 µmol/L 
Y-27632 (Wako) at 80% confluence. iPSCs were maintained in StemFit AK02 without Y-27632 from the next day 
until the next passage. These iPSCs were cultured in the presence of 5% CO2 at 37 °C.

Genotyping.  Genomic DNA was extracted from iPSCs using the QIAmp DNA micro kit (Qiagen) to con-
firm the exon deletion. Polymerase chain reaction (PCR) was performed using KOD FX NEO (Toyobo) with 
primers designed on each exon. The amplified DNA was separated using electrophoresis on 2% agarose gel in 
Tris-borate-EDTA (TBE) buffer. The sequences of the primers used are shown in Supplemental Table 1.

Editing of DMD‑iPSCs using CRISPR/Cas9.  We designed each single guide RNA (sgRNA) sequence 
upstream and downstream of exon 55 to change “out of frame” to “in frame” via non-homologous end joining 
(NHEJ) in DMD-iPSCs. The pX459 vector (Addgene, plasmid #48139)42 encoding these sgRNAs were amplified 
in DH5α competent cells. Two sgRNAs were co-transfected into DMD-iPSCs via electroporation (NEPA21 type 
II, NepaGene). Co-transfected DMD-iPSCs were purified by puromycin selection and single colony picking. The 
sgRNA sequences are shown in Supplemental Table 1.

Sanger sequencing.  Total RNA was extracted from iPSCs using the RNeasy Plus mini kit (Qiagen) and 
cDNA was synthesized using Super Script VILO (Thermo Fisher Scientific). PCR was performed using KOD FX 
NEO, with forward primer on exon 46 and reverse primer on exon 56. The amplified cDNA was separated via 
electrophoresis on 2% agarose gel in TBE buffer and evaluated using Sanger sequencing analysis at the Center for 
Medical Research and Education, Osaka University Graduate School of Medicine. The sequences of the forward 
and reverse primers are shown in Supplemental Table 1.

Cardiomyocyte differentiation.  The PSC cardiomyocyte differentiation kit (Thermo Fisher Scientific) 
was used to efficiently generate iPSC-CMs with some modifications. Undifferentiated iPSCs were seeded on a 
dish coated with 1% Geltrex LDEV-free reduced growth factor (Thermo Fisher Scientific). At 80% confluence, 
the culture medium was changed to StemFit AK02 containing 1% reduced Matrigel growth factor (Corning). 
The next day, the culture medium was changed to medium A containing 1% reduced Matrigel growth factor, 
and medium B and medium C of the PSC cardiomyocyte differentiation kit were added consecutively after every 
2 days. Subsequently, these iPSCs was maintained in medium C.

Preparation of iPSC‑CMs.  The iPSC-CMs were dissociated to single cells via trypsin-EDTA (0.25%) 
(Thermo Fisher Scientific) treatment for 10 min at 37 °C. After centrifugation at 160g for 5 min, the iPSCs were 
resuspended in Medium 199 (Thermo Fisher Scientific) containing 10% fetal bovine serum (FBS). These iPSCs 
were seeded on a 96-well imaging plate (PerkinElmer Cell Carrier) and glass bottom dish (Matsunami) coated 
with 1% Geltrex LDEV-free reduced growth factor. CytoSoft Imaging 24-well plate (ADM) with a thin layer of 
biocompatible silicone was used in the experiments as the hard and soft substrate.

Immunofluorescent staining.  iPSC-CMs on the imaging plate were fixed using 4% paraformaldehyde 
in phosphate buffered saline (PBS)(−), permeabilized using 0.1% Triton-X in PBS(−) for 15 min at 4 °C, and 
blocked with 5% bovine serum albumin (BSA) in PBS(−) for 60 min at room temperature. The samples were 
treated with primary antibodies of optimum dilutions for 24 h at 4 °C. Next, the samples were incubated with 
secondary antibodies of optimum dilution for 1 h at room temperature and the nuclei were labeled with Hoechst 
33342 (1:1000, Dojindo). The primary and secondary antibodies used are shown in Supplemental Table 2.

Actin staining.  F and G actin were labeled using Alexa Fluor 568 phalloidin (Thermo Fisher Scien-
tific, A12380) and Alexa Fluor 488 conjugated deoxyribonuclease I (Thermo Fisher Scientific, D12371), respec-
tively.

