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Abstract

Following traumatic peripheral nerve injury, adequate restoration of function remains an elusive
clinical goal. Recent research highlights the complex role that the immune system plays in both
nerve injury and regeneration. Pro-regenerative processes in wounded soft tissues appear to be
significantly mediated by cytokines of the type 2 immune response, notably interleukin (IL)-4.
While IL-4 signaling has been firmly established as a critical element in general tissue
regeneration during wound healing, it has also emerged as a critical process in nerve injury and
regeneration. In this context of peripheral nerve injury, endogenous IL-4 signaling has recently
been confirmed to influence more than leukocytes, but including also neurons, axons, and
Schwann cells. Given the role IL-4 plays in nerve injury and regeneration, exogenous IL-4 and/or
compounds targeting this signaling pathway have shown encouraging preliminary results to treat
nerve injury or other neuropathy in rodent models. In particular, the exogenous stimulation of the
IL-4 signaling pathway appears to promote post-injury neuron survival, axonal regeneration,
remyelination, and thereby improved functional recovery. These preclinical data strongly suggest
that targeting IL-4 signaling pathways is a promising translational therapy to augment treatment
approaches of traumatic nerve injury. However, a better understanding of the type 2 immune
response and associated signaling networks functioning within the nerve injury microenvironment
is still needed to fully develop this promising therapeutic avenue.
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Introduction

Every year, over 3 million upper extremity traumas and over 4 million lower extremity
traumas are estimated to occur in the US12, Of these, approximately 3% and 2%,
respectively, involve peripheral nerve injury (PN1)34. PNIs can result in severe motor and
sensory deficits, as well as neuropathic pain that have devastating impact on quality of life.
In an attempt to ameliorate these symptoms, patients can undergo nerve repair surgery, yet
despite these efforts, restoration of function following surgery still produces poor outcomes:
in median and ulnar nerve reconstructions, 52% and 43% achieve satisfactory motor and
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sensory recovery respectively®. These suboptimal surgical outcomes are due to factors that
limit nerve regeneration: neuronal death following injury, a decreased capacity for neurons
to regenerate axons over time, the slow growth of regenerating axons compounded with long
distances between lesion site and target, misdirected axonal regrowth to targets, and
potentially irreversible chronic denervation-induced muscle atrophy’=19. Thus, there is a
great need to develop therapies that will enhance nerve regeneration and improve functional
recovery following PNI.

The immune system plays a crucial and intricate role throughout the wound healing process.
Immune cells, while low in quantity within healthy peripheral nerve, are swiftly recruited to
nerve tissue in response to injury: first neutrophils, followed by monocytes/macrophages,
and then lymphocytes. These immune cells respond to injury initially by phagocytosing
debris and secreting cytokines to further attract leukocytes from circulation and to polarize
one another towards pro-inflammatory phenotypes. With time this type 1 immune response,
mediated by pro-inflammatory “M1” macrophages and type 1 T-helper cells, evolves into a
pro-regenerative, healing phenotype mediated by “M2” macrophages and type 2 T-helper
cells. This pro-regenerative, type 2 immune response resolves inflammation to facilitate
regeneration and ultimately restore functionality of the nerve. Specifically, some cytokines
have emerged as interesting candidates that could play important roles in guiding the
immune and resident cells in injured tissue towards pro-regenerative processes. Interleukin 4
(1L-4) is of particular interest as it is the principal cytokine governing wound healing in the
type 2 immune response. IL-4 signaling in damaged nerve may play an important role in
promoting regeneration and restoring function. In this review, we will focus on the role of
IL-4 signaling, both on its endogenous role during the cascade of responses that follow
traumatic nerve injury and regeneration, and on its role when used as a potential exogenous
therapeutic to manage nerve injuries.

