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Abstract

Introduction: Candida spp. are commensal yeasts capable of causing a wide range of infections 

such as superficial, oral, vaginal, or even systemic infections. Despite medical advances, the 

antifungal pharmacopeia remains limited and the development of alternative strategies is needed.

Areas covered: The authors discuss available treatments for Candida spp. infections, 

highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and 

antimicrobial resistance. Moreover, they present new perspectives to improve the activity of the 

available antifungals, discussing their immunomodulatory potential and advances on drug delivery 

carriers. Several new therapeutic approaches are presented including recent synthesized antifungal 

compounds; drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial 

drugs; combination therapies with different compounds or photodynamic therapy; and finally 

innovations based on nano-particulate delivery systems.

Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best 

advantage through modifications that enhance delivery, efficacy, and solubility. However, these 

efforts are met with continuous challenges presented by microbes in their infinite plight to resist 

and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on 

new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the 

next phased approach in treating Candida spp. infections.
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1 Introduction

Systemic Candida spp. infections present a significant challenge to the medical community. 

Infections are difficult to diagnose, treat, and sometimes can relapse as persistent infections 

[1,2]. As part of the natural microbiome, Candida spp. are commensal yeasts found in the 

skin, oral cavity, and gut microbiota [3]. However, impaired host immune responses or tissue 

trauma can lead to dysbiosis and allow commensal yeast to transition into opportunistic 

pathogens [4,5]. Pathogenic Candida spp. can exhibit several virulence factors such as 

adhesins, morphological switching (transitioning from yeast cells to filamentous forms), 

secretion enzymes (proteases and phospholipases), and biofilms [4,5]. Many studies reported 

that Candida biofilms can be formed on the mucosa, skin or medical devices surfaces, and 

lead to oral, vulvovaginal, wound or systemic infections [6–8]. The ability of Candida spp. 

to form biofilms results in several clinical implications since the biofilm structure protects 

Candida cells from host immune system and antifungal drugs [6–8]. Although the biofilm 

formation on abiotic surfaces and its role in systemic candidiasis is already established, the 

formation of Candida biofilms on mucosa surfaces remains questionable [9,10]. Previous 

studies demonstrated that C. albicans form biofilms in vivo on mucosa surfaces in animal 

models of oral [11] and vulvovaginal candidiasis [12], however Swidsinski et al. [10] did not 

find biofilms on vaginal biopsies of patients with candidiasis.

Patients at risk for invasive candidiasis are those experiencing prolonged care in intensive 

care units, patients receiving abdominal surgery, individuals suffering from acute necrotizing 

pancreatitis, hematologic malignant disease, solid-organ transplantation, solid-organ tumors, 

patients receiving hemodialysis, low birth weight or preterm infants, recipients of broad-

spectrum antibiotics, glucocorticoids, or anti-cancer chemotherapy, patients with central 

vascular catheter and/or total parenteral nutrition, and individuals with advanced acquired 

immunodeficiency syndrome (AIDS) [3,13,14]. Thus, there is a significant vulnerable 

patient population at risk for infection. This diverse population can add to the difficulty of 

recognizing infections. Further, the spectrum of medications required to treat underlying 

diseases or conditions within this populations can also present a challenge in effectively 

treating fungal infection.

The arduous task to effectively diagnose and treat fungal infections within the vulnerable 

population is further made difficult by the variance of medically significant candidiasis 

causing species. Candida albicans, Candida glabrata, Candida tropicalis, Candida 
parapsilosis, and Candida krusei are the most frequent pathogens of candidiasis with 

differing patterns of epidemiology and antifungal susceptibility [3,15]. Although the 

infections by non-albicans Candida species have significantly increased, C. albicans remains 

the most prevalent and pathogenic species [16,17]. Recently, a new species has been 

detected worldwide, Candida auris, and has garnered concern due to antifungal resistance 

profiles [18].

The treatment of candidiasis is restricted by the limited therapeutic arsenal, high cost, and 

narrow antifungal drug spectrum of action [19]. Another obstacle is the toxicity profiles 

from certain available therapeutics due to the similarity between eukaryotic fungal and 
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human cells [20], manifesting as nephrotoxicity and hepatotoxicity. Some drug regimens 

require hospitalization to monitor for these toxic effects and can require mediation through 

adjusted dosages, limited use, or eventually discontinuation of therapy [21]. Effective 

treatment is also hampered by global emergence of resistance (Table 1). Developed 

resistance puts tension on an already limited drug arsenal. Drug failure can also occur when 

medications for primary ailments antagonize antifungal agents, creating a maelstrom [22].

In this review, we discuss current available treatments licensed for monotherapy against 

Candida spp. infections (polyenes, azoles, and echinocandins), highlighting advantages and 

limitations. Additionally, we address potential new therapeutic strategies to provide 

perspectives for future management of superficial and invasive candidiasis.

2 Current available treatments

2.1 Polyenes

Polyene drugs are very effective at inhibiting Candida spp. and a multitude of other fungal 

pathogens. Inhibition is enabled through targeting ergosterol, a cholesterol-like substance in 

the fungal cell membrane, a structure important for maintaining cell integrity [23,24]. Until 

now, it was postulated that polyenes lead to ergosterol disruption by forming small channels 

in the fungal membrane and, consequently, promoting leakage of intracellular ions [20,25]. 

However, recent studies have shown that polyenes also form large extra-membranous 

aggregates that extract ergosterol from cell membrane lipid bilayers like a sterol sponge [26–

28]. Therefore, the polyenes mechanism of action could be primarily attributed to ergosterol 

removal [26–28]. Polyenes also damage the fungal cell by forming reactive oxygen species 

(ROS) and by inhibiting the membrane transporters of some amino acids and glucose [29]. 

The commonly used polyenes for Candida spp. treatment are amphotericin B (AmB) and 

nystatin.

2.1.1 Amphotericin B—AmB is poorly absorbed in the gastrointestinal tract and 

parenteral administration is required. Despite its high efficiency, this antifungal causes 

serious collateral damage including nephrotoxicity, anaphylaxis, and electrolyte 

abnormalities [30,31]. Side effects can be explained by poor solubility in water and 

aggregate formation, which are also able to extract cholesterol from mammalian cells 

causing toxicity [30,32]. Due to low aqueous solubility, AmB needs to be ensconced by a 

carrier agent, resulting in different pharmaceutical formulations. Commercially available 

AmB formulations are Fungizone® (original formulation with sodium deoxycholate), 

Abelcet® (lipid complex formulation), Amphocil® (colloidal dispersion formulation), and 

AmBisome® (liposomal formulation), all administrated intravenously.

Over the years, many studies have been performed to compare the efficacy and safety of 

these different formulations. Recently, Steimbach et al. [33] evaluated the treatments with 

AmB deoxycholate and lipid-based AmB formulations in a systematic review including 

randomized controlled trials in patients with any degree of immunosuppression and 

susceptibility to invasive fungal infection. Analyzing several studies performed in the U.S. 

(9), France (4) and India (3), the authors found that AmB deoxycholate presented the same 

efficacy of the lipid-based AmB formulations. However, lipid-based formulations showed a 
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safer profile with reductions in adverse effects, including nephrotoxicity, fever, chills, and 

vomiting.

Despite the lack of oral formulations and adverse effects, AmB continues to be widely used 

due to its broad spectrum fungicidal activity against yeasts, molds, and dimorphic fungi [34]. 

Despite the extensive use of polyenes over the past 50 years, the emergence of Candida spp. 

resistance to this antifungal class is uncommon, possibly because removal of ergosterol 

alters all cellular processes dependent on membrane ergosterol and simultaneous mutations 

at these targets are highly improbable [26,28,33–35]. Although resistance is rare, Bailly et 
al. documented increasing MIC values of C. glabrata strains from patients under AmB 

treatment, and suggested that reduced susceptibility could be attributed to its haploid 

genome, making it more prone to phenotypic changes upon genetic mutation. C. lusitaniae, 

another haploid Candida yeast, is often associated with resistance to AmB [36,37].

2.1.2 Nystatin—Another polyene used to treat Candida spp. infections is nystatin. This 

compound is not absorbed by the gastrointestinal tract but is also very toxic when provided 

parenterally and is therefore more commonly used topically [38]. Available in local 

preparations, its administration has been widely used for treating superficial infections such 

as oral and vulvovaginal candidiasis [39]. The drug is widely used due to its broad-spectrum 

antifungal activity [38,40]. Importantly, most Candida strains remain susceptible to nystatin. 

In a study by Fan et al., researchers found both C. albicans and non-albicans Candida 
isolates from vulvovaginal candidiasis were susceptible to nystatin [41]. A study evaluating 

oropharyngeal candidiasis by Yu et al., 100% of isolates showed susceptibility to nystatin 

with MIC values of ≤0.015–4 μg/mL against C. albicans, 1–4 against C. glabrata, 0.125–2 

against C. tropicalis, and 1–2 against C. parapsilosis [42].