Imaging analysis using high content imaging system.  Images of immunofluorescent staining were 
analyzed using the Operetta high content imaging system (PerkinElmer). N/C ratio, F/G actin ratio, and cell 
morphology were automatically detected by the Harmony analysis software (PerkinElmer). The imaging analysis 
was performed in 59 fields; the size of one field was 500 µm × 650 µm, and a number of cells were evaluated. We 
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screened troponin T-positive cells in iPSC-CMs. YAP localization, dystrophin expression, Ki67 expression, cell 
morphology, and actin filament status were analyzed in troponin T-positive cells.

Live cell imaging for visualizing actin dynamics.  pCAG–LifeAct–TagRFP (Ibidi) was transfected in 
iPSC-CMs using Lipofectamine 3000 (Thermo Fisher Scientific). To label iPSC-CMs, adeno-associated virus 
(AAV) (Takara) encoding pCMV-EGFP-TNNT2 was constructed and transfected. After 2 days of co-transfec-
tion, the iPSC-CMs were seeded on glass bottom dish according to the preparation protocol of iPSC-CMs. Actin 
dynamics Actin dynamics was assessed in EGFP-positive cell. Live imaging of actin was performed using a 
LSM700 confocal laser-scanning microscope (Zeiss) in the presence of 5% CO2 at 37 °C. The time-lapse interval 
was 1 min and the Z-stack slices were 1 µm thick. Live cell imaging was analyzed using Imaris (Oxford Instru-
ments).

Western blotting.  The total protein of iPSC-CMs was extracted using radioimmunoprecipitation assay 
(RIPA) buffer containing a phosphatase inhibitor and protease inhibitor for 30 min on ice. After centrifugation 
at 20,000g for 20 min, the supernatant was used as total protein lysate. The samples were separated via electro-
phoresis on 5–20% Extra PAGE One precast gel (Nacalai Tesque). The fractionated samples were transferred 
to a nitrocellulose membrane. The membrane was blocked using 5% BSA in Tris-buffered saline with Tween 
20 (TBS-T) for 1 h at room temperature, followed by reaction with primary antibodies for 24 h at 4 °C. Next, 
the membranes were reacted with secondary antibody for 1 h at room temperature, followed by treatment with 
Pierce ECL Plus western blotting substrate (Thermo Fisher Scientific) for 5 min. The chemiluminescent signals 
were detected using the ECL Plus western blotting detection system (GE Healthcare Life Sciences) and the 
images were captured using ImageQuant LAS4000 (GE Healthcare Life Sciences). The primary and secondary 
antibodies used are shown in Supplemental Table 3.

Statistical analysis.  All data are presented as mean ± standard deviation (SD). Wilcoxon test was used for 
comparison between two groups; Steel–Dwass test, for among ≥ 3 groups, as non-parametric tests. Student’s t test 
was used for analysis between two groups; one-way analysis of variance (ANOVA) with Tukey–Kramer test, for 
comparison among ≥ 3 groups, as parametric tests. Parametric tests were applied after confirmation of normality 
using Levene test. P < 0.05 was considered statistically significant. N.S. indicates not significant. All statistical 
analyses were performed using JMP Pro 15.2 (SAS).

Ethical approval.  Written informed consent was obtained from the donor or their guardians under the pro-
tocol approved by the Institutional Review Board of Osaka University (Approval number 13254 (829-1)-3) and 
The University of Tokyo (G10019). This study conforms to the principles outlined in the Declaration of Helsinki.

Disclosures.  J-LEE: Joint Research Grant (SCREEN Holdings Co. Ltd, Alpha MED Scientific, Inc.).

Received: 29 October 2020; Accepted: 20 April 2021

References
	 1.	 Blake, D. J., Weir, A., Newey, S. E. & Davies, K. E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. 

Physiol. Rev. 82(2), 291–329. https://​doi.​org/​10.​1152/​physr​ev.​00028.​2001 (2002).
	 2.	 Khairallah, R. J. et al. Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci. Signal. 5(236), 1–11. https://​doi.​

org/​10.​1126/​scisi​gnal.​20028​29 (2012).
	 3.	 Lorin, C., Vögeli, I. & Niggli, E. Dystrophic cardiomyopathy: Role of TRPV2 channels in stretch-induced cell damage. Cardiovasc. 

Res. 106(1), 153–162. https://​doi.​org/​10.​1093/​cvr/​cvv021 (2015).
	 4.	 Lin, Bo. et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from 

individuals with Duchenne muscular dystrophy. DMM Dis. Models Mech. 8(5), 457–466. https://​doi.​org/​10.​1242/​dmm.​019505 
(2015).

	 5.	 Aartsma-Rus, A., Ginjaar, I. B. & Bushby, K. The importance of genetic diagnosis for Duchenne muscular dystrophy. J. Med. Genet. 
53(3), 145–151. https://​doi.​org/​10.​1136/​jmedg​enet-​2015-​103387 (2016).