Overview of nerve injury and regeneration

At a macroscopic level, nerve includes myelinated axons of motor neurons and large sensory
neurons, and the non-myelinated smaller axons of sensory and autonomic neurons, bundled
into fascicles to compose a nerve fiber. Following nerve injury, different segments of nerve
(axons vs soma) encounter and interact with different environments and cells (Schwann
cells, macrophages, fibroblasts, microglial, etc.) in a region-specific manner. As such, nerve
injury can be viewed in a compartmentalized fashion (Figure 1), which we first review to
provide context for the cells potentially involved in IL-4 signaling.

Proximal nerve and neuronal response.

Following injury, a small amount of degeneration occurs in the axons of the proximal nerve,
but these axons remain viable, as they are still intact with the neuronal soma. In these
proximal axons, cytoskeletal and myelin degeneration occurs only up to the first node of
Ranvier. With this, the axons undergo a dormant phase until genes are activated to facilitate
axon growth. Proximal to the site of nerve injury, neurons sense compromised axonal
function and upregulate a regeneration-associated gene (RAG) program in response (Figure
2). These genes become activated through the axonal trauma, as significant calcium influx,
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retrograde transport of kinases, and other pathways are triggered leading to activation of the
RAG program. The RAG program includes expression of inflammatory signaling pathways,
neurotrophic factors, and cytoskeletal elements to promote axon outgrowth from the
proximal end of the damaged axon. Additionally, there is release of pro-inflammatory
cytokines in the dorsal horn of the spinal cord by injury-activated glial cells, including
microglial, where this action is potentiated by increased levels of neurotrophic factors
locally!. Only neurons that survive the initial injury will be able to upregulate the RAG
program and undergo regeneration. Motor neurons are generally spared from cell death if the
axonal injury is distal enough from the cell bodies and the organism is mature12:13 while
sensory neuron death can be as high as 40% regardless of injury location and age!3-16,

response.

Following trauma to axons within a nerve, subsequent axonal degeneration occurs in the
distal nerve. This axonal degeneration is necessary for nerve regeneration as it activates and
recruits non-neuronal cells that clear the distal stump of debris and prepare it to receive
newly sprouted axons from the proximal nerve. Schwann cells (SC) respond to the absence
of axonal contact by assuming a dedifferentiated, non-myelinating, phagocytic phenotype.
These new pro-regenerative Schwann cells begin expressing neurotrophic and pro-
inflammatory cytokines that increase the permeability of the blood-nerve barrier, enabling
neutrophils and then macrophages to arrive at the injury site. These hematogenous cells,
along with resident macrophages in the nerve, assist Schwann cells in phagocytosing debris
and remodeling the extracellular matrix. Once cellular debris in the distal stump has been
cleared, Schwann cells begin aligning themselves along the basal lamina of the endoneurium
to form hollow tubes, known as bands of Blingner, into which sprouting axons from the
proximal nerve stump may grow to reach their end-organ targets®17. Within nerve,
macrophages then experience anti-inflammatory signaling that promotes their conversion to
a phenotype that promotes SC maturation. Additionally, axons express neuregulin type 1,
which interacts with receptor ErbB2 on SCs, signaling to SCs to mature and myelinate.
These processes lead to restoration of function.

Nerve gap response.

In circumstances when nerve is severely injured resulting in a gap between the proximal and
distal nerve, the response within the gap area is similar in ways to general, multi-phase,
wound healing processes. For most soft tissues, at the site of injury, blood coagulation and
transient vasoconstriction occur, filling the tissue gap with a blood clot consisting of
platelets, macrophages, and other immune cells, ECM, growth factors, and importantly,
chemotactic and pro-inflammatory cytokines. These cytokines attract leukocytes from
circulating blood, first neutrophils and then monocytes/macrophages, each phagocytosing
cellular debris and enhancing inflammation and repair through cytokine release. Lastly, T
lymphocytes arrive and further assist in promoting and ultimately resolving inflammation in
the injured tissue. These late pro-regenerative signals promote fibroblast activity,
neovascularization and angiogenesis, and long-term tissue remodeling8-19,

