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Abstract

KLOTHO*VS heterozygosity (KL*VSHET+) was recently shown to be associated with reduced 

risk of Alzheimer’s disease (AD) in APOE*4 carriers. Additional studies suggest that KL*VSHET+ 

protects against amyloid burden in cognitively normal older subjects, but sample sizes were too 

small to draw definitive conclusions. We performed a well-powered meta-analysis across 5 

independent studies, comprising 3581 pre-clinical participants ages 60–80, to investigate whether 

KL*VSHET+ reduces the risk of having an amyloid-positive positron emission tomography scan. 

Analyses were stratified by APOE*4 status. KL*VSHET+ reduced the risk of amyloid positivity in 

APOE*4 carriers (odds ratio = 0.67 [0.52–0.88]; p = 3.5 × 10−3), but not in APOE*4 non-carriers 

(odds ratio = 0.94 [0.73–1.21]; p = 0.63). The combination of APOE*4 and KL*VS genotypes 

should help enrich AD clinical trials for pre-symptomatic subjects at increased risk of developing 

amyloid aggregation and AD. KL-related pathways may help elucidate protective mechanisms 

against amyloid accumulation and merit exploration for novel AD drug targets. Future 

investigation of the biological mechanisms by which KL interacts with APOE*4 and AD are 

warranted.
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1. Introduction

With Alzheimer’s disease (AD) clinical trials moving toward minimally symptomatic or 

even pre-symptomatic designs (Cummings et al., 2019; Sperling et al., 2011), which can be 

lengthy and costly, there is a crucial need to enrich for subjects likely to develop amyloid 

abnormalities and worsening symptoms. Apolipoprotein E*4 (APOE*4) is the strongest 

genetic risk factor for late-onset AD and a critical mediator of amyloid accumulation in the 

brain (Belloy et al., 2019). APOE*4 carriers, compared to non-carriers, are at about 5-fold 

increased risk of AD (Belloy et al., 2020). Even in pre-symptomatic, cognitively normal 

subjects during early old age (60–80 years), APOE*4 carriers are also at about 5-fold 

increased risk of having an amyloid-positive positron emission tomography (PET) scan 

(Jansen et al., 2015), increasing the risk for future cerebral tau pathology, cognitive decline, 
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and ultimately dementia (Jack et al., 2013b). The APOE*4 genotype is therefore critical in 

estimating an individual’s risk of AD when attempting to enrich AD clinical trials for 

subjects likely to progress relatively quickly on the AD pathological spectrum (Ballard et al., 

2019; Jack et al., 2018; Reiman et al., 2011).

Other genetic factors may mitigate APOE*4-related risk for AD. KLOTHO (KL) is a 

compelling candidate, as it has been implicated as a longevity factor promoting cognitive 

resilience during aging (Arking et al., 2002; Dubal et al., 2014; Kurosu et al., 2005). 

Specifically, heterozygosity (HET+) for the KL*VS genotype has been associated with 

increased serum levels of KLOTHO, which in turn was associated with healthy brain aging 

and synaptic function (Dubal et al., 2014; Yokoyama et al., 2017, 2015). A recent large-scale 

meta-analysis showed that KL*VSHET+ reduced AD risk in APOE*4 carriers by as much as 

30% (Belloy et al., 2020). Additionally, in line with an earlier study (Erickson et al., 2019), 

KL*VSHET+ was associated with reduced amyloid burden in the brains of cognitively 

normal APOE*4 carriers during early old age. The combination of KL*VS and APOE 
genotypes may thus be important in refining individual AD risk and in guiding trial 

recruitment. Prior outcomes on amyloid burden were, however, obtained from cohorts of 

relatively small sample sizes (Belloy et al., 2020; Erickson et al., 2019). Here, we performed 

a well-powered meta-analysis across 5 independent studies to evaluate whether KL*VSHET+ 

reduces the risk of having an amyloid-positive PET scan in cognitively normal APOE*4 

carriers ages 60–80.

2. Materials and methods

2.1. Cohort ascertainment and PET processing

Five AD-related cohorts with genotype and amyloid PET data were included (Table 1). 