	 6.	 Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 
362(6410), 86–91. https://​doi.​org/​10.​1126/​scien​ce.​aau15​49 (2018).

	 7.	 Choi, I. Y. et al. Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using 
a human IPSC-based model. Cell Rep. 15(10), 2301–2312. https://​doi.​org/​10.​1016/j.​celrep.​2016.​05.​016 (2016).

	 8.	 Shoji, E. et al. Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem 
cells. Sci. Rep. 5(May), 1–13. https://​doi.​org/​10.​1038/​srep1​2831 (2015).

	 9.	 Rafael-Fortney, J. A., Chadwick, J. A. & Raman, S. V. Duchenne muscular dystrophy mice and men: Can understanding a genetic 
cardiomyopathy inform treatment of other myocardial diseases?. Circ. Res. 118(7), 1059–1061. https://​doi.​org/​10.​1161/​CIRCR​
ESAHA.​116.​308402 (2016).

	10.	 Long, C. et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome 
editing. Sci. Adv. 4(1), 1–11. https://​doi.​org/​10.​1126/​sciadv.​aap90​04 (2018).

	11.	 Li, H. L. et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells 
by TALEN and CRISPR-Cas9. Stem Cell Rep. 4(1), 143–154. https://​doi.​org/​10.​1016/j.​stemcr.​2014.​10.​013 (2015).

	12.	 Gumbiner, B. M. & Kim, N. G. The Hippo-YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127(4), 709–717. 
https://​doi.​org/​10.​1242/​jcs.​140103 (2014).

	13.	 Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550(7675), 260–264. https://​doi.​
org/​10.​1038/​natur​e24045 (2017).

https://doi.org/10.1152/physrev.00028.2001
https://doi.org/10.1126/scisignal.2002829
https://doi.org/10.1126/scisignal.2002829
https://doi.org/10.1093/cvr/cvv021
https://doi.org/10.1242/dmm.019505
https://doi.org/10.1136/jmedgenet-2015-103387
https://doi.org/10.1126/science.aau1549
https://doi.org/10.1016/j.celrep.2016.05.016
https://doi.org/10.1038/srep12831
https://doi.org/10.1161/CIRCRESAHA.116.308402
https://doi.org/10.1161/CIRCRESAHA.116.308402
https://doi.org/10.1126/sciadv.aap9004
https://doi.org/10.1016/j.stemcr.2014.10.013
https://doi.org/10.1242/jcs.140103
https://doi.org/10.1038/nature24045
https://doi.org/10.1038/nature24045


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10351  | https://doi.org/10.1038/s41598-021-89603-8

www.nature.com/scientificreports/

	14.	 Vita, G. L. et al. Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS ONE 13(10), 1–13. https://​doi.​org/​10.​
1371/​journ​al.​pone.​02055​14 (2018).

	15.	 Del Re, D. P. Hippo signaling in the heart—non-canonical pathways impact growth, survival and function. Circ. J. 80(7), 1504–1510. 
https://​doi.​org/​10.​1253/​circj.​CJ-​16-​0426 (2016).

	16.	 Hsiao, C. et al. Human Pluripotent stem cell culture density modulates YAP signaling. Biotechnol. J. 11(5), 662–675. https://​doi.​
org/​10.​1002/​biot.​20150​0374 (2016).

	17.	 Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171(6), 1397-1410.
e14. https://​doi.​org/​10.​1016/j.​cell.​2017.​10.​008 (2017).

	18.	 Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474(7350), 179–184. https://​doi.​org/​10.​1038/​natur​e10137 
(2011).

	19.	 Wada, K. I., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Devel-
opment 138(18), 3907–3914. https://​doi.​org/​10.​1242/​dev.​070987 (2011).

	20.	 Greiner, A. M., Chen, H., Spatz, J. P. & Kemkemer, R. Cyclic tensile strain controls cell shape and directs actin stress fiber formation 
and focal adhesion alignment in spreading cells. PLoS One 8, 10. https://​doi.​org/​10.​1371/​journ​al.​pone.​00773​28 (2013).

	21.	 Vázquez-Victorio, G., González-Espinosa, C., Espinosa-Riquer, Z. P. & Macías-Silva, M. GPCRs and actin-cytoskeleton dynamics. 
Methods Cell Biol. 132, 165–188. https://​doi.​org/​10.​1016/​bs.​mcb.​2015.​10.​003 (2016).

