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Abstract

Older adults with anxiety have lower gray matter brain volume – a component of accelerated 

aging. We have previously validated a machine learning model to predict brain age, an estimate of 

an individual’s age based on voxel-wise gray matter images. We investigated associations between 

brain age and anxiety, depression, stress, and emotion regulation. We recruited 78 participants 

(≥50yrs) along a wide range of worry severity. We collected imaging data and computed voxel-

wise gray matter images, which was input into an existing machine learning model to estimate 

brain age. We conducted a multivariable linear regression between brain age and age, sex, race, 

education, worry, anxiety, depression, rumination, neuroticism, stress, reappraisal, and 

suppression. We found that greater brain age was significantly associated with greater age, male 

sex, greater worry, greater rumination, and lower suppression. Male sex, worry and rumination are 

associated with accelerated aging in late life and expressive suppression may have a protective 

effect. These results provide evidence for the transdiagnostic model of negative repetitive 

thoughts, which are associated with cognitive decline, amyloid, and tau.
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“Age is an issue of mind over matter. If you don’t mind, it doesn’t matter.”

-Mark Twain

Introduction

In the last decade, several studies have reported an independent effect of anxiety on aging. 

Clinically, anxiety and its disorders have been described as risk factors for multiple age-

related medical conditions(Andreescu and Varon, 2015; Lambiase et al., 2014; Tully et al., 

2014; Tully et al., 2013). In particular, pathologic worry has been associated with the 

development of coronary heart disease(Tully et al., 2013), while a higher burden of anxiety 

symptoms was associated prospectively with increased risk for incident stroke independent 

of other risk factors (including depression)(Lambiase et al., 2014). In the Nurses’ Health 

Study(Okereke and Grodstein, 2013), a 4-year longitudinal study of community-dwelling 

older women (N=16,351), higher midlife anxiety was related to worse later-life overall 

cognitive function and verbal memory.

Chronic anxiety has been associated with higher beta amyloid burden(Donovan et al., 2018). 

Moreover, in individuals with similar beta amyloid burden, participants with chronic anxiety 

had worse longitudinal cognitive decline compared to those without anxiety(Pietrzak et al., 

2015; Pietrzak et al., 2014). In a 2-year observational study, older adults with mildly 

elevated worry symptoms performed worse on measures of visual learning and memory than 

older adults with no or minimal worry symptoms(Pietrzak et al., 2012). Multiple animal 

studies reported impaired neurogenesis in anxiety(Revest et al., 2009), and several human 

studies described brain structural changes associated with anxiety in midlife (e.g., lower 

hippocampal volumes and lower gray matter in the amygdala and hippocampus(Ly and 

Andreescu, 2018)). Our previous reports in a geriatric anxiety sample describe structural 

grey matter differences such as thinning of the orbital frontal cortex and rostral anterior 

cingulate cortex in late-life Generalized Anxiety Disorder (GAD) compared with non-GAD 

older controls(Andreescu et al., 2017) and a potential effect of cerebrovascular burden in 

impairing emotion regulation in late-life GAD(Karim, H. et al., 2016).

These studies indicate that anxiety and/or worry may contribute to accelerated aging. The 

putative mechanisms include molecular aging markers (e.g. shortened telomeres(Okereke et 

al., 2012)) and increased stress-response including chronic inflammatory stress, increased 

hypothalamic-pituitary-adrenocortical (HPA) activity and excessive autonomic 

responses(O’Donovan et al., 2010; O’Donovan et al., 2013; Perna et al., 2016). However, 

research in this area is still in early stages and the pathways linking anxiety or worry with 

brain aging remain unclear.

Brain age prediction uses machine learning to estimate an individual’s chronological age 

from neuroimaging data(Cole, 2020; Cole and Franke, 2017; Cole et al., 2015; Ly et al., 
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2019). Individuals whose brain is estimated to be older than age-matched healthy peers 

(higher brain age than chronological age) may have experienced a higher cumulative 

exposure to brain insults or were more impacted by those pathological insults or 

alternatively reflect non-neurodegenerative processes. Brain age may indicate a potential 

discrepancy between biological and chronological age, suggesting that pathological 

neuroprogression (combination of neurodegeneration, neurotoxicity and lowered 

neuroplasticity) is associated with accelerated aging(Perna et al., 2016). These models have 

been used recently to demonstrate the association between greater brain age with cognitive 

impairment, Alzheimer’s disease, traumatic brain injury, and mortality(Cole and Franke, 

2017; Cole et al., 2015; Cole et al., 2018; Liem et al., 2017; Ly et al., 2019).