Nystatin can present challenges due to drug interactions [43,44]. A recent in vitro study 

performed by Scheibler et al. proved that nystatin efficacy to treat oral candidiasis is reduced 

by chlorhexidine, an antiseptic agent widely used to control oral infections in healthy and 

immunosuppressed individuals [43]. The combination treatment of nystatin and 

chlorhexidine affected the efficacy of both drugs at inhibiting C. albicans planktonic and 

biofilms states. The MICs of nystatin and chlorhexidine were higher when these drugs were 

used sequentially compared to their respective individual MICs. The nystatin-chlorhexidine 

combination led to hindered reductions in biofilm total biomass compared to individual 

treatments. HPLC analysis indicated that the concentrations of nystatin and chlorhexidine in 

mixture were significantly lower than their respective values in single formulations. This 

was likely a result of increased compound degradation within the mixture formulations.

In spite of drug interaction challenges, nystatin can inhibit fungi as an immunomodulator. 

Cell membrane lipids play crucial roles in modulating both innate and adaptative immune 

responses through pathogen recognition, lymphocyte activation, and cytokine signaling 

[45,46]. Using a vulvovaginal candidiasis model in rats, Zhang et al. demonstrated that 

nystatin treatment enhanced vaginal mucosa immune responses against C. albicans by up-

regulating IFN-γ-related cellular response, the IL-17 signaling pathway, and IgG-mediated 

immunity [45]. Therefore, the immunoregulatory role of nystatin presents a promising field 

that needs further exploration to fully recognize its potential.
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2.2 Antifungal azoles

Members of the azole class inhibit 14α-lanosterol demethylase, one of the enzymes 

responsible for ergosterol biosynthesis, leading to fluidity reduction, alterations in the 

activity of membrane-associated enzymes, and inhibition of growth that result in cell lysis 

and death [47]. The azoles consist of two subclasses based on the number of nitrogen atoms 

in the ring: imidazoles, which contain two nitrogen atoms, and triazoles, formed by three 

nitrogen atoms [48]. Imidazole was the first to be introduced, but the class now includes 

miconazole, ketoconazole, tioconazole, butoconazole, clotrimazole, econazole, 

sertaconazole, and terconazole. These compounds present broad-spectrum activity against 

different Candida spp. with various formulations available [49]; however, due to toxicity, 

currently, they are recommended for treating superficial candidiasis such as oral and 

vulvovaginal candidiasis [47,50]. Improvements in the safety profiles were achieved with the 

creation of the second subclass, triazole. This group includes: fluconazole, itraconazole, 

voriconazole, and posaconazole [47,51–55].

2.2.1 Fluconazole—Fluconazole and itraconazole are first generation compounds within 

the triazole subclass. Fluconazole can be provided via oral or parenteral administration, 

making it amenable for treating a variety of candidiasis infections, such as oropharyngeal, 

esophageal, peritoneal, vaginal, and disseminated [47]. Fluconazole has high gastrointestinal 

absorption with similar concentration obtained by endogenous administration. Since 

fluconazole can reach cerebrospinal fluid and its concentration in urine is higher than serum, 

fluconazole is used to treat central nervous system and symptomatic cystitis Candida spp. 

infections [56,57]. The use of fluconazole during pregnancy, mainly, in the first trimester 

should be avoided due to the risk of spontaneous abortion and malformations [58,59]. 

Taking this into account, the FDA does not recommend using fluconazole at any stage of 

pregnancy. Another limitation of fluconazole is the pharmacological interaction with certain 

drugs that can result in decreased efficacy and increased toxicity for one or both 

administered drugs [60]. Fluconazole-drug interactions have already been described with 

several drug classes, including tacrolimus, cyclosporine, cisapride, and warfarin [61,62].

The efficacy of fluconazole as well as its convenience and patient tolerance makes this 

antifungal the first option for the treatment of oral [63] and vulvovaginal candidiasis [63,64]. 

In a recent meta-analysis study, involving 4,042 participants with oral candidiasis, Fang et 
al. concluded that fluconazole had better mycological cure rate compared to other antifungal 

drugs: itraconazole, miconazole, clorimazole, ketoconazole, nystatin, and amphotericin B. 

However, the incidence of recurrence rate and adverse effects were not evaluated by these 

authors [63]. Qin et al. [65] performed a meta-analysis review to compare the effectiveness 

of different treatments for vulvovaginal candidiasis, including 41 randomized controlled 

clinical trials. Nine antifungal drugs showed more effectiveness than placebo in the 

treatment of patients. Fluconazole was the best antifungal drug, followed by clotrimazole, 

miconazole, itraconazole, ketoconazol, econazole, butoconazole, terbinafine and 

terconazole. Denison et al. showed that the efficacy of oral or topical azole treatments was 

similar in relation to clinical cure of uncomplicated vulvovaginal candidiasis, however the 

oral treatment cleared yeast from the vagina better than topical ones [66].
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Fluconazole has been shown to be effective in the treatment of 70–80% of Candida strains 

and therapeutic failure is usually associated with susceptibility profile of each Candida strain 

[64]. C. albicans and mainly non-albicans Candida species are becoming increasingly 

resistant to fluconazole [64,66]. Therefore, an accurate diagnosis should be performed to 

guide the selection of the appropriate treatment, including culture confirmation, species 

identification techniques, and in vitro tests of susceptibility to antifungal drugs [64,67]. 

Nystatin can be used as a treatment option in the case of oral and vulvovaginal candidiasis 

resistant to fluconazole [67,68]. Other alternatives include flucytosine and AmB creams for 

vulvovaginal candidiasis and itraconazole, or posaconazole and AmB deoxycholate 

suspensions for oral candidiasis [57].

In summary, fluconazole has been available for almost three decades; this compound is 

generic, inexpensive and largely safe outside of pregnancy. Limitations are few in terms of 

toxicity, but shortcomings for treating mucosal infections can occur due to resistance in non-

albicans Candida species and more recently C. albicans.

2.2.2 Itraconazole—Like fluconazole, itraconazole is also available for oral and 

intravenous use; however, it has poor aqueous solubility and low bioavailability [69]. Thus, 

it is recommended for fluconazole refractory Candida infections [57]. In 2018, a new oral 

formulation, SUBA itraconazole capsules (SUper BioAvailability), was approved by the 

Food and Drug Administration (FDA). This new formulation is based on a polymeric matrix 

that controls itraconazole release in the duodenum, improving dissolution and absorption 

[70,71]. In prophylaxis for stem cell transplantation and treatment for hematological 

malignancies patients, the SUBA®- itraconazole formulation presented more rapid 

therapeutic levels and less inter-patient variability in comparison to the traditional 

itraconazole formulation [71].

2.2.3 Voriconazole and Posaconazole—Voriconazole and posaconazole are 

members of the second generation triazoles, mainly developed to address emergent 

fluconazole and itraconazole resistance. These compounds are considered fungicidal, have a 

broader spectrum of activity compared to the earlier azoles, and are indicated for 

oropharyngeal and invasive candidiasis [57,72]. They have demonstrated in vitro activity 

against most Candida species [73]. Rodrigues et al. verified that voriconazole was notably 

more effective than fluconazole against C. glabrata biofilms, in which voriconazole had 

better diffusion through the biofilms and higher cell penetration capacity [54]. Although 

voriconazole and posaconazole demonstrates fungicidal activity and broader spectrum than 

fluconazole in in vitro studies, there is little comparative clinical data among these 

antifungals. El-Ghmmaz et al. [74] compared the effectiveness of voriconazole and 

fluconazole in preventing invasive fungal infections in 70 patients undergoing hematopoietic 

stem cell transplantation. The prophylaxis with voriconazole did not differ from fluconazole 

regarding the prevention of invasive fungal infections and overall survival. Devanlay et al. 
[75] analyzed the posaconazole and fluconazole as primary prophylactic antifungal agents in 

91 patients with acute myeloid leukemia. The results did also not distinguish any difference 

between posaconazole and fluconazole prophylaxis. However, mycological examination of 
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stools showed an increased colonization by non-albicans Candida species in patients treated 

with fluconazole, suggesting a selection pressure on Candida growth by this antifungal.

Voriconazole and posaconazole are available in oral and intravenous formulation [57,72]; 

however, their pharmacokinetics represent a therapeutic challenge [52,76]. Voriconazole has 

good oral bioavailability, but its absorption can be influenced by food [57]. Posaconazole 

provides a delayed-release tablet formulation with improvements in absorption [77], 

reaching more serum drug concentration and higher efficacy than oral suspension 

formulation [77,78]. Both antifungals exhibit highly variable inter- and intra-patient 

pharmacokinetics, and numerous factors have been associated with their variability in 

plasma levels, such as altered intestinal absorption, drug interactions, diarrhea, 

chemotherapy, age, and weight [76].

In a recent study, Hachem et al. compared the safety and efficacy of voriconazole and 

posaconazole as prophylactic drugs for invasive fungal infection in 200 patients with 

hematological malignancies in the U.S. [79]. The efficacy was very similar between the 

groups with comparable mortality rates. However, symptomatic adverse effects were more 

frequent in the voriconazole group, while posaconazole was better tolerated by patients. 

Unfortunately, liver function abnormalities were more common in the posaconazole group. 