	22.	 Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150(4), 780–791. https://​doi.​
org/​10.​1016/j.​cell.​2012.​06.​037 (2012).

	23.	 Han, H. et al. Regulation of the hippo pathway by phosphatidic acid-mediated lipid-protein interaction. Mol. Cell 72(2), 328-340.
e8. https://​doi.​org/​10.​1016/j.​molcel.​2018.​08.​038 (2018).

	24.	 Hashimoto, A. et al. Generation of induced pluripotent stem cells from patients with Duchenne muscular dystrophy and their 
induction to cardiomyocytes. Int. Heart J. 57(1), 112–117. https://​doi.​org/​10.​1536/​ihj.​15-​376 (2016).

	25.	 Fenix, A. M. et al. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. Elife 7, 1–33. https://​doi.​org/​10.​7554/​
eLife.​42144 (2018).

	26.	 Vite, A., Zhang, C., Yi, R., Emms, S. & Radice, G. L. Α-catenin-dependent cytoskeletal tension controls yap activity in the heart. 
Development (Cambridge) 145, 5. https://​doi.​org/​10.​1242/​dev.​149823 (2018).

	27.	 Matsuda, T. et al. NF2 Activates hippo signaling and promotes ischemia/reperfusion injury in the heart. Circ. Res. 119(5), 596–606. 
https://​doi.​org/​10.​1161/​CIRCR​ESAHA.​116.​308586 (2016).

	28.	 Iyer, S. R. et al. Differential YAP nuclear signaling in healthy and dystrophic skeletal muscle. Am. J. Phys. Cell Physiol. 317(1), 
C48-57. https://​doi.​org/​10.​1152/​ajpce​ll.​00432.​2018 (2019).

	29.	 Tian, Y. et al. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. 
Med. 7(279), 1–11. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​30108​41 (2015).

	30.	 Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters yap to inhibit cardiomyo-
cyte proliferation. Nature 547(7662), 227–231. https://​doi.​org/​10.​1038/​natur​e22979 (2017).

	31.	 Bassat, E. et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547(7662), 179–184. https://​
doi.​org/​10.​1038/​natur​e22978 (2017).

	32.	 Morikawa, Y. et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in hippo-deficient 
mice. Sci. Signal. 8, 375. https://​doi.​org/​10.​1126/​scisi​gnal.​20057​81 (2015).

	33.	 Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. T. & Forscher, P. Rho-dependent contractile responses in the 
neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40(5), 931–944. https://​doi.​org/​10.​
1016/​S0896-​6273(03)​00754-2 (2003).

	34.	 Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295(5557), 
1083–1086. https://​doi.​org/​10.​1126/​scien​ce.​10674​70 (2002).

	35.	 Sharma, A. et al. Stage-specific effects of bioactive lipids on human IPSC cardiac differentiation and cardiomyocyte proliferation. 
Sci. Rep. 8(1), 1–10. https://​doi.​org/​10.​1038/​s41598-​018-​24954-3 (2018).

	36.	 Cai, L. et al. Protective role for LPA3 in cardiac hypertrophy induced by myocardial infarction but not by isoproterenol. Front. 
Physiol. 8(MAY), 1–10. https://​doi.​org/​10.​3389/​fphys.​2017.​00356 (2017).

	37.	 Yang, J. et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the 
LPA3/AKT/MTOR pathway. Front. Physiol. 9(4), 1–14. https://​doi.​org/​10.​3389/​fphys.​2018.​01315 (2018).

	38.	 Sakai, N. et al. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB 
J. 27(5), 1830–1846. https://​doi.​org/​10.​1096/​fj.​12-​219378 (2013).

	39.	 Knipe, R. S., Tager, A. M. & Liao, J. K. The rho kinases: Critical mediators of multiple profibrotic processes and rational targets for 
new therapies for pulmonary fibrosis. Pharmacol. Rev. 67(1), 103–117. https://​doi.​org/​10.​1124/​pr.​114.​009381 (2015).

	40.	 Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. 
Circulation 136(9), 834–848. https://​doi.​org/​10.​1161/​CIRCU​LATIO​NAHA.​116.​024307 (2017).

	41.	 Zhang, Y. et al. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5(9), e12559. https://​doi.​org/​10.​1371/​
journ​al.​pone.​00125​59 (2010).

	42.	 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8(11), 2281–2308. https://​doi.​org/​10.​1038/​nprot.​
2013.​143 (2013).

Acknowledgements
We thank Takumi Kondo for advice regarding genome editing techniques and the AAV construct. We thank 
Mayuko Matsushima for technical support. We are grateful to Satoki Tomoyama, Hiroyuki Nakanishi, and Keiko 
Miwa for technical advice. We would like to thank Editage (www.​edita​ge.​jp) for language editing.