We have previously developed a machine learning model for estimating brain age from 

neuroimaging scans while accounting for amyloid status in a large cohort (n=757)(Ly et al., 

2019). Our brain age prediction model contextualizes whole brain structural information of a 

test cohort against structural information from a large healthy participant cohort (i.e., 

without psychiatric disorders, cognitive impairment, or significant brain amyloid) spanning a 

wide range of ages (20 to 85 years) to generate a machine learning-based prediction of the 

test participant’s chronological age. In this way, discrepancies between actual chronological 

age and predicted brain age in test groups may indicate pathological disruption or 

acceleration of the aging process. We were able to delineate significant differences in brain 

age relative to chronological age between cognitively normal individuals with and without 

significant amyloid beta deposition in the brain(Ly et al., 2019).

Most of the studies available regarding the potential effect of late-life anxiety in accelerated 

aging use heterogenous and often non-specific measures for anxiety. Anxiety and its 

disorders encompass multiple clinical constructs such as worry, rumination, 

somatization(Zebb and Beck, 1998) and are highly comorbid with both depression and 

neuroticism(Clark et al., 1994; Hettema et al., 2006; Hettema et al., 2004). It is thus more 

difficult to detangle the specific effect of various phenotypes on accelerated 

aging(Andreescu et al., 2015a). Additionally, the highly heterogenous changes that occur in 

aging make it difficult to interpret various cross-sectional studies that point toward an 

association between anxiety and aging.

In the current study, we aimed to test if the different anxiety phenotypes (worry, global 

anxiety, rumination) as well as their more frequent comorbidities (depression severity, 

neuroticism) were associated with brain aging. Given the hypothesis regarding the role of 

increased stress response we also included the Perceived Stress Questionnaire(Cohen et al., 

1983) in the model. Given our previous reports regarding emotion regulation deficits in late-

life anxiety(Andreescu et al., 2015b; Karim, H. et al., 2016; Karim et al., 2017), we also 

included in the current model the Emotion Regulation Questionnaire (ERQ), a self-report 

measure of two emotion regulation strategies (cognitive reappraisal and expressive 

suppression)(Gross and John, 2003).
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Methods

Participants and Study Design

Participants were recruited through the Functional neuroanatomy correlates of worry in 

older adults (FINA) study (R01 MH108509). We recruited participants (n=78) who were 50 

years and older with and without anxiety (generalized anxiety disorder, panic disorder, social 

phobia, etc.) and/or mood disorders (e.g., major depressive disorder, persistent depressive 

disorder, or unspecified depressive disorder). Diagnosis was assessed through the structured 

clinical interview for DSM V (SCID). Our cohort had 23 participants with GAD (29%), 58 

with any other anxiety disorder (74%), and 25 with current or lifetime prevalence of major 

depressive disorder (MDD) (32%). We also report these and other diagnoses in the results. 

Inclusion of these variable diagnoses allowed for representation of worry severity along a 

wide spectrum, such that worry was normally distributed. Participants were excluded if they 

were diagnosed with autism spectrum disorders, intellectual development disorder, or any 

form of psychosis or bipolar disorder. Other exclusion criteria were: a diagnosis of major 

neurocognitive disorder (e.g., dementia), a 3MSE (modified mini-mental exam) score < 84, a 

diagnosis of personality disorder, increased suicide risk, use of antidepressants within the 

last five to fourteen days, history of drug/alcohol abuse within last six months, use of high 

doses of benzodiazepines (greater than equivalent to 2mg of lorazepam), uncorrected vision 

problems that would preclude neuropsychiatric testing, below 6th grade level of reading, 

clinical diagnosis of cerebrovascular accident, multiple sclerosis, vasculitis or significant 

head trauma. Participants with ferromagnetic objects in body, claustrophobia, or too large to 

fit in an MRI scanner were also excluded.

When appropriate, participants underwent an adequate washout on antidepressants 

determined by the primary psychiatrist on the study (CA). For fluoxetine, the washout 

interval was 6 weeks. Participants who were prescribed low dose psychotropics for pain, 

sleep disturbances, and/or medical conditions were allowed to continue them in most 

circumstances. The following common antidepressants were allowed at low doses due to 

medical reasons: amitriptyline (50mg/day), doxepin (50mg/day), trazodone (100mg/day), 

imipramine (50mg/day). There were 7 participants who had taken psychotropics (though 

tapered off for the scan) but they did not differ in brain age, though this does not necessarily 

indicate an association or lack thereof with psychotropics – we do not include psychotropics 

as a covariate in further analysis. Participants were recruited from the Pittsburgh area via Pitt

+Me (website resource from the university), in-person recommendations, flyers, and radio/

television ads. This study was approved by the University of Pittsburgh Institutional Review 

Board. All participants gave written informed consent prior to participating in the study.