Other specific adverse effects have been reported for these antifungals. The administration of 

voriconazole was associated with skin photosensitivity [80] and increased risk for cutaneous 

squamous cell carcinoma in patients who underwent lung and hematopoietic cell transplants 

[81–83]. Parkers et al. reported visual hallucinations and neurological disturbances in a 

patient with high posaconazole concentration in serum, suggesting that patients treated with 

new formulations of posacanozole should be monitored for visual and central nervous 

system (CNS) alterations [84].

2.2.4 Isavuconazole, Ravuconazole, and Albaconazole—More recently, 

additional triazole agents were developed, including isavuconazole, ravuconazole, and 

albaconazole [47,85]. Isavuconazole is available in oral or intravenous administrations and 

use for invasive candidiasis was investigated in a recent Phase 3 clinical trial 

(Clinicaltrials.gov, NCT00413218), in which the treatment with isavuconazole showed 

similar efficacy and safety to the treatment with caspofungin followed by voriconazole [86]. 

In another clinical trial (Phase 2), isavuconazole also exhibited comparable efficacy and 

safety to fluconazole for the treatment of esophageal candidiasis [87]. Ravuconazole and 

albaconazole are undergoing clinical trials for use in intravenous and oral formulations, 

respectively [88]. Both antifungals present promising effects for the treatment of fungal 

infections caused by fluconazole and itraconazole resistant strains [88].

2.2.5 Azole resistance—Due to the numerous advantages of the azoles, this antifungal 

class has been used as a gold standard therapy for over 50 years; however, this has resulted 

in the global emergence of resistant strains [89–92]. Azole resistance mechanisms developed 

by Candida spp. have widely been investigated, and currently three main mechanisms are 

described: (1) overexpression of membrane transporters [85,93,94]; (2) alterations of 

ergosterol biosynthesis [95,96]; and more recently, (3) alterations in sterol import [97].
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Overexpression of membrane transporters is an important resistance mechanism of Candida 
spp. to azole agents. Two classes of membrane transporters in Candida cell membrane have 

been associated to azole resistance: ATP binding cassette (ABC) and major facilitator 

superfamily (MFS). Both classes are integral cell membrane proteins with different 

mechanisms of obtaining energy to drive efflux of substrates as azoles. The ABC proteins 

are primary active transporters that employ energy from the hydrolysis of ATP, while MFS 

proteins are secondary active transporters that use a proton gradient from the cell membrane 

as an energy source to efflux drugs [94,98]. The increased expression of ABC and MFS 

transport proteins have been correlated, respectively, with the overexpression of Candida 
spp. drug resistance genes (CDR1 and CDR2) and multi-drug resistant genes (MDR1 and 

MDR2) [98]. The overexpression of CDR and MDR genes was correlated with decreased 

azole susceptibility in several Candida spp., such as C. albicans [99], C. glabrata [100], C. 
parapsilosis [101], and C. auris [102].

Azoles also exert less efficacy when there are alterations to ergosterol biosynthesis, leading 

to decreased affinity to the fungal cell target [95]. Erg11 is an essential enzyme that 

regulates the ergosterol biosynthesis pathway. Mutations in ERG11 cause amino acid 

substitutions that result in proteins being unable to binds to azoles, consequently generating 

azole resistance [94]. Flower et al. sequenced ERG11 for 63 C. albicans fluconazole 

resistant isolates and observed that 87% presented at least one mutation in the ERG11 gene 

[96]. A number of amino acids substitutions have been correlated to azole resistance: 

A114S, Y132H, Y132F, K143R, Y257H, K143Q, F145L, S405F, D446E, G448E, F449V, 

G450E, and G464S [95,96]. In a recent multicenter study, Chowdhary et al. found 90% of 

fluconazole resistant C. auris isolates among 350 strains were caused by amino acid 

substitutions Y132 and K143 in ERG11 [103].

Fungal cells exposed to azoles must synthesize more endogenous ergosterol or import 

exogenous sterol to survive antifungal treatment [94,97]. In 2018, Lin et al. showed that the 

presence of exogenous cholesterol or ergosterol in growth media made C. glabrata strain 

highly resistant to fluconazole and voriconazole. In contrast, C. glabrata mutant strain 

lacking the AUS1 gene that encodes a sterol influx transporter exhibited hypersensitivity to 

azoles [97]. Therefore, Candida spp. can scavenge free sterols for the cell membrane as 

cholesterol, acquiring resistance to azole antifungals.

2.3 Echinocandins

Echinocandins inhibit (1,3) β-D glucan synthase (encoded by FKS genes) that are 

responsible for the biosynthesis of glucan, the major polysaccharide present in the fungal 

cell wall. The absence of this target polysaccharide in human cells results in low toxicity. 

Other advantages of this antifungal class includes low propensity for drug-drug interactions 

and rapid fungicidal activity against Candida spp., including triazoles-resistant clinical 

isolates. The available echinocandins are caspofungin, micafungin, and anidulafungin. All 

the echinocandins have large molecular weight and are available in intravenously 

formulations; thus, the absence of an oral formulation is a limitation of this antifungal class 

[104–107].
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Candida spp. resistant to echinocandins are uncommon; varying from 1 to 10% of the total 

isolates depending on the species analyzed [108–110]. Recent data indicate that the 

resistance rates to echinocandins have remained low for most Candida isolates: C. albicans 
(0–0.1%), C. tropicalis (0.5–0.7%), and C. krusei (0–1.7%) [89]. C. lusitaniae, C. 
parapsilosis, and C. guilliermondii are known to have reduced susceptibility to 

echinocandins, and C. glabrata is considered the most resistant species associated with 

treatment failures [111–113]. C. glabrata has shown an increase in resistance in recent years, 

reaching rates of 8 to 11% [89]. Resistant C. glabrata isolates tended to be non-susceptible/

resistant to at least two echinocandins [89] and can exhibit cross-resistance to fluconazole 

[113]. Candida auris, also well known for fluconazole resistance, exhibits variable 

susceptibility to echinocandins with resistant rates reported at 2–7% in India, 4% in the U.S., 

and 7% among isolates collections from Pakistan, South Africa, and Venezuela 

[103,114,115].

Candida spp. resistance to echinocandins occurs due to mutations in FKS genes (FKS1 and 

FKS2), which are responsible for the expression of the (1,3) β-D glucan synthase. Hot spot 

mutation regions in FKS1 have been observed for C. albicans, C. krusei, C. parapsilosis, and 

C. auris [103,110,116–120], while mutations on both FKS1 and FKS2 were reported for C. 
glabrata [118]. Acquired resistance to echinocandins has also been associated with a 

compensatory increase in cell wall chitin in response to inhibition of (1,3) β-D glucan by 

this antifungal class [112,113]. Walker et al. demonstrated that the in vitro treatment of C. 
albicans with a sub-MIC level of caspofungin led to an increase in chitin content, that 

resulted in a reduction of susceptibility to caspofungin [112]. Using a mouse model of 

systemic candidiasis, Lee et al. verified that after 48 h post-infection, caspofungin treatment 

induced an increase in chitin in C. albicans cells recovered from kidneys [121]. In addition, 

some of the recovered clones had acquired a point mutation in FKS1. The authors suggested 

that two non-exclusive mechanisms can affect echinocandins sensitivity: acquisition of 

FKS1 mutations and elevation of chitin levels via the stimulation of cell wall integrity 

pathways. In 2020, Walker et al. showed that increased chitin exposure in C. albicans cells, 

in response to caspofungin treatment, altered cytokine production by macrophages, 

suggesting that cell wall remodeling influences host immune responses [113]. Therefore, the 

understanding about the gene mutations and wall remodeling processes during Candida spp. 

infection can provide new perspectives to improve the drug efficacy [121].

Efficacy among Candida isolates and low toxicity profiles means echinocandins are 

recommended as the first line defense for treatment of suspected or documented candidemia 

and invasive candidiasis [57,122]. This recommendation is supported by clinical trials that 

reported echinocandins class superiority compared to other antifungal classes when treating 

invasive Candida infections [123,124]. Additionally, recent studies demonstrated that 

echinocandins are capable of eradicating Candida biofilms, providing an interesting therapy 

option for catheter-related Candida biofilm infections [125–127]. Basas et al. compared the 

efficacy of anidulafungin with amphotericin B (L-AmB) in the treatment of C. albicans and 

C. glabrata biofilms, using in vitro and in vivo models [126]. Anidulafungin exhibited 

greater inhibitory activity than L-AmB against biofilms formed in vitro on silicone discs. 

The minimum biofilm eradication concentration for 90% (MBEC90) of anidulafungin was > 

100-fold and > 1000-fold more effective than L-AmB for C. glabrata and C. albicans strains, 
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respectively. In the in vivo study, central venous catheters were inserted into rabbits infected 

by Candida strains. Antifungal lock therapy with L-AmB and anidulafungin were able to 

reduce fungal burden at a similar capacity against C. albicans; however, anidulafungin was 

more effective than L-AmB against C. glabrata.

3 Therapeutic approaches in development

3.1 New antifungal compounds

To overcome the limitations with currently available treatments new synthetic and natural 

antifungal compounds have been investigated [128]. For all types of compounds, the main 

challenges involve the identification of substances with broader antimicrobial spectra and 

action mechanisms that limit the emergence of resistant strains, while maintaining good 

pharmacokinetic and low toxicity [129–131].