Ascertainment and collection of genotype/phenotype data and PET image processing for 

each cohort are described in detail elsewhere (Dagley et al., 2017; Ellis et al., 2009; Jagust et 

al., 2015; Lane et al., 2017; Petersen et al., 2010; Sperling et al., 2020). Briefly, participants 

were included if they were diagnosed as cognitively normal, based off their respective 

study’s clinical assessments, cognitive battery performance criteria, and scoring above 24 on 

mini-mental state examinations. Within each cohort, amyloid PET images were normalized 

to their cerebellar reference region to obtain standardized uptake value ratios (SUVR) or 

distribution volume ratios (DVR) in a composite of cortical brain areas. PET scans were then 

dichotomized as positive (abnormal) or negative (normal) using SUVR or DVR cutoffs 

defined independently in each of the 5 studies (Dagley et al., 2017; Ellis et al., 2009; Jagust 

et al., 2015; Lane et al., 2017; Petersen et al., 2010; Sperling et al., 2020).

Participants provided written informed consents in the original studies. The Stanford 

Institutional Review Board granted the current study protocol an exemption because the 

analyses were carried out on “de-identified, off-the-shelf” data.

2.2. Genetic data processing

Genetic data underwent standard quality control, processing, and ancestry determination as 

previously described (Belloy et al., 2020; Yang et al., 2019). Only non-Hispanic subjects 
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from Northwestern European ancestry were included to obtain the largest, most homogenous 

sample. For the AIBL cohort, genetic data for ancestry determination were not directly 

available, so included subjects were non-Hispanic Whites of European ancestry. For the 

HABS cohort, processing was slightly augmented with regard to prior work: 2 genotyping 

batches were first processed separately (retaining subjects/variants with genotyping rate 

>0.98, genotype missing rate >0.98, Hardy Weinberg equilibrium p < 10−6, and identity-by-

descent pi-hat <0.125) and then merged (Yang et al., 2019).

2.3. Study design and statistical analyses

We evaluated the association of KL*VSHET+ with dichotomized amyloid PET outcome by 

APOE*4 status. All analyses were restricted to PET scans acquired when subjects were 

diagnosed as cognitively normal and between the ages of 60–80 years, consistent with prior 

work (Belloy et al., 2020). In longitudinal studies (ADNI, AIBL, and HABS), only a single 

time point and related age-at-scan was retained per subject: (1) for subjects that only had 

amyloid negative outcomes, the latest time point was retained, and (2) for subjects that had 

an amyloid positive outcome at any time, the first amyloid positive time point was retained. 

Analyses were stratified to APOE*4 carriers (APOE*2/4, 3/4, 4/4) and non-carriers 

(APOE*2/2, 2/3, 3/3), or to the full sample to test the formal interaction between APOE*4 

status and KL*VSHET+. Outcomes were evaluated per cohort using logistic regression 

analyses and combined using fixed-effects inverse-variance weighted meta-analysis (testing 

heterogeneity with Cochran’s Q test). In all stratified models, the outcome was adjusted for 

age, sex, and the first 3 genetic principal components (where available) to account for 

population substructure. To evaluate the interaction between APOE*4 status and 

KL*VSHET+ in the full model, we additionally added terms for APOE*4 status and the 

APOE*4-by-KL*VSHET+ cross-product. Significance was determined as p < 0.05 and 

effects are shown as odds ratios (OR) with 95% confidence intervals [CI].

Due to the wide range of sample sizes across cohorts, we conducted power analysis for each 

cohort for a range of a priori defined parameters and effect sizes at a significance level of p < 

0.05. Specifically, power was calculated for OR values ranging from 0.6 to 0.8, which is 

consistent with expectations from previously reported effect sizes of KL*VSHET+ on AD 

case-control status in APOE*4 carriers (OR = 0.69) and for the APOE*4-by-KL*VSHET+ 

interaction effect (OR = 0.73) (Belloy et al., 2020). This choice is motivated by the large 

correlation between amyloid status in cognitively normal subjects and prospective case-

control status (Jansen et al., 2015). Estimates for prevalence and APOE*4-related risk of 

amyloid positivity in cognitively normal subjects were obtained from a prior large-scale 

amyloid PET meta-analysis (Jansen et al., 2015). Estimates of APOE*4 and KL*VSHET+ 

frequencies in cognitively normal subjects were derived from prior large-scale AD case-

control meta-analyses (Belloy et al., 2020; Farrer et al., 1997).

All analyses were performed in R v3.6.0 (metafor and simple-boot packages).