Assessments

Along with demographic information (age, sex, race, and education), we assessed the 

following: worry (PSWQ, Penn State Worry Questionnaire)(Meyer et al., 1990), overall 

anxiety (HARS, Hamilton Anxiety Rating Scale)(Hamilton, 1959), depression (MADRS, 

Montgomery-Asberg Depression Rating Scale)(Montgomery and Asberg, 1979), rumination 

(Rumination Subscale from RSQ, Response Styles Questionnaire)(Bagby et al., 2004), 

neuroticism subscale from the Five Factor Inventory (NEO-FFI)(Costa and McCrae, 1992), 
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perceived stress (PSS, Cohen’s Perceived Stress Scale)(Cohen, 1988), and the habitual use 

of cognitive reappraisal and suppression subscale (ERQ, Emotion Regulation Questionnaire)

(Gross and John, 2003). We also collected data on illness severity (CIRSG, cumulative 

illness rating scale for geriatrics)(Salvi et al., 2008), and cognitive function (3MSE, 

modified-mini mental status exam)(Teng and Chui, 1987).

MRI Data Acquisition

MRI scans were obtained at the MR Research Center of the University of Pittsburgh using a 

3T Siemens MAGNETOM Prisma scanner and a 32-channel head coil. A sagittal, whole-

brain T1-weighted magnetization prepared rapid gradient echo (MPRAGE) was collected 

with repetition time (TR)=2400ms, echo time (TE)=2.22ms, flip angle (FA)=8deg, field of 

view (FOV)=320×300 with 208 slices, 0.8mm3 isotropic resolution, 0.4mm slice gap, and 

GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) with acceleration factor 

of 2 (total time 6.63min). We used a suboptimal interslice gap of 0.4mm as this allowed for 

higher isotropic resolution. We now also acknowledge this as a limitation. A sagittal, whole-

brain T2-weighted Sampling Perfection with Application optimized Contrasts using 

different flip angle Evolution (SPACE) was collected with TR=3200ms, TE=563ms, 

FA=120deg, FOV=320×300 with 208 slices, 0.8mm3 isotropic resolution, no slice gap, and 

GRAPPA with acceleration factor of 2 (total time 5.95min). An axial, whole-brain T2-

weighted Fluid Attenuated Inversion Recovery (FLAIR) was collected with TR=10,000ms, 

TE=91ms, FA=135deg, inversion time (TI)=2,500ms, FOV=320×320 with 104 slices, 

0.8mm x 0.8mm x 1.6mm resolution, no slice gap, and GRAPPA with acceleration factor of 

2 (total time 5.95min). Participants were in the MR scanner for approximately 45–60 

minutes as we also collected functional MRI data as well (not presented).

Structural Processing

Processing was conducted in statistical parametric mapping toolbox (SPM12)(Penny et al., 

2011) in MatLab 2018b (MathWorks, Natick, MA). All interpolation was done with a 4th 

degree B-spline and the similarity metric used for coregistration between different image 

types was normalized mutual information. The T2-SPACE and FLAIR were first 

independently coregistered to the MPRAGE. All three were input into a multispectral 

segmentation that bias corrects each image and segments them into gray matter, white 

matter, cerebrospinal fluid, skull, soft-tissue, and air(Ashburner and Friston, 2005). Due to 

the high burden of white matter hyperintensities, we adjusted the number of Gaussians used 

to identify white matter to two to improve identification of gray and white matter(Karim, 

H.T. et al., 2016). This ensures an accurate segmentation of the gray matter. The gray and 

white matter maps are inputs into a process to generate a study-specific template to estimate 

gray matter images.

We used DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie 

Algebra) to generate a study-specific template(Ashburner, 2007). DARTEL aligns each 

participant’s gray matter image (along with white matter) to a standard MNI space template 

using a combination of linear and non-linear registrations. Then an average image is 

generated across all participants – this is the first template. The gray matter images are 

aligned again and coregistered again. Then another average image is generated. This process 
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is iterated until an increasingly crisp average template, to which the data are iteratively 

aligned. DARTEL uses an iterative process of averages across participants and iterative 

coregistration to improve normalization to a standard anatomic space. Once a study-specific 

template is generated (an iterative average across participants), each image is normalized 

and then transformed into a gray matter image that preserves the total amount of grey matter 

by multiplying by the determinant of the Jacobian of the transformations(Ashburner, 2007). 

All images are normalized to a 1mm3 isotropic resolution. The gray matter images were 

smoothed using a Gaussian kernel of full width at half-maximum of 4mm. These gray matter 

images are input into the brain age estimation model.

Brain Age Estimation

We have previously validated a brain age estimation algorithm that predicts chronological 

age with gray matter maps(Ly et al., 2019) using the Pattern Recognition for Neuroimaging 

Toolbox (PRoNTo)(Schrouff et al., 2013). Whole brain, voxel-wise gray matter densities 

were mean-centered and used to calculate a similarity matrix kernel (dot product)(LaConte 

et al., 2005) that was input into a Gaussian processes regression to predict chronological age. 

The training set, which includes 757 adult MRIs of individuals without any psychiatric or 

neurological disorder as well as Alzheimer’s pathology as measured by positron emission 

tomography, has been previously described(Ly et al., 2019). This data was from the ADNI, 

Information eXtraction from Images (IXI), and OASIS-3 – which are all publicly available. 