3.1.1 Structure modifications to existing antifungal classes

3.1.1.1 Modified amphotericin B: Many of the new synthetic compounds focus on 

structural modifications in the already available drugs, including polyenes, azoles, and 

echinocandins. Among them, enchochleated amphotericin B (Coch-AmB) is a new 

formulation that includes this polyene in cochleates (phospholipid spiral multilayered 

structure), providing oral administration of amphotericin B. The efficacy of Coch-AmB was 

demonstrated in systemic candidiasis mouse model [132], and the compound is currently 

undergoing safety and efficacy evaluation in patients with vulvovaginal candidiasis in a 

phase 2 clinical trial [129].

3.1.1.2 Modified Azoles: A large number of antifungal compounds have been developed 

based on modified azoles structures [133,134]. Shrestha et al. modified fluconazole by 

replacing one of the triazole rings with a linear alkyl chain and by adding different structures 

on the phenyl ring, generating compounds active against Candida spp. and less cytotoxic to 

mammalian cells according to in vitro assays [133]. Xie et al. synthesized twenty-nine novel 

triazole analogues of ravuconazole and isavuconazole, verifying that most of them showed 

in vitro antifungal activity, including activity against C. albicans, C. glabrata, and C. 
parapsilosis strains [134]. Based on the structure-activity relationships (SAR) analyses, these 

authors concluded that the most effective compounds were achieved by replacing the 4-

cyanophenylthioazole moiety of ravuconazole with fluorophenylisoxazole [134]. Other 

researchers designed tetrazoles with metal-binding groups, resulting in molecules more 

selective for fungal sterol biosynthesis and with longer half-lives, designated as tetrazoles 

VT-1598, VT-1129, and VT-1161 [135,136]. All of them showed promising results in 

preclinical studies, and VT-1161 (Oteseconazole) is currently in a phase 3 clinical trial for 

the treatment of vulvovaginal candidiasis [137]. Tetrazoles have showed potent in vitro and 

in vivo inhibitory activity against azole-and echinocandin-resistant Candida isolates, 

including C. glabrata, C. krusei and C. auris [137–139]. Furthermore, VT-1161 

demonstrated excellent efficacy and safety in a murine model of vulvovaginal candidiasis, 

with high volume of distribution, high oral absorption, long half-life, and rapid penetration 

into vaginal tissues [140].
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3.1.1.3 Modified Echinocandins: Structural modifications of echinocandins have also 

been generated. Rezafungin, is a new antifungal derived from anidulafungin that is in phase 

2 clinical trial to test efficacy against candidemia and invasive candidiasis. The stability that 

provides a longer half-life along with a favorable safety profile permits rezafungin to be 

administered weekly rather than daily. This extended release drug should reduce patient 

hospitalization times by altering therapeutic regimens. In addition, rezafungin has efficacy 

for treating less-susceptible fungal pathogens and shows low propensity to induce antifungal 

resistance [141]. Hager et al. demonstrated that rezafungin was more potent than 

amphotericin B and micafungin against C. auris, reducing kidneys fungal burden in 

immunosuppressed mice. In this report, rezafungin (20 mg/kg) was administered on 

alternating days, while amphotericin B (0.3 mg/kg) and micafungin (5 mg/kg) were given 

daily. The data suggest that rezafungin can inhibit C. auris even when provided in less 

frequent doses [142].

3.1.2 Development of new antifungal classes—In addition to developing 

antifungals derived from polyenes, azoles, and echinocandins, new antifungal classes have 

been introduced in the last years (Figure 1) [137]. Among them, enfumafungin is an 

antifungal targeting the cell wall by inhibiting the (1,3)β-D glucan synthase. Although, 

enfumafungin shares the same drug target with echinocandins, this compound presents a 

structurally distinct antifungal class [143]. Enfumafungin is a glycosylated fernene-type 

triterpenoid produced by the fungus Hormonema carpetanum. Due to the potent antifungal 

activity, enfumafungin is being employed in the development of the antifungal ibrexafungerp 

(SCY-078) [144]. The advantages of SCY-078 are the possibilities of both intravenous and 

oral administrations and the fungicidal activity against Candida spp., including strains 

resistant to azoles and echinocandins [129,145–150]. SCY-078 oral formulation is in clinical 

trial to treat invasive and vulvovaginal candidiasis [144]. Azie et al. reported that 

ibrexafungerp has numerous attributes for the treatment of vaginal candidiasis, including 

oral one-day dose, high tissue penetration, increased activity at low pH, low risk for drug-

drug interactions and reduced toxicity [151].

Another promising antifungal is manogepix (fosmanogepix APX001A), which inhibits 

Gwt1, an enzyme required in the glycosylphosphatidylinositol biosynthesis pathway, a 

component present in the yeast cell wall and membrane [52,152]. This compound has 

exhibited broad-spectrum activity against Candida spp., except for C. krusei [153,154]. 

Efficacy against C. auris has also been demonstrated in in vitro and in vivo studies and phase 

2 clinical trials are ongoing [154–156]. A concern has been brought to light through a new 

study which identified two efflux-mediated mechanisms in C. albicans and C. parapsilosis 
that were associated to decreased manogepix susceptibility [157], suggesting the potential 

for resistance or reduced efficacy that will need to be monitored.

Since the cell wall and plasma membrane are the main targets of antifungal drugs, some 

researchers have focused on the development of antifungals with alternative target sites, such 

as arylamidine T-2307 [48,52,158]. Arylamidine mode of action inhibits the respiratory 

chain, compromising cell energy production [159]. In a study by Mitsuyama et al., 
arylamidine T-2307 exhibited potent inhibition against C. albicans, including fluconazole 

resistant strains, and showed efficacy in the treatment of disseminate candidiasis in a mouse 
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model [160]. More recently, Wiederhold et al. demonstrated arylamidine T-2307 inhibitory 

activity against C. auris in a mouse model, in which treatment improved the survival rate and 

reduced the kidney fungal burden compared to an untreated group [158].

3.1.3 Identification of new bioactive molecules from natural products—
Natural compounds have always been important sources of new antimicrobial drugs [161–

163]. Since the first modern antimicrobial agents, many antibacterial and antifungal drugs 

have taken the form of semi-synthetic derivatives of natural products [162], including two 

relevant antifungal classes: polyenes and echinocandins [128]. Natural product drug 

discovery is an intensive labor that requires the isolation and characterization of several 

bioactive molecules [161,162]. The feasibility of high-throughput screening shifted research 

focus to synthetic compound libraries, but the current emergence of multi-drug resistant 

strains is reviving attention for natural compounds in academic and biotechnology sectors 

[162].

Most natural compounds investigated include extracts from plant or microbial origins 

[161,164–166]. In a systematic review, Singla et al. showed that plants from the order 

Lamiales, Apiales, Asterales, Myrtales, Sapindales, Acorales, Poales and Laurales exhibit 

antifungal activity against Candida spp. [161]. Likewise, antifungal activity has been 

reported from different microorganisms, such as Lactobacillus spp. [166] and Streptococcus 
spp. [165,167]. Antifungal activities has been associated with compounds belonging to the 

terpenoids, phenylpropanoid, alkaloids, flavonoids, polyphenol, naphthoquinone and 

saponins classes, but their mechanisms of action and possible synergism with antifungal 

drugs still need to be investigated for complete elucidation [161].

3.1.4 Search for compounds targeting Candida spp. virulence mechanisms.
—Another attractive antifungal approach is the identification of compounds targeting 

specific Candida spp. virulence mechanisms. The advantages to treat candidiasis with anti-

virulence agents include the preservation of the host normal microbiome, as well as lower 

toxicity and reduced selective pressure for developing resistance in relation to drugs that 

target fungal growth [168–175]. Moreover, anti-virulence strategies can have a substantial 

impact for both prophylactic and therapeutic management of candidiasis [169]. In this 

context, many authors have sought inhibitors of hydrolytic enzymes, morphogenesis, 

adhesion and biofilm formation [171].

To identify new antifungal agents targeting virulence mechanisms, Bonvicini et al. 
investigated some compounds of chalcones that are precursors of flavonoids. Forty 

chalcone-based analogues were screened against C. albicans, and two compounds (5 and 7) 

were capable of weakening its pathogenicity factors. Both compounds inhibited hyphae and 

biofilm production, indicating a potential use in anti-infective therapeutics [168]. Romo et 
al. screened 30,000 drug-like small-molecule compounds from the DIVERSet library 

(ChemBridge Corporation), identifying N-[3-(allyloxy)-phenyl]-4-methoxybenzamide 

(9029936) as the major compound with inhibitory activity against filamentation and biofilm 

formation of C. albicans [173]. Prasath et al. investigated the effects of palmitic acid on the 

virulence factors of C. tropicalis. After 48 h of treatment, palmitic acid decreased the 

enzymatic activity, leading to a reduction of 53 to 72% of lipase production and a total 

Scorzoni et al. Page 12

Expert Opin Pharmacother. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibition of protease production. The authors suggested that palmitic acid can be applied to 

increase the efficacy of conventional antifungal drugs in the control of non-albicans Candida 
species [176].