3. Results

We evaluated the association of KL*VSHET+ with amyloid PET positivity in cognitively 

normal subjects across 5 independent cohorts, comprising 1252 APOE*4 carriers and 2329 
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APOE*4 non-carriers (Table 1). For each cohort and their respective meta-analyses, 

outcomes and power estimates for APOE*4-stratified and APOE*4-by-KL*VSHET+ 

interaction tests are listed in Table 2. KL*VSHET+ was significantly associated with 

decreased risk for amyloid positivity in APOE*4 carriers (OR = 0.67 [0.52–0.88]; p = 3.5 × 

10−3), but not in APOE*4 non-carriers (OR = 0.94 [0.73–1.21]; p = 0.63). The APOE*4-by-

KL*VSHET+ interaction was such that KL*VSHET+ displayed a stronger protective effect 

against amyloid positivity in APOE*4 carriers than in non-carriers, but this effect only 

reached trend-level significance (OR = 0.70 [0.48–1.02]; p = 0.062).

As a sensitivity test, meta-analyses were repeated after selecting PET time points closest to 

age 70.6 (study mean age) in amyloid negative subjects, rather than selecting their last time 

point. Meta-analysis in APOE*4 carriers indicated the same effect as observed in the main 

analysis (OR = 0.68 [0.52–0.88]; p = 3.8 × 10−3). Furthermore, to ensure an independent 

validation effort of prior studies, meta-analyses were repeated after excluding the ADNI 

cohort, in which the association of KL*VSHET+ with amyloid PET burden was investigated 

previously (Belloy et al., 2020). Meta-analysis in APOE*4 carriers indicated significantly 

reduced risk for amyloid positivity (OR = 0.72 [0.55–0.95]; p = 0.020) in this fully 

independent set of studies. In our final sensitivity analysis, we added APOE*2 and APOE*4 

dosage, in addition to the other covariates, to the model. Findings were highly consistent 

with those of the main analyses (Table S1). For all presented meta-analyses, heterogeneity 

tests were non-significant.

4. Discussion

Our results show that KL*VSHET+ reduces the risk of an amyloid-positive PET scan in 

cognitively normal APOE*4 carriers between the ages of 60 and 80. This finding replicates 

and strengthens prior observations that KL*VSHET+ reduces amyloid burden in cognitively 

normal APOE*4 carriers during early old age.

The effect size for the association of KL*VSHET+ with amyloid positivity in APOE*4 

carriers (OR = 0.67) was highly consistent with the previously reported effect size for the 

association of KL*VSHET+ with case-control status in APOE*4 carriers (OR = 0.69) (Belloy 

et al., 2020). Notably, both APOE*4-stratified analyses had a power greater than 0.8 to 

detect the meta-analyzed effect size of KL*VSHET+ in APOE*4 carriers, indicating that the 

lack of effect in APOE*4 non-carriers was not due to power limitations. These findings thus 

validate the protective effect of KL*VSHET+ on AD risk specifically in APOE*4 carriers and 

align with observations that pre-symptomatic amyloid positive subjects are likely to convert 

to AD (Burnham et al., 2016; Jack et al., 2013a). Notably, in APOE*4 carriers, KL*VSHET+ 

only displayed a small protective effect in the Insight 46 cohort (OR = 0.90) and a risk 

increasing effect in HABS (OR = 6.09). However, both samples had low power to detect the 

expected effect size of KL*VSHET+ in APOE*4 carriers and displayed large variance on 

their outcome estimates. Particularly HABS had a small sample size compared to other 

cohorts, which could have led to spurious non-concordant associations. In contrast, in 

APOE*4 carriers from the large A4 cohort, KL*VSHET+ was associated with significantly 

decreased risk for amyloid positivity with a power close to 0.8.
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We did not observe a significant interaction between KL*VSHET+ and APOE*4 to lower risk 

for amyloid positivity, contrary to what was previously reported for case-control association 

testing (Belloy et al., 2020). However, the current effect size for the interaction (OR = 0.70) 

was highly consistent with the previously reported one (OR = 0.73) (Belloy et al., 2020) and 

the p-value was less than 0.1. In this study, the full meta-analysis on 3581 individuals with 

amyloid PET scans only showed a moderate power of 0.65 to detect the APOE*4-by-

KL*VSHET+ interaction. Increasing the sample size of subjects with amyloid PET scans may 

therefore increase power sufficiently to observe a significant interaction effect in future 

studies. Furthermore, while we focused on APOE*4-stratified analyses, it is important to 

consider that APOE-related risk for AD and amyloid pathology varies strongly across 