The cohort (ADNI, IXI, OASIS-3) is used as a covariate to account for differences in 

scanner/site/protocol. The current study’s participants were not part of the training set. 

Using this pre-trained model, we can estimate the brain age of each participant in the current 

study.

While white matter hyperintensities are likely factors that influence brain aging, our brain 

age model utilizes primarily gray matter and not white matter data. Thus, our brain age 

marker more accurately could be stated to be a ‘gray matter’ age marker.

Statistical Analysis

We conducted a linear regression analysis in SPSS 26 (IBM, Armonk, NY). We used brain 

age as the outcome and the following as independent predictors: chronological age, sex, 

race, education (years), worry (PSWQ), anxiety (HARS), depression severity (MADRS), 

rumination (RSQ), neuroticism (NEO-FFI), reappraisal (ERQ, reappraisal subscale), 

suppression (ERQ, suppression subscale), and stress (PSS). The models conducted all had 

variance inflation factor (VIF) below 5, showed normally distributed standardized residuals 

(based on a histogram and QQ-plot), and did not violate the assumption of homoscedasticity.

A total of 69 participants (88.5%) had all data available, however there were missing values 

for: 3MSE (4 not collected), HARS (2 lost questionnaires), MADRS (3 not collected, 2 lost 

questionnaires), RSQ (1 participant error, 1 not collected), NEO-FFI (2 refused, 4 participant 

error), ERQ (1 refused, 3 participant error), and PSS (1 refused, 3 participant error). We 

conducted multiple imputations analysis(Newgard and Haukoos, 2007; Schafer, 1999) (5 

imputations) in SPSS to impute missing values using the Markov Chain Monte Carlo 

method(MacKay and Mac Kay, 2003) and fully conditional specification with linear 
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regression, assuming our values were missing at random with an arbitrary missing 

pattern(Schunk, 2008). We conducted statistical independent t-tests or χ2 tests where 

appropriate to identify if the 9 participants with missing data differed significantly on 

demographic and cognitive factors compared to those without missing data. We found that 

they did not differ on age, sex, race, and 3MSE, but did find that education was lower by 

approximately 1 year in those who were missing data.

Every variable used in the regression as well as the outcome (brain age) were used in the 

imputation model, as this has been shown to improve the imputation and is not a ‘self-

fulfilling prophecy,’ but rather “replays the strength of associations between predictors and 

outcomes present in the complete cases, to enable valid analyses(Moons et al., 2006).” All 

variables were constrained to their appropriate values (e.g., HARS ranges from 0 to 56 thus 

values may not be imputed outside this range). We report both the imputed pooled results as 

well as the estimates from the original model with missing data (n=69). Pooling is computed 

automatically by SPSS using Rubin’s rules(Rubin, 2004).

Each variable was inspected for outliers and the following variables had some outliers: 

HARS (n=1), MADRS (n=4), RSQ (n=1), brain age (n=2), and reappraisal ERQ subscale 

(n=1). We conducted the regression with those participants removed (not shown) and found 

that the estimates did not differ from when they were included in the model.

Factors that are associated with brain age, may also be associated with chronological age 

and thus may be a confound. To understand whether factors that were significantly related to 

brain age or chronological age or both, we conducted independent t-tests or correlations with 

chronological age.

Exploratory Analysis

Following statistical analysis, we found a significant association between brain age and 

rumination. Given that the RSQ is increasingly divided into a reflective pondering and 

ruminative brooding component(Schoofs et al., 2010; Whitmer and Gotlib, 2011), these are 

largely thought to be adaptive and maladaptive, respectively. We divided the RSQ into those 

two components and then conducted multiple imputations as well as a similar regression 

analysis, however replaced RSQ with either reflective pondering (RSQ reflection) or 

ruminative brooding (RSQ brooding). This helps address whether reflection vs. brooding 

was significantly associated with brain age.

Results

We report the characteristics of the sample in table 1. Of note, worry is normally distributed 

around a mean worry severity of 47.6. Demographics match those of the surrounding 

Pittsburgh area. The mean absolute error between chronological and brain age in our sample 

was 4.7 with r(76)=0.75 and r2=0.56, which indicates that our model was able to predict 

chronological age accurately in this sample within the expected tolerance. For 

characterization, we also report the following diagnoses based on the SCID for DSM V: 23 

with GAD (29%), 58 with any other anxiety disorder (74%), 25 with current or lifetime 

prevalence of MDD (32%), 10 with either current Dysthymic disorder/current or lifetime 

Karim et al. Page 7

Neurobiol Aging. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



depressive disorder not otherwise specified/current or lifetime mood disorder due to general 

medication (13%), 19 with lifetime prevalence of a substance use disorder (24%), and 5 with 

current/lifetime prevalence of an eating disorder (6%).