3.2 Drug repurposing

Drug repurposing is an interesting strategy to investigate new uses of existing compounds 

[177,178]. Two principles support the drug repurposing concept: 1) many active drugs are 

not fully understood and 2) there are common molecular and genetic factors between 

different pathologies [179]. Since repurposed candidates have already been evaluated for 

pharmacokinetic, pharmacodynamic, and toxicological effects, the process is faster and 

cheaper compared to traditional novel drug discovery [177,179–181]. Within this context, a 

number of off-patent compound libraries have been screened to find antifungal agents, 

evaluating effects on fungal growth, morphogenesis, and biofilm formation of Candida spp., 

as well as synergistic action with antifungal drugs. To date, various compounds with 

inhibitory activity against Candida spp. have been identified including antimicrobial 

(antibacterial and antiviral) agents and non-antimicrobial pharmacological classes [182–

186].

3.2.1 Antimicrobial agents—Repositioning antibacterial drugs as antifungal is 

considered a promising strategy for treating candidiasis [182,183], and in some cases, 

candidate compounds can also be employed for the dual purpose for treating mixed 

infections caused by bacteria and fungi [182]. Jadhav et al. found that moxifloxacin, an 

antibacterial fluroquinolone, can decrease both planktonic and biofilm states of C. albicans, 

as well as inhibit the yeast to hyphal transition [182]. Interestingly, the moxifloxacin 

antifungal mechanism of action was multi-targeted. Moxifloxacin exhibited good binding to 

the active sites of C. albicans topoisomerase II, an enzyme associated with DNA replication, 

and also affected a number of genes involved in C. albicans morphogenesis via MAPK and 

cAMP-PKA pathways [182].

Among a total of 21 sulfa antibacterial drugs, Eldesouky et al. [183] found 15 compounds 

with anti-Candida activity. These compounds exhibited synergistic action with fluconazole 

against C. albicans fluconazole resistant isolates in both in vitro assays and a Caenorhabditis 
elegans in vivo model. Synergistic activity was attributed to dihydropteroate synthase 

(DHPS) enzyme inhibition by sulfa drugs, leading to restriction of the Candida ergosterol 

biosynthesis pathway and, consequently, improving the effect of fluconazole [183].

Boron containing compounds have known antibacterial activity [187] and the boric acid has 

been clinically used as topical antifungal agent for vulvovaginal candidiasis caused by azole 

resistant Candida strains [64]. Based on this evidence, recently, Rossoni et al. tested the 

antifungal effects of surface pre-reacted glass-ionomer (S-PRG) eluate that is used in dental 

materials to suppress cariogenic bacteria and reduce dental plaque accumulation. S-PRG is a 

material that releases six types of ions, BO3
3- (Borate), Na+, Sr2+, SiO3

3-, Al3+ and F-, in the 

oral cavity. S-PRG eluate exhibited antifungal activity against C. albicans, C. glabrata, C. 
krusei, and C. tropicalis, reduced in vitro biofilm formation and protected G. mellonella 
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against experimental candidiasis, demonstrating therapeutic potential for oral candidiasis 

[188].

Antiviral drugs have also been studied for repurposing potential. Yousfi et al. focused their 

studies on ribavirin, a guanosine analog with broad-spectrum activity against RNA and DNA 

viruses that is commonly used for the treatment of hepatitis C virus (HCV) [189]. Ribavirin 

exhibited antifungal activity against 63 Candida spp. isolates among 100 isolates tested. C. 
parapsilosis and C. tropicalis demonstrated the greatest susceptibility. Promisingly, ribavirin 

was effective against multidrug-resistant C. albicans and showed synergistic action with 

fluconazole, itraconazole, and posaconazole [189].

Other investigational agents for antifungal use include HIV-protease inhibitors, such as 

indinavir, ritonavir, and saquinavir [184,190,191]. Studies that investigated these compounds 

note clinical evidences that treatment of HIV positive patients with protease inhibitors 

results in improved mucosal Candida infections, with direct effect on fungi rather than 

augmenting host immune status [192]. Cassone et al. demonstrated that indinavir and 

ritonavir were able to reduce the growth and secretory aspartic proteases (Sap) production by 

C. albicans, as well as inhibit the development of vaginal candidiasis in rats with an efficacy 

comparable to fluconazole [190]. Calug et al. reported a significant structural similarity 

between C. albicans Sap2 and HIV-1 protease, inciting the development of a single 

inhibitory drug able to interact with both viral and fungal targets [191].

3.2.2 Non-antimicrobial agents—Several studies have reported antifungal properties 

from pharmacological classes that lacked antimicrobial characterization, including anti-

inflammatory, anticancer, antidepressant, antipsychotic, anesthetics, antihyperlipidemic and 

others (Table 2). As an example, auranofin, an anti-inflammatory drug used to treat 

rheumatoid arthritis [193], was investigated by Fuchs et al. as a repurposed antibacterial and 

antifungal agent [185]. Auranofin was capable of inhibiting Gram-positive bacteria, as well 

as fungal species, such as Candida spp. Auranofin inhibited thioredoxin reductase, part of 

the thioredoxin system responsible for protecting microbial cell against oxidative stress. 

Since the thioredoxin system is conserved in both prokaryotic and eukaryotic organisms, 

auranofin can be the initiate of a future class of antibiotics and antifungals based on this new 

microbial target [185,194,195].

Seeking additional repurposing antifungals, Sun et al. investigated NSC319726, a 

thiosemicarbazone anticancer agent [196]. This compound had antifungal activity against 

Candida spp. in the range of 0.1 – 2.0 μg/mL and synergistic action with fluconazole, 

itraconazole, and voriconazole. Using a high concentration of NSC319726, synergistic 

activity was also found with caspofungin. Through transcriptome analysis, NSC319726 

mechanism of action was correlated to ribosome biogenesis inhibition and induction of 

oxidative stress [196]. In another study, Gouri et al. investigated the antifungal action of 

sertraline, a compound used to treat of depression, against three C. auris strains resistant to 

fluconazole and amphotericin [197]. In additional to significantly inhibiting planktonic 

cultures, sertraline impaired fungal morphogenesis and biofilm formation. The mechanism 

of action against C. auris was explained by the binding nature of sertraline to the sterol 14 
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alpha demethylase, which is involved in ergosterol biosynthesis. Therefore, this compound 

presents a new, promising antifungal against emergent drug resistant C. auris [197].

3.3 Combination therapy

In contrast to the usual candidiasis treatment with a single antifungal agent, new approaches 

employing multiple therapeutic agents (a “drug cocktail”) present an opportunity to 

overcome fungal resistance by engaging multiple targets [198,199]. Developing resistance to 

multiple deployed agents becomes more difficult because the fungal cells are less capable of 

compensating for the actions of two or more drugs or acquire mutations in multiple genes 

without adverse impact to cell survival or fitness [199,200]. Combined therapies seek 

synergistic effects that enhance the antifungal activity directly and/or adjunct effects that 

alter the susceptibility of Candida cells to the antifungal drug, reverting resistance status 

[179,201]. These treatments can employ a combination of two antifungal drugs or a 

combination of antifungal drug with new compounds [198,200,202].

3.3.1 Available antifungal drug combinations—The combination of antifungal 

drugs are an interesting approach since the synergistic effects can reduce therapeutic 

dosages, and therefore, decrease toxicity and side effects caused by high doses of a single 

drug [198]. Reginatto et al. tested the effects of combining anidulafungin and amphotericin 

B treatments against Candida biofilms formed in vitro on venous catheter [203]. The 

combination of these antifungals at lower concentrations had a significant increase in the 

antifungal activity in relation to the individual agents. The use of anidulafungin (0.5 μg/mL) 

or amphotericin B (2.5 μg/mL) individually were able to inhibit 37–75% and 49–68% of the 

biofilms, respectively, while the combination of anidulafungin and amphotericin B, at the 

same concentrations, reached 94–100% of biofilm inhibition. To obtain similar reductions 

with anidulafungin alone, it was necessary to use this antifungal at higher concentration (1 

μg/mL), indicating that the combined therapy can decrease the toxicity caused by the 

isolated treatments.

Despite the in vitro evidences, until now, few clinical studies evaluated the efficacy of 

combined systemic antifungal drugs for candidiasis treatment. Recently, Ahuja et al. 
reported two cases of endovascular infections caused by C. parapsilosis in patients with 

prosthetic valves who responded positively to combination antifungal therapy without 

surgical intervention [204]. One patient was treated with micafungin and fluconazole, while 

the other one was treated with micafungin, fluconazole, and flucytosine. The use of 

combination therapies in both patients resulted in successful treatment without the need for 

surgical intervention, suggesting that they could pose a useful approach for the patients with 

endovascular infections.