APOE*2 and APOE*4 dosages, even within the considered APOE*4 positive and negative 

strata. In models that were adjusted for APOE*2 and APOE*4 dosage, we observed no clear 

differences with the main analyses, suggesting that the protective effect of KL*VSHET+ may 

be observed regardless of APOE*2/4, 3/4, or 4/4 status. Future larger-scale studies will be 

required to specifically investigate the role of KL*VSHET+ per APOE genotype, as the 

current study did not provide sufficient power in these substrata.

One limitation is that across the included cohorts, the use of different acquisition methods, 

PET tracers, and study-specific SUVR/DVR thresholds, precluded a single harmonized 

analysis. Because raw SUVR/DVR values were not available for all cohorts, it was also not 

possible to implement a standardization procedure for amyloid positivity inference 

(Mormino et al., 2014). However, these limitations were largely addressed by performing 

cross-cohort meta-analyses that showed no significant heterogeneity. Only in APOE*4 

carriers heterogeneity tests reached trend-level significance, but this was due to large sways 

in effect sizes in ADNI and HABS, which was likely a consequence of these cohorts’ small 

sample sizes. Indeed, prior work indicated that amyloid PET positivity outcomes compare 

well across different amyloid PET tracers (Landau et al., 2014), supporting the current study 

design. Finally, due to the lack of information on Northwestern European ancestry and 

genetic principal components in AIBL, the reported outcomes in AIBL may have higher 

intrinsic variance. The current study focused on subjects of Northwestern European ancestry 

to obtain the largest genetically homogenous sample (majority of the subjects), which 

precludes generalization of our findings. When larger, ethnically diverse samples with 

amyloid PET or cerebrospinal fluid measurements become available, future studies should 

explore the effect of KL*VSHET+ in different ancestral groups.

A functional link between KL*VSHET+ and AD may be reflected in the association of 

KL*VSHET+ with increased KLOTHO protein levels, but it currently remains unclear how 

KL*VS interacts with APOE*4 to modulate amyloid pathology. Some evidence suggests 

that AMYLOID BETA PRECURSOR PROTEIN (APP) regulates KL expression (Li et al., 

2010), which in turn may increase levels of DISINTEGRIN AND 

METALLOPROTEINASE DOMAIN-CONTAINING PROTEIN 10 (ADAM10) to reduce 

amyloid beta burden through autophagy-mediated clearance (Kuang et al., 2017; Zeng et al., 

2019). Because the most prominent effect of APOE*4 with regard to AD is to increase 

amyloid burden, this may explain why the protective effect of KL*VS on amyloid burden 

appears stratified to APOE*4 carriers. These hypotheses require empirical interrogation. 

Furthermore, since amyloid pathology only reflects the initial aspect of AD pathology, to 
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fully understand the role of KL*VS in AD and its potential value for clinical trial 

enrichment, it will also be relevant to evaluate whether KL*VSHET+ affects tau pathology, 

the key driver of disease progression in AD (Bejanin et al., 2017). Finally, the rarer KL*VS 

homozygous genotype, in contrast to KL*VS heterozygosity, has been associated with 

negative effects on lifespan (Arking et al., 2002), brain-aging resilience (Yokoyama et al., 

2017), cognition (Yokoyama et al., 2015), and KLOTHO serum levels (Yokoyama et al., 

2017). It will therefore be relevant for larger subsequent studies to evaluate whether KL*VS 

homozygosity is associated with increased amyloid burden.

5. Conclusion

Overall, our findings suggest that KL*VSHET+ reduces the risk of having an amyloid 

positive PET scan in cognitively normal APOE*4 carriers between the ages of 60 and 80, 

thereby validating prior findings that KL*VSHET+ is associated with reduced amyloid 

burden and AD risk in APOE*4 carriers. This suggests that KL*VS genotype may prove 

useful for clinical trial enrichment. Specifically, restricting APOE*4 carriers to those 

without KL*VSHET+ should enrich pre-symptomatic recruitment studies for subjects at 

increased risk of developing amyloid aggregation and AD. Future investigations of the 

biological mechanisms by which KL interacts with AD are warranted and will support 

exploration of KL-related pathways for novel AD drug targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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