We found that brain age was significantly associated with several factors that explained 72% 

of the variance in brain age [F(11,57)=13.3, p<0.001, r2=0.72]. We found the following: (1) 

for every year, participant’s brain age was greater by 0.57 years (~6.8 months); (2) on 

average, women’s brains were younger by 3.4 years (~41 months) compared to men; and (3) 

for every point greater on the RSQ, brain age was greater by 0.14 years (~1.7 months) (see 

table 2 and figure 1).

After imputing values that were missing for 9 participants (see table 1), we reconducted our 

regression and found the following (pooled results): (1) for every year, participant’s brain 

age was greater by approximately 0.53 years (~6.4 months); (2) on average, women’s brains 

were younger by 4.1 years (~49 months) compared to men; (3) for every point greater on the 

PSWQ, brain age was greater by 0.11 years (~1.3 months); (4) for every point greater on the 

RSQ, brain age was greater by 0.11 years (~1.3 months); (5) for every point greater on the 

ERQ suppression scale, brain age was lower by 0.17 years (~2.0 months).

The imputed models explained 68 to 72% (range) of the variance in brain age across 

imputations (variance is not a pooled metric). We showed associations between these factors 

in figure 1 using non-imputed data.

We found that men and women did not differ by chronological age [t(76)=0.9, p=0.346]. We 

found that greater chronological age was correlated with lower rumination [RSQ, r(75)=

−0.37, p<0.005], but not with worry [PSWQ, r(77)=−0.21, p=0.069] or suppression [ERQ 

suppression, r(76)=−0.05, p=0.685]. Pooled results did not differ.

Exploratory Results

When replacing RSQ with RSQ reflection, we found no significant association between 

RSQ reflection and brain age in the imputed [t=0.9, p=0.360, B (SE)=0.173 (0.189), 

ß=0.025, CI=(−0.199, 0.546)] or original data [t=1.2, p=0.238, B (SE)=0.232 (0.194), 

ß=0.113, CI=(−0.158, 0.621)]. When replacing RSQ with RSQ brooding, we found a 

significant association between RSQ brooding and brain age in the imputed [t=2.2, p<0.05, 

B (SE)=0.514 (0.233), ß=0.228, CI=(0.057, 0.972)] and original data [t=2.6, p<0.05, B 

(SE)=0.605 (0.235), ß=0.303, CI=(0.135, 1.075)].

Discussion

Our results indicate that worry and rumination in late life are associated with an accelerated 

brain aging process. Surprisingly, there was no effect of perceived stress and the propensity 

to use suppression seems to have had a protective effect on brain aging in this sample. Brain 

age in men was greater compared to brain age in women.

Worry and rumination share common phenomenological features such as difficult to control, 

repetitive negative thinking. However, worry and rumination have been typically been 

described as two distinct processes, with worry being usually associated with prospective 
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negative thinking and generalized anxiety disorder and rumination with retrospective 

negative thinking and depression(Nolen-Hoeksema, 2000). Classically, rumination is 

triggered by sad mood and maintains depressive symptoms by promoting negative cognitive 

biases(Just and Alloy, 1997). Similarly, classic worry theoretical models such as Borkovec’s 

cognitive avoidance model, posit that worry serves as a cognitive avoidance strategy that 

inhibits the emotional processing of highly anxiogenic material(Borkovec, 1994). However, 

newer theories propose a transdiagnostic approach that 1) includes both worry and 

rumination under the umbrella of repetitive negative thoughts (RNT) and 2) describe the 

detrimental effect of RNT throughout multiple categorical diagnoses including major 

depression, GAD, Social Phobia, Bipolar disorder, Obsessive compulsive Disorder, Eating 

disorders and Post-Traumatic Stress Disorder (PTSD)(Aldao et al., 2010; Ehring, 2008). 

Several authors have proposed RNT as the core of anxiety-depression 

comorbidity(Gustavson et al., 2018; McEvoy et al., 2013), while others emphasized the 

association of RNT with worse psychological, physical and cognitive health in older 

adults(Segerstrom et al., 2010).

Recently, RNTs have been “imported” into the aging and dementia field. As such, in 2015, 

Marchant & Howard advanced a model of Cognitive Debt that would involve certain 

symptoms/disorders actively depleting cognitive reserve and increase vulnerability to 

Alzheimer’s Disease (AD)(Marchant and Howard, 2015). Thus, there is building evidence 

that depression, anxiety, sleep disorders, neuroticism and PTSD increase the risk for AD and 

the authors suggest that RNT are the shared process which may drive the acquisition of 

Cognitive Debt through diverting cognitive and emotional resources to distressing thought 

processes(Marchant and Howard, 2015). The neurobiological signature of Cognitive Debt 

and AD might rely on the relationship between hippocampus, prefrontal cortex (PFC), and 

amygdala with the HPA stress response(Marchant and Howard, 2015). More recently, RNT 

were cross-sectionally associated with cognitive decline, beta amyloid deposits and 

entorhinal tau(Marchant et al., 2020).