Amphotericin B and 5-fluorocytosine (5-FC) have been used in combination to treat invasive 

candidiasis. Since the concurrent delivery of these antifungals by intravenous administration 

is precluded due to drug precipitation, recently Alvarez et al. developed a formulation that 

facilitates co-delivery of AmB and 5-FC using PEG-lipid poly(ethylene glycol)-

distearoylphosphatidylethanolamine (PEG-DSPE) micelles. The formulation developed 

showed efficacy in reducing the fungal burden of neutropenic mice with disseminated 
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candidiasis [205]. The commercial availability of formulations with combined components 

can incite future clinical trials.

3.3.2 Combination of antifungal drugs with new compounds and therapies—
Studies have also been conducted to identify compounds that can act synergistically with 

antifungal drugs. Using the natural antimicrobial agent lactoferrin from human mucosal 

secretions, Fernandes et al. found a synergistic effect with AmB against a diverse range of 

yeasts, including C. parapsilosis complex, C. dubliniensis, C. tropicalis, and C. albicans 
[206]. The associated therapy reduced MIC values 8-fold for lactoferrin and 4-fold for AmB. 

Moreover, the combination of these compounds was effective in G. mellonella infected by C. 
albicans, prolonging survival in 93% of larvae past 10 days and reducing fungal burden 5-

fold compared to amB alone [206].

The known antifungal fluconazole was combined with ginkgolide B extracted from the 

Ginkgo biloba leaf by Li et al. who verified a synergistic effect against C. albicans in 

planktonic and biofilm states, and also found the dual application efficacious in the G. 
mellonella infection model [198]. Ginkgolide B also increased the antifungal effect of 

fluconazole on azole-resistant C. albicans, reducing the MIC of fluconazole from > 512 

μg/mL to 0.25–1 μg/mL, with the fractional inhibitory concentration index (FICI) ranged 

from 0.06 to 0.25. The synergistic effect resulted in phenotypic effects characterized by 

reduced filamentation, disruption of intracellular calcium, and inhibition of drug efflux 

pumps [198].

In addition to traditions chemical interactions, photodynamic chemicals have also exhibited 

beneficial effects when applied in combination with antifungal agents. Photochemicals are 

applied as inert compounds that are induced to an excited electron state when light is 

applied. Interestingly, Chibebe Junior et al. married fluconazole treatment to photodynamic 

therapy (PDT) using methylene blue to produce reactive oxygen species when excited [207]. 

For this process, G. mellonella larvae were infected by a fluconazole resistant C. albicans 
strain, and subsequently, treated with fluconazole in combination with methylene blue 

activated by red light irradiation. Larvae treated with a combination of PDT and fluconazole 

showed 50% survival at the end of the experiment (7 days) compared to control groups 

treated with fluconazole or PDT alone that resulted in 100% mortality. The prolonged 

survival reached by the combination therapy suggested that permeabilization on the fungal 

cells caused by PDT make C. albicans more susceptible to fluconazole. The combination of 

antifungal drug with PDT can be a promising approach in the treatment of mucosal 

candidiasis.

3.4 Nano-particulate drug delivery systems

Currently, the products obtained from nanotechnology provide interesting physiochemical 

characteristics enabling its applications in different health-care areas [208,209]. 

Nanoparticles are nanometer size particles that serve to transport drugs that are dissolved, 

entrapped, encapsulated, adsorbed, or chemically attached to carriers [210,211]. The use of 

nanoparticles can improve bioavailability of antifungal drugs because their small size 

facilitates reaching the vascular system and tissues [209,212]. Additionally, it has been 

reported that nanoparticles can contribute in overcoming microbial drug-resistance since 
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antifungal compounds loaded in specific formulations avoid drug recognition by efflux 

pump proteins, keeping the drug inside fungal cells where it can be most effective [213].

Solid lipid nanoparticles (SLN) are a drug delivery system composed of biodegradable lipids 

prepared from oil-in-water nanoemulsions, which enable higher drug penetration, better 

contact with the cell target, and controlled liberation of the antifungal [213,214]. Moazeni et 
al. demonstrated that solid lipid nanoparticles loaded with fluconazole were capable of 

reducing the MIC values for fluconazole-resistant strains by 4, 8 and 4 folds, respectively for 

C. albicans, C. parapsilosis, and C. glabrata [213].

Nanostructured lipid carriers (NLC) present another transport option and are synthetized 

using solid lipids incorporated into liquid lipids, resulting in nanostructures with improved 

drug incorporation and time release properties. The liquid oil droplets in a solid matrix 

increase the loading potential in comparison to SLNs [209]. Jansook et al. compared amB-

loaded in SLN and NLC with the commercially available amB colloidal dispersion 

(Fungizone®) [215]. Both nanoparticles formulations had similar in vitro antifungal activity 

reducing the MIC value by 4 folds compared to Fungizone®. Moreover, the lower hemolytic 

activity and lower aggregate formation capacity demonstrated that these nanoparticles could 

be less toxic than Fungizone® [215].

In addition to lipidic nanoparticles, polymeric systems have also been developed for drug 

delivery [216]. Polymeric nanoparticles are obtained from natural polymers (eg, chitosan, 

gelatin, and alginate) or synthetic polymers (polylactide, poly lactide-co-glycolide, 

copolymers, and polyacrylates), and are able to protect drugs from degradation or prevent 

side effects from toxicity [209,217]. El Rabey et al. used fungal chitosan extracted from 

Amylomyces rouxii to synthetize nanoparticles, which were later loaded with fluconazole 

[218]. Fluconazole was slowly released from the synthesis of chitosan nanoparticles in the 

first hours (3.4% after 3 h and 11.3% after 5 h) followed by a substantial increased after 12 h 

(94.8%), exhibiting significant antifungal activity against strains of C. albicans, C. 
parapsilosis, and C. glabrata resistant to fluconazole, itraconazole, and voriconazole [218].

Another promising nano-particulate drug delivery system involves metals that have intrinsic 

antimicrobial properties such as gold (Au), silver (Ag), and zinc (Zn) [219–222]. Metal-

based nanoparticles show unique physicochemical properties that provide magnetic field-

controlled drug delivery carriers [222]. Hussain et al. proved the enhanced antifungal 

efficacy of nystatin or fluconazole after conjugation with silver nanoparticles (NS) [221]. 

This conjugation increased the inhibition percentage of C. albicans in a dose-dependent 

manner reaching 90–100% for both nystatin-SN and fluconazole-SN formulations at 200 

μg/mL. In addition, no cytotoxicity for human cell lines was observed, suggesting that metal 

nanoparticle formulations could be a safe and effective alternative to improve the efficacy of 

the current antifungal treatments [221,223].

4 Conclusion

Despite great advances in the medical field, morbidity and mortality rates associated with 

Candida spp. are still high. Treatments for these infections remain limited to only three 
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major antifungal classes, polyenes, azoles, and echinocandins, which address a large variety 

of clinical manifestations (superficial, mucosal, systemic and invasive candidiasis), and thus 

must be deployed in different ways. These antifungal classes have been widely used over 

many years seeking to reach a counterbalance between their effectiveness and limitations 

related to pharmacokinetics and cytotoxicity. However, the exhaustive use of these limited 

antifungals leads to development of drug resistance mechanisms by fungal cells. Motivated 

by the rapid emergence of resistant strains, several researchers have introduced new 

antifungal agents and raised attractive therapeutic options for candidiasis, exploring 

structural modifications on polyenes, azoles and echinocandins, synthesis of different 

antifungal classes, drug repurposing, combination therapies, and drug delivery systems.

5 Expert opinion

The emergence of antifungal drug resistance is the biggest challenge when trying to treat 

candidiasis. The prevalence of antifungal resistance varies according to Candida species with 

greater prominence found among non-albicans Candida species. Recently, the most 

significant concerns about antifungal resistance has been the emergence of multi-drug 

resistant C. auris strains. C. auris was first described in Japan (2009) and rapidly spread 

across the 5 continents [224,225]. Most reports of C. auris infections involve critically ill 

hospitals patients that result in high mortality rates due to limited treatment options 

[224,226]. C. auris presents high level of antifungal resistance with reduced susceptibility to 

azoles, polyenes and even echinocandins. For example, Ostrowsky et al. found 99.7% of C. 
auris isolates resistant to fluconazole, 63.4% resistant to AmB, and 3.9% resistant to 

echinocandins from hospitalized patients in USA [114]. During the treatment of these 

patients with antifungal medications, some C. auris strains became resistant to the three 

antifungal classes. Troublingly, the progressive isolation of strains resistant to the all three 

antifungal classes shifts C. auris from multidrug resistance to pan-resistance status. The 

emergence of pan-resistant C. auris strain is an alarming signal for the necessity of new 

therapeutic options.

To improve the therapeutic approaches for candidiasis, many researchers have explored 

alternative means to deploy the available arsenal. Among them, recent studies have 

investigated different drug delivery systems for polyenes, azoles or echinocandins that 

provide localized targeted delivery that consequentially results in reductions antifungal 

dosages. The development of new liposomal, colloidal, and polymeric carriers represents a 

promising approach to increase the effectiveness and to counteract emerging resistance for 

all antifungal classes. In addition, new ways of approaching targets are coming into focus, 

such as the capacity of polyenes to extract sterols from the fungal cell membrane (sterol 

sponge model) and the ability of echinocandins to increase fungal cell wall chitin exposure. 