Author contributions
H.Y. and J.LEE conceptualized the study, designed and conducted the experiments, analyzed the data and wrote 
the manuscript. A.H., A.T.N. and I.K. established iPSC from DMD patients, S.Higo supported genome-editing 
technique. A.H., K.M., J.LI, Y.K., S.Higo, S.Hikoso, K.H., A.T.N., S.M., Y.Sawa, I.K., and Y.Sakata reviewed the 
manuscript.

Funding
This study was supported in part by Agency for Medical Research and Development, AMED 
(JP17bm0804008h0001 to S.M., J-LEE) (JP16bm0609004 to A.N., I.K.) (JP16ek0109009 to A.N., I.K.) and JSPS 
KAKENHI (JP18H03517 to J-LEE) (JP20K22928 to H.Y.).

https://doi.org/10.1371/journal.pone.0205514
https://doi.org/10.1371/journal.pone.0205514
https://doi.org/10.1253/circj.CJ-16-0426
https://doi.org/10.1002/biot.201500374
https://doi.org/10.1002/biot.201500374
https://doi.org/10.1016/j.cell.2017.10.008
https://doi.org/10.1038/nature10137
https://doi.org/10.1242/dev.070987
https://doi.org/10.1371/journal.pone.0077328
https://doi.org/10.1016/bs.mcb.2015.10.003
https://doi.org/10.1016/j.cell.2012.06.037
https://doi.org/10.1016/j.cell.2012.06.037
https://doi.org/10.1016/j.molcel.2018.08.038
https://doi.org/10.1536/ihj.15-376
https://doi.org/10.7554/eLife.42144
https://doi.org/10.7554/eLife.42144
https://doi.org/10.1242/dev.149823
https://doi.org/10.1161/CIRCRESAHA.116.308586
https://doi.org/10.1152/ajpcell.00432.2018
https://doi.org/10.1126/scitranslmed.3010841
https://doi.org/10.1038/nature22979
https://doi.org/10.1038/nature22978
https://doi.org/10.1038/nature22978
https://doi.org/10.1126/scisignal.2005781
https://doi.org/10.1016/S0896-6273(03)00754-2
https://doi.org/10.1016/S0896-6273(03)00754-2
https://doi.org/10.1126/science.1067470
https://doi.org/10.1038/s41598-018-24954-3
https://doi.org/10.3389/fphys.2017.00356
https://doi.org/10.3389/fphys.2018.01315
https://doi.org/10.1096/fj.12-219378
https://doi.org/10.1124/pr.114.009381
https://doi.org/10.1161/CIRCULATIONAHA.116.024307
https://doi.org/10.1371/journal.pone.0012559
https://doi.org/10.1371/journal.pone.0012559
https://doi.org/10.1038/nprot.2013.143
https://doi.org/10.1038/nprot.2013.143
http://www.editage.jp


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10351  | https://doi.org/10.1038/s41598-021-89603-8

www.nature.com/scientificreports/

Competing interests 
J-LEE: Joint Research Grant (SCREEN Holdings Co. Ltd, Alpha MED Scientific, Inc.)

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​89603-8.

Correspondence and requests for materials should be addressed to J.-K.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-89603-8
https://doi.org/10.1038/s41598-021-89603-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Decreased YAP activity reduces proliferative ability in human induced pluripotent stem cell of duchenne muscular dystrophy derived cardiomyocytes
	Results
	Genome editing in DMD-iPSCs using CRISPRCas9. 
	Cardiomyocyte differentiation from iPSCs. 
	Analysis of YAP localization in DMD-iPSC-CMs. 
	Proliferative ability of DMD-iPSC-CMs. 
	Cell morphology and actin filament status in DMD-iPSC-CMs. 
	Effect of LPA for DMD-iPSC-CMs. 
	Actin dynamics in DMD-iPSC-CMs using live cell imaging. 

	Discussion
	Methods
	Clinical diagnosis. 
	iPSC culture. 
	Genotyping. 
	Editing of DMD-iPSCs using CRISPRCas9. 
	Sanger sequencing. 
	Cardiomyocyte differentiation. 
	Preparation of iPSC-CMs. 
	Immunofluorescent staining. 
	Actin staining. 
	Imaging analysis using high content imaging system. 
	Live cell imaging for visualizing actin dynamics. 
	Western blotting. 
	Statistical analysis. 
	Ethical approval. 
	Disclosures. 

	References
	Acknowledgements