Our results, that single out both worry and rumination as predictors of accelerated aging, 

would fit well into the overall model of RNT as contributing to increased Cognitive Debt. 

These results also emphasize the need for preventative interventions targeting RNT in older 

adults (e.g. mindful meditation, cognitive behavioral therapy or positive reappraisal therapy 

– a newer attempt to incorporate mindful meditation into cognitive therapy(Hanley and 

Garland, 2014)).

The exploratory analysis regarding subtypes of rumination also rendered relevant results. 

Treynor, Gonzales and Nolen-Hoeksema (Treynor et al., 2003) differentiated between 

“reflective pondering” and “brooding” factors of rumination, and subsequent research 

confirmed that the brooding sub-type of rumination encompasses the more maladaptive 

aspects of rumination and it is more often associated with mood/anxiety pathology in midlife 

(Treynor et al., 2003) and late-life (Sutterlin et al., 2012) while reflective pondering may be 

conducive to problem-solving strategies (Sutterlin et al., 2012). Our preliminary results 

pointing toward the brooding sub-type as predictive of brain aging suggest that further 

refinement of RNT phenomenology may be required for both future interventions and 

mechanistic studies analyzing the biological underpinning of RNT.
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Our brain age model was fit from data on participants who were without significant beta 

amyloid in the brain, which made our brain age measure more sensitive to amyloid (i.e., 

individuals with significant amyloid had greater brain age)(Ly et al., 2019). Given the link 

between RNT and dementia as well as beta amyloid, there is some reason to suspect a 

possible link in our study as well. Future studies should investigate whether and how RNT 

impacts brain aging with measures of beta amyloid to understand its role in impacting brain 

aging.

Regarding the protective role of expressive suppression, a response-focused form of emotion 

regulation that seeks to prevent the outward expression of an already-generated 

emotion(Gross, 1998), several studies have indicated a positive association between 

expressive suppression and volumes of the anterior insula, dorsomedial PFC and dorsal 

anterior cingulate (ACC)(Cutuli, 2014; Giuliani et al., 2011a; Giuliani et al., 2011b; 

Hermann et al., 2014). Although there is data linking expressive suppression to anxious and 

depressive symptoms(Gross and John, 2003) as well as memory impairment(Hayes et al., 

2010), we may cautiously interpret these results through the use-dependent brain plasticity 

theory(Classen et al., 1998; Giuliani et al., 2011a) that posits a ‘use it or lose it’ approach. 

Thus, chronic preferential use of expressive suppression may maintain a higher volume in 

prefrontal brain regions counterbalancing the thinning effect of aging. An additional 

explanation involves the age group used in the current study – emotion regulation strategies 

effective in younger adults may become less effective with age(Urry, 2010), and although 

older adults report using cognitive reappraisal more than younger adults, it is possible that 

older adults may rely less on a resource-demanding strategy such as reappraisal and use 

simpler techniques such as distraction or suppression(Livingstone and Isaacowitz, 2018).

Our results confirm the multiple previous reports indicating that sex differences influence 

brain morphology and atrophy rates. Past studies have shown greater volume loss in the gray 

matter in men compared to women(Armstrong et al., 2019). Throughout adulthood, research 

indicates that the female brain is more youthful than the male brain, with studies in females 

showing less loss of cerebral blood flow following puberty, more brain glycolysis during 

young adulthood, and less loss of protein synthesis-related gene expression during 

aging(Goyal et al., 2019). These young/middle age adult characteristics might provide some 

degree of resilience to aging-related changes and would apply to observations in large 

epidemiological studies of aging that associated male sex with worse memory and decreased 

hippocampal volume among cognitively normal individuals(Jack et al., 2015).

We found that there were no differences in chronological age between men and women in 

our study and chronological age was not correlated with worry or expressive suppression. 

This further helps show that brain age is an independent correlate of sex, worry, and 

expressive suppression. We did find that rumination was negatively correlated with 

chronological age, but positively correlated with brain age. This may explain the crossing 

between lines for low/high rumination. Future studies should test whether age has a 

moderating role on the association between rumination and brain age.