Approaches that remodel fungal cell surfaces suggest that these antifungals can have an 

important role provoking immune responses so cells are not so stealth in the body. Thus, 

bolstering antimicrobial chemotherapy with enhanced or altered immune responses.

The most significant impact anticipated in the field is always the introduction of new 

antifungal compounds, a situation that has been in an extended drought. There are however, 

a few antifungal compounds in clinical trials, yet the number pales in comparison to other 
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disease indices. Most of candidate drugs include synthetic compounds with mechanisms of 

action focused on targeting the plasma membrane or cell wall. These compounds include 

structural modifications of the available antifungal classes (Coch-AmB, tetrazoles VT-1598, 

VT-1129, VT-1161 and rezafungin) or new antifungal classes (enfumafungin and 

manogepix). Although manogepix is a promising antifungal candidate for candidiasis, 

resistance mechanisms associated to efflux pump for this antifungal were already reported. 

To avoid cross-resistance mechanisms, antifungal agents with novel modes of action need to 

be urgently developed, as arylamidine T-2307 that targets the inhibition of fungal respiratory 

chain or N-[3-(allyloxy)-phenyl]-4-methoxybenzamide that acts on Candida spp. virulence 

mechanisms.

The current arsenal defines a limited number of fungal targets. A potential means of 

identifying new targets is to reveal what nature has already determined as effective targets. 

Natural compounds are an attractive source of antifungal agents with different mechanisms 

of action. To date, several extracts from plants and microorganisms with antifungal activity 

were identified; however, discovery, isolation, and interrogation can be a laborious, 

multifaceted processes. Thus, the challenge is best met by close collaborations between 

academia and the biotechnology sector.

Seeking to accelerate the introduction of new antifungal treatments into clinical practice, 

repurposing drugs presents an accelerated track. Drug repurposing has entailed screening a 

vast number of curated compounds from around the word. Most drugs with antifungal 

activities were identified among antibacterial, anti-parasitic, and anti-cancer classes. 

However, drug repurposing can present limitation as well. In some cases, the new use of a 

compound as an antifungal drug requires higher doses than the original defined use, which 

can result in adverse effects or toxicity. Therefore, pharmacokinetic aspects such as plasma 

protein binding, half-life, and tissue distribution need to be carefully evaluated for the new 

drug dosage and treatment regimen [179,181].

Therapy combinations are also an attractive means to multiply the drug arsenal through 

different amalgamations simultaneously affect multiple fungal targets, reaching synergistic 

effects that enhance the antifungal activities, reduce the therapeutic dosage, and impair the 

development of antifungal resistance. Diverse compounds have demonstrated synergistic 

action with polyenes, azoles, and echinocandins drugs. Photodynamic therapy offers an 

additional impact that can be deployed with antifungal therapies as a means to enhance 

antifungal action on superficial candidiasis. In additional, new nano-particulate drug delivery 

systems have emerged with advantages to traditional antifungal drug delivery systems such 

as liposomal, colloidal, and polymeric carriers. Currently, promising nano-particulate 

carriers primary involve lipidic, polymeric and metal nanoparticles.

In summary, scientists continue to stretch limited resources to their maximum potential but 

Candida spp. fights back by developing new means of resistance. With limited resources, 

scientists have strategically assembled pharmacotherapeutic options through new 

compounds, repurposing, combinations, and delivery methods that offer promising future 

perspectives for candidiasis.
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Article highlights

• Enchochleated-Amphotericin B (Coch-AmB), tetrazoles, rezafungin, 

enfumafungin, manogepix and arylamidine are new promising antifungal 

drugs.

• Drug repurposing using antibacterial, antiviral, and non-antimicrobial drugs 

can accelerate the introduction of new antifungal agents into clinical practice.

• Drug combinations are attractive options that can enhance the antifungal 

activities and impair development of antifungal resistance.

• Innovative drug delivery systems for antifungal compounds have been 

successfully developed using solid lipid nanoparticles (SLN), nanostructured 

lipid carriers (NLC), polymeric nanoparticles, and metal-based nanoparticles.

• The success of each antimicrobial agent brings strategic insights to the next 

phased approach in treating Candida spp. infections.
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Figure 1: 
Timeline of antifungal discovery and emergence of drug-resistant Candida isolates. Polyenes 

are represented in red lines, azoles are represented in green lines and echinocandins are 

represented in yellow lines. This figure is based on the studies of Ananda-Rajah el al. [263], 

Perlin et al. [264] and Alexander et al. [265]. Created with BioRender.com.
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Table 1.

Resistance index of Candida strains to antifungal agents in different countries

Country Clinical specimen Resistance index References

Argentina Vulvovaginal Fluconazole (3.55% C. albicans) [227]

Brazil Saliva and 
oropharyngeal

Fluconazole (27% C. albicans) [228]

Brazil blood Fluconazol (6% C. glabrata; 7.3% C. tropicalis)
Voriconazol (4.9% C. tropicalis)

[229]

Canada blood Fluconazole (0.6 % C. albicans; 1% C. glabrata; 4.9% C. parapsilosis complex)
Micafungin (0.1% C. albicans; 2.5% C. glabrata)

[230]

China Invasive candidiasis Fluconazole (20% C. albicans; 11% C. glabrata; 29.7% C. tropicalis; 20% C. 
parapsilosis)

Itraconazole (28.2% C. albicans; 6.8% C. glabrata; 40.5 % C. tropicalis; 33.4% C. 
krusei; 20% C. parapsilosis)

Voriconazole (23.6% C. albicans; 6.8% C. glabrata; 27% C. tropicalis; 25% C. krusei; 
20% C. parapsilosis)

[231]

Ghana vulvovaginal Fluconazole (50% C. albicans; 12 % C. glabrata; 1% C. parapsilosis)
Niatatin (4%C. glabrata; 1% C. krusei)

Voriconazole (7% C. albicans; 11% C. glabrata; 1% C. krusei; 1% C. parapsilosis)

[232]

Iran oropharyngeal ketoconazole (93.75% C. albicans; 89.28% of Candida non-albicans Candida species)
Fluconazole (62.50% C. albicans; 42.85% Candida non-albicans Candida species)

[233]

Ireland blood Fluconazole (2% C. albicans; 37 % C. glabrata
Itraconazole (5% C. albicans; 21% C. glabrata;

Flucytosine (3% C. albicans)
Amphotericin B (14% C. glabrata)

[234]

Italy blood Fluconazole (1.2% C. albicans; 12% C. glabrata; 6% C. parapsilosis, 10% C. 
tropicalis)

Itraconazole (2% C. albicans; 25% C. glabrata; 0.7% C. parapsilosis, 3.9% C. 
tropicalis)

Voriconazole (1.4% C. albicans; 0.7% C. parapsilosis, 1.9% C. tropicalis)
Anidulafungin (0.5% C. glabrata; 1.9% C. tropicalis)
Caspofungin (0.5% C. glabrata; 1.9% C. tropicalis)

[235]

Peru blood Fluconazole (C. parapsilosis 2,3%)
Voriconazole (5% C. albicans)

[236]

Peru blood Fluconazole (2.2% C. albicans; 5% C. parapsilosis) [237]

Saudi Arabia blood Fluconazole (23% C. albicans; 27.8% C. tropicalis; 51.7% C. glabrata; 48% C. 
parapsilosis)

Voriconazole (17% C. albicans; 12,5% C. tropicalis; 21.7% C. glabrata; 2% C. 
parapsilosis; 6% C. krusei)

Amphotericin B (2% C. albicans; 23.5% C. krusei)
Caspofungin (23% C. albicans; 4.2% C. tropicalis; 3.3% C. glabrata; 6% C. krusei)

[238]

Scotland blood Fluconazole (5.26% C. glabrata) [239]

Spain blood Fluconazole (0.3% C. albicans; 6.6% C. tropicalis; 10.8% C. glabrata; 0.9% C. 
parapsilosis)

Voriconazole (6.6% C. tropicalis)
Caspofungin (0.7% C. albicans; 1.08% C. glabrata)

Micafungin (0.35% C. albicans)

[240]

Taiwan blood Fluconazole (13.9% C. tropicalis; 3.1% C. glabrata; 6.1% C. parapsilosis)
Voriconazole (10.7% C. tropicalis)

Caspofungina (2.5% C. tropicalis; 2.1% C. glabrata)
Micafungina (2.5% C. tropicalis; 5.2% C. glabrata)

Anidulafungina (1.6% C. tropicalis; 5.2% C. glabrata)

[241]

Turkey blood Fluconazole (2.8 % C. glabrata) [242]

USA blood Fluconazole (0.3% C. albicans; 8.6% C. glabrata; 7.6% C. parapsilosis; 4.2% C. 
tropicalis)

Voriconazole (0.1% C. albicans; 2.1% C. parapsilosis; 2.1% C. tropicalis)
Echinocandins (0.4% C. albicans; 4.4% C. glabrata; 2.6% C. krusei)

[243]
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Country Clinical specimen Resistance index References

Pakistan, 
India, South 
Africa, and 
Venezuela

blood, urine, soft 
tissue and other

Fluconazole (93% C. auris)
Amphotericin B (35% C. auris)

Echinocandins (7% C. auris)
Flucytosine (6% C. auris)

[115]

Southern 
Asian, South 
African and 
Japanese/
Korean

Nosocamial 
infection

Amphotericin B (14.6% C. auris)
Fluconazole (100% C. auris)
Itraconazole (4.6% C. auris)

Voriconazole (48.3% C. auris)
Posaconazole (12.8% C. auris)
Isavuconazole (5.9% C. auris)
Anidulafungin (C. auris 6.8%)

Nistatina 3.6% (C. auris)

[244]

USA blood, urine and 
extern ear channel

Fluconazole (71.4% C. auris)
Voriconazole (14.2 C. auris)

Amphotericin B (14.2% C. auris)

[245]

Spain Urine and blood Fluconazole (100% C. auris)
Voriconazole (17.9% C. auris)
Isavuconazole (1.8% C. auris)
Anidulafungin (3.6% C. auris)

[246]
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Table 2.