Our study has several limitations: we do not have longitudinal data to follow-up on the effect 

of the predictive factors described above; we also do not have any other biological markers 
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of aging to corroborate the current results (e.g., inflammatory cytokines, cortisol levels, 

cerebral beta-amyloid burden). Most participants had mild if any depressive symptoms; thus, 

we cannot make inferences about the added effect of clinical depression on accelerated 

aging. Given the cross-sectional nature of our study, it is unclear whether brain aging is a 

result of atrophy or damage or differences in non-neurodegenerative processes (e.g., may be 

due to differences in other inter-individual differences). The use of FWHM of 4mm is based 

previous brain age models which have utilized 4mm(Cole et al., 2015; Cole et al., 2018; Ly 

et al., 2019; Smith et al., 2019), this likely can bias the results and is ultimately somewhat 

arbitrary. In the past, smoothing has been used to boost statistical power (i.e., greater 

smoothing reduces complexity of multiple comparisons problem), however in brain aging 

models is largely meant to deal with greater structural variability due to aging. We utilized 

an MPRAGE with a slice gap of 0.4mm3 due to the high resolution of the sequence 

(0.8mm3), this may affect segmentation as other images were acquired at 1mm3 isotropic 

resolution. All images are resolved to a 1mm3 isotropic resolution with a FWHM of 4mm, 

which help account for small differences. There are differences in the sites, scanners, and 

sequences for each site including this one which may inadvertently affect the results or 

conclusions of the current study. Typically, structural MRI scans are adequately harmonized 

for scanning parameters, however our approach utilized a post-hoc correction. Past studies 

have shown that this generates reliable brain age estimates(Cole et al., 2017), but this may 

nonetheless affect the current results. Our sample is relatively well-educated (average 15 

years), and since education has been shown to be associated with markers of reserve this 

may mean that these results may not generalize well to the general population. Future 

studies should recruit samples with a broader education range and should also measure 

markers like intelligence quotient (IQ) as this may impact reserve as well. Another limitation 

is that the participants who were missing some data differed on education by approximately 

1 year, which may influence these results, however they did not differ on cognitive function 

(3MSE). Future studies should investigate these associations in larger samples using 

approaches that utilize regularization and cross-validation as it is possible that a more 

parsimonious model (e.g., fewer predictors with maximized variance explained) may be a 

better fit. The brain age marker used in this analysis utilizes only gray matter maps and 

reflects a ‘gray matter’ age rather than brain age in general so should be interpreted as such. 

Our analysis regarding brooding vs. reflection was exploratory and should be interpreted 

with caution, but future studies should investigate the divergent mechanisms of these two 

constructs and their effect on brain age.

In conclusion, we present novel data suggesting a deleterious effect on aging of both worry 

and rumination in older adults as well as a potential protective effect of using expressive 

suppression. These results also emphasize the role of preventative interventions in reducing 

accelerated aging by targeting modifiable factors such as worry and rumination in late life.
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Abbreviations.

3MSE modified-mini mental status exam

ACC anterior cingulate

AD Alzheimer’s Disease

CIRSG Cumulative Illness Rating Scale for Geriatrics

DARTEL Diffeomorphic Anatomical Registration using Exponentiated Lie 

Algebra

ERQ Emotion Regulation Questionnaire

FA flip angle

FLAIR Fluid Attenuated Inversion Recovery

FOV field of view

GAD generalized anxiety disorder

GRAPPA GeneRalized Autocalibrating Partial Parallel Acquisition

HARS Hamilton Anxiety Rating Scale

HPA hypothalamic-pituitary-adrenocortical activity

MADRS Montgomery-Asberg Depression Rating Scale

MPRAGE magnetization prepared rapid gradient echo

NEO-FFI Neuroticism, Extroversion, Openness to Experience-Five Factor 

Inventory

PFC Prefrontal Cortex

PSS Cohen’s Perceived Stress Scale

PSWQ Penn State Worry Questionnaire

PTSD Post-Traumatic Stress Disorder

RNT Repetitive Negative Thoughts

RSQ Response Styles Questionnaire

SPACE Sampling Perfection with Application optimized Contrasts using 

different flip angle Evolution

TE Echo Time

TR Repetition Time

VIF Variance Inflation Factor
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• Brain age is a machine learning derived marker of accelerated aging.

• Greater brain age associated with more worry and rumination, and less 

suppression.

• Women had lower brain age compared to men, replicating past studies on 

brain age.

• Past work showed that negative repetitive thoughts are related to greater AD 

risk.

• There is need for developing interventions targeting repetitive negative 

thoughts.
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Figure 1. 
Significant associations between brain age and sex (A), worry (B), rumination (C), and 

suppression (D) adjusting for chronological age. Cutoffs for PSWQ, RSQ, and ERQ 

suppression were based off of the medians of the sample as these are meant to illustrate 

associations that utilized continuous measures. Greater brain age is associated with greater 

age, being male (compared to female), greater worry, greater rumination, and lower 

suppression.
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Table 1.

Characteristics of the sample

Variable Name
Total Sample (n=78)

Number Missing Imputed Mean (pooled)
Mean Std.

Age, years 61.2 8.5 0 N/A

Sex, number female 53 (68%) 0 N/A

Race, W/B/HPI/MR 63 (81%); 13 (17%); 1 (1%); 1 (1%) 0 N/A

Education, years 15.6 2.6 0 N/A

Cumulative Illness (CIRSG) 3.0 2.3 1 N/A

Worry (PSWQ) 47.6 14.7 0 N/A

Anxiety (HARS) 8.5 6.9 2 8.5

Depression (MADRS) 8.2 8.1 5 8.6

Rumination (RSQ) 37.7 12.6 2 37.7

Neuroticism (NEO-FFI) 19.5 10.7 6 19.9

Reappraisal (ERQ Subscale) 29.4 7.8 4 29.4

Suppression (ERQ Subscale) 13.8 5.4 4 13.8

Stress (PSS) 15.5 8.6 4 15.6

Overall Cognitive (3MSE) 96.7 0.5 4 N/A

Brain Age, years 63.6 6.1 0 N/A

-Means and standard deviations are reported unless otherwise noted

-Means for both the original data and imputed values (see number of missing data) are reported

-CIRSG - Cumulative Illness Rating Scale for Geriatrics; PSWQ - Penn State Worry Questionnaire; HARS - Hamilton Anxiety Rating Scale; 
MADRS - Montgomery-Asberg Depression Rating Scale; RSQ - Response Styles Questionnaire; NEO-FFI - Neuroticism, Extroversion, Openness 
to Experience-Five Factor Inventory; ERQ - Emotion Regulation Questionnaire; PSS — Cohen’s Perceived Stress Scale; 3MSE, modified-mini 
mental status exam

-N/A - not applicable or not imputed

-Race: W - White, B - Black, HPI - Hawaiian or Pacific Islander, and MR - Mixed Race
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Table 2.

Regression model explaining variance in brain age.

Variable ß B (SE) 95% CI t-statistic, p-value

Constant 27.834 (5.76) (16.295, 39.373) 4.832, p<0.001

Age 0.81 0.567 (0.058) (0.451, 0.684) 9.745, p<0.001

Sex (Male Reference) −0.26 −3.242 (1.044) (−5.333, −1.151) −3.106, p<0.005

Race (White Reference) −0.04 −0.643 (1.323) (−3.293, 2.007) −0.486, p=0.629

Education −0.02 −0.06 (0.198) (−0.456, 0.336) −0.304, p=0.763

Worry (PSWQ) 0.17 0.068 (0.053) (−0.037, 0.174) 1.295, p=0.201

Anxiety (HARS) −0.10 −0.098 (0.145) (−0.389, 0.193) −0.677, p=0.501

Depression (MADRS) 0.09 0.065 (0.109) (−0.154, 0.284) 0.593, p=0.556

Rumination (RSQ) 0.29 0.143 (0.06) (0.024, 0.263) 2.407, p<0.05

Neuroticism (FFI-N) −0.15 −0.088 (0.08) (−0.248, 0.071) −1.11, p=0.272

Reappraisal (ERQ) 0.00 −0.001 (0.065) (−0.131, 0.129) −0.016, p=0.987

Suppression (ERQ) −0.08 −0.092 (0.092) (−0.277, 0.093) −1.001, p=0.321

Stress (PSS) −0.09 −0.06 (0.085) (−0.231, 0.111) −0.707, p=0.482

ß values indicate standardized coefficients while B indicate unstandardized coefficients. We also report 95% confidence intervals and indicate 
significant associations in bold.

Neurobiol Aging. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karim et al. Page 22

Table 3.

Regression model explaining variance in brain age using imputed data.

Variable ß B (SE) 95% CI t-statistic, p-value

Constant 30.151 (5.606) (19.163, 41.138) 5.378, p < 0.001

Age 0.742 0.534 (0.057) (0.422, 0.646) 9.374, p < 0.001

Sex (Male Reference) −0.322 −4.186 (1.037) (−6.218, −2.153) −4.036, p < 0.001

Race (White Reference) 0.017 0.264 (1.245) (−2.176, 2.705) 0.212, p=0.832

Education −0.047 −0.111 (0.195) (−0.493, 0.272) −0.567, p=0.571

Worry (PSWQ) 0.258 0.107 (0.051) (0.008, 0.207) 2.107, p<0.05

Anxiety (HARS) −0.184 −0.162 (0.14) (−0.437, 0.113) −1.158, p=0.247

Depression (MADRS) 0.064 0.046 (0.109) (−0.168, 0.259) 0.419, p=0.675

Rumination (RSQ) 0.233 0.113 (0.06) (−0.003, 0.23) 1.901, p=0.057

Neuroticism (FFI-N) −0.107 −0.06 (0.083) (−0.222, 0.102) −0.726, p=0.468

Reappraisal (ERQ) 0.077 0.06 (0.062) (−0.061, 0.181) 0.979, p=0.328

Suppression (ERQ) −0.149 −0.169 (0.09) (−0.345, 0.007) −1.879, p=0.060

Stress (PSS) −0.119 −0.084 (0.086) (−0.252, 0.085) −0.97, p=0.332

B indicate unstandardized coefficients. We also report 95% confidence intervals and indicate significant associations in bold.
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