Drug repurposing for candidiasis: compounds active against Candida spp.; its action on virulence mechanism 

and combinatory effect with antifungal drugs

Drug classes according 
to traditional use

Compounds Antifungal action Reference

Antibacterial Sulfa antibacterial drugs Reverse azole resistance, synergism fluconazole [183]

Clotrimazole Growth inhibition [189]

Dequalinium dichloride Growth inhibition [189,247]

Ciclopirox ethanolamine Growth inhibition [189,247]

Nifuroxime Growth inhibition [248]

Nitroxoline Growth inhibition, anti-biofilm, synergism 
miconazole

[248,249]

Chlorquinaldol Growth inhibition [248]

Octanoic Acid Growth inhibition [248]

Antiseptics Thimerosal Anti-biofilm [250]

Benzethonium chloride Growth inhibition, anti-biofilm [189,247,250]

Alexidine dihydrochloride Growth inhibition, anti-biofilm [247,250]

Thonzonium bromide Growth inhibition, anti-biofilm [189,247,250]

Chlorhexidine Growth inhibition, anti-biofilm [189,250]

Methyl benzethonium chloride Growth inhibition, anti-biofilm [189,247,250]

Chloroxine Growth inhibition anti-biofilm [189,247,250]

Monensin sodium salt Anti-biofilm [250]

Clioquinol Growth inhibition, anti-biofilm [189,247,250]

Hexachlorophene Growth inhibition, anti-biofilm synergism 
miconazole

[247,249,250]

Boric acid Biofilm reduction, growth and germination 
inhibition

[251]

Bacitracin Anti-biofilm [250]

Disinfectant Broxyquinoline Anti-biofilm, synergism miconazole [249]

Antiviral agent Ribavirin Growth inhibition, synergism azole [189]

Indinavir Growth inhibition, aspartyl protease inhibition [190]

Ritonavir Growth inhibition, aspartyl protease inhibition [190]

Antiparasitic Pyrvinium pamoate Growth inhibition, anti-biofilm, anti-biofilm 
synergism miconazole

[189,247,249,250,252]

Pentamidine isethionate Growth inhibition, anti-biofilm, synergism 
miconazole

[189,252]

Avermectin B1a Anti-biofilm [250]

Dihydroartemisinin Growth inhibition, anti-biofilm, synergism 
miconazole

[247,249]

Gentian violet Anti-biofilm, synergism miconazole [249]

Bithionate disodium Anti-biofilm, synergism miconazole [249]

Artesunate Anti-biofilm, synergism miconazole [249]

Pinaverium bromide Growth inhibition [189]
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Avermectin B1 Growth inhibition [189]

Triclabendazole Growth inhibition [189]

Emetic R(−)-Apomorphine 
hydrochloride
Hemihydrate

Growth inhibition [252]

Antiemetic Thiethylperazine dimalate Growth inhibition [247]

Trifluoperazine dihydrochloride Growth inhibition [247]

Anti-hypertensive Amlodipine besilate Anti-biofilm [253]

Guanadrel sulfate Growth inhibition [247]

Nisoldipine Growth inhibition [252]

Anestesic Tramadol Germ tube formation, adhesion, anti-biofilms [254]

Dimethisoquin hydrochloride Growth inhibition [247,252]

Dyclonine hydrochloride Growth inhibition [247]

Anticancer Vinblastine Anti-biofilm, growth inhibition [255,256]

Vincristine Anti-biofilm, growth and germ tubes inhibition [255,256]

Paclitaxel Anti-biofilm, growth and germ tubes inhibition [255,256]

Docetaxel Anti-biofilm, growth and germ tubes inhibition [255,256]

Oxaliplatin Anti-biofilm, growth and germ tubes inhibition [255,256]

Carboplatin Anti-biofilm, growth and germ tubes inhibition [255,256]

Cisplatin Anti-biofilm, growth and germ tubes inhibition [255,256]

Gemcitabine Anti-biofilm, growth and germ tubes inhibition [255,256]

Bleomycin Anti-biofilm, growth and germ tubes inhibition [255,256]

Doxorubicin Anti-biofilm, growth and germ tubes inhibition [255,256]

 5-Fluorouracil Anti-biofilm, growth and germ tubes inhibition [255,256]

Decarbazine Anti-biofilm [255]

Etoposide Anti-biofilm [255]

Leucovorin or folinic acid Anti-biofilm [255]

Tamoxifen Anti-biofilm, growth and germ tubes inhibition [255,256]

Irinotecan Anti-biofilm, growth and germ tubes inhibition [255,256]

Daunorubicin Growth and germ tubes inhibition [256]

Mitoxantrone Growth and germ tubes inhibition [256]

Mitomycin-C Growth and germ tubes inhibition [256]

Epirubicin Growth and germ tubes inhibition [256]

Dactinomycin Growth and germ tubes inhibition [256]

Busulfan Growth and germ tubes inhibition [256]

Carmustine Growth and germ tubes inhibition [256]

Cyclophosmamide Growth and germ tubes inhibition [256]

Ifosfamide Growth and germ tubes inhibition [256]

Melphalan Growth and germ tubes inhibition [256]

Methotrexate Growth and germ tubes inhibition [256]
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Hydrooxyurea Growth inhibition [256]

Formestane Growth and germ tubes inhibition [256]

Etoposide Growth and germ tubes inhibition [256]

Leuprolide Growth and germ tubes inhibition [256]

Dacarbazine Growth and germ tubes inhibition [256]

Melengestrol acetate Growth inhibition [257]

Megestrol acetate Growth inhibition [257]

Tosedostat Growth inhibition, morphological changes [257]

Amonafide Growth inhibition, morphological changes [257]

Rapamycin Growth inhibition, morphological changes [257]

Thioguanine Growth inhibition [189]

Thiosemicarbazone Growth inhibition, azole synergism [196]

Antipsychotic Methiothepin maleate Growth inhibition [247,257]

Haloperidol  Growth inhibition, morphological changes [257]

Trifluperidol 2HCl  Growth inhibition, morphological changes [257]

Bromperidol and derivates Growth inhibition, azole synergism [258]

Zotepine Growth inhibition, anti-biofilm [247,250]

Prochlorperazine dimaleate Growth inhibition [247]

Antiepileptic/ 
Antidepressant

Diazepam Growth and germ tubes inhibition, anti-biofilm [259]

Lorazepam Growth and germ tubes inhibition, anti-biofilm [259]

Midazolam Growth and germ tubes inhibition, anti-biofilm [259]

Phenobarbitone Growth and germ tubes inhibition and anti-biofilm [259]

Tamoxifen citrate Growth inhibition [247,257]

Sertraline Growth inhibition, morphological changes and anti-
biofilm

[197,247]

Rolipram Growth inhibition [247]

Anemia Stanozolol Growth inhibition [257]

Anti-inflammatory Ebselen Synergism fluconazole/anidulafungin, anti-biofilm [247,252]

Anticoagulant Argatroban Growth inhibition [252]

Antipsoriatic Anthralin Growth inhibition [189]

Antihyperlipidemic Fluvastatin Growth inhibition [248]

Anti-fadigue Fipexide
hydrochloride

Growth inhibition [247]

Antirheumatic/ analgesic Auranofin Growth inhibition, anti-biofilm [185,189,250,257,260]

Antilipemic Tetra ethylenepentamine 
pentahydrochloride

Growth inhibition [189]

Broad spectrum of 
pharmacologic effects

Pilocarpine Morphological changes and anti-biofilm [261]

Benign prostatic 
hyperplasia

Finasteride Morphological changes anti-biofilm and synergism 
fluconazole

[262]

Chelating agent Pentetic acid Growth inhibition [189,252]
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Coronary dilator, 
spasmolytic, uricosuric

Benzbromarone Anti-biofilm [250]

Decongestant Octodrine Growth inhibition [248]

Deterrent of alcohol 
consumption

Disulfiram Growth inhibition [189,248,257]

Immune-suppression Mycophenolic acid Growth inhibition [248]

Mydriatic vasodilator Yohimbine hydrochloride Anti-biofilm [250]

Vasodilator/Antiplatelet Suloctidil Growth inhibition, voriconazole synergism [247,252]
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