Similarly, in nerve gaps, immediately after a nerve has been injured, an array of factors are
released including pro-inflammatory chemotactic factors to attract resident and circulating
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leukocytes (Figure 3). Extrinsic and intrinsic coagulation cascades convert fibrinogen to
fibrin, which serves as a dense ECM upon which neutrophils, macrophages, fibroblasts,
endothelial cells, and later Schwann cells may migrate to bridge the proximal and distal
nerve stumps. Neutrophils and then macrophages arrive at the injury site migrating upon the
scaffold and begin phagocytosing debris and remodeling the scaffold in preparation for
regeneration. Both tissue resident and later hematogenous macrophages secrete vascular
endothelial growth factor (VEGF), a pro-angiogenic factor, recruiting endothelial cells to the
nerve gap2%-21. As blood vessels form, fibroblasts and dedifferentiated Schwann cells
migrate along the endothelial basal lamina, forming cords similar in structure to the bands of
Bungner in the distal stump. Concurrently, there is an influx of other myeloid cells (i.e.
eosinophils) and T lymphocytes promoting expression of anti-inflammatory cytokines?1-23,
With these elements in place, the healing nerve gap is prepared to receive and guide
sprouting axons from the proximal stump to the distal stump. The newly-formed matrix of
Schwann cells, fibroblasts, and blood vessels in the nerve gap conduct the regenerating
axons to the distal nerve stump, where processes proceed to facilitate axon growth to their
end-organ targets as described previously.

The role of inflammation and endogenous IL-4 signaling during injury and

regeneration

During regeneration, the immune system establishes a balance between pro-inflammatory
and anti-inflammatory processes (type 1 and type 2, respectively). The type 1 response is
characterized by processes that enhance inflammation, such as the recruitment of leukocytes,
expression of pro-inflammatory cytokines, and polarization of macrophages to the M1
phenotype. This inflammation indirectly promotes tissue regeneration by supplying
chemotactic cytokines that attract cells required for wound healing. The type 2 response
directly promotes tissue regeneration, characterized by the cytokines IL-4 and IL-13. These
cytokines classically promote anti-inflammatory, pro-regenerative immune cell phenotypes,
such as the M2 macrophage and Type 2 helper T cell (Th2). Considerably more is known
regarding type 2 responses and IL-4 signaling in general wound healing, while less is known
about these responses and signaling during nerve injury and regeneration, where each
compartmentalized region of nerve could have important roles and unique cellular targets.

IL-4 signaling in the context of general wound healing.

IL-4 is a small, globular protein similar in structure to other cytokines. In response to injury,
basophils?4, eosinophils?®, and mast cells28 are classically associated as sources of IL-4 for
the innate immune response (Figure 4A). But, other innate immune cells, including NK T
cells?* and neutrophils?” have been found to express IL-4 as well. In the adaptive immune
response, type 2 helper (Th2 CD4+ T cells) and follicular T helper cells can be principal
sources of IL-4 or regulate 1L-4 expression from other cells, such as eosinophils28.

IL-4 regulates target cell function and transcriptional activity through cell surface receptors
(Figure 4B). Assembly of the IL-4 receptor complex is initiated when 1L-4 binds the
extracellular domain of the IL-4Ra chain. This high-affinity association between receptor
and ligand enables the IL-4Ra chain to bind either the common gamma chain (yc, also
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known as the IL-2Ry) or the IL-13Ra1 chain respectively — forming functional type 1
IL-4R or the type 2 IL-4R complexes?®. The IL-4Ra and IL-13Ra.1 chains are expressed in
both hematopoietic and non-hematopoietic cells. Contrastingly, the -yc chain is expressed
primarily in hematopoietic cells and is mostly absent in non-hematopoietic cells. In myeloid
cells, such as macrophages, eosinophils, and mast cells, IL-13Ra1 and the yc chain are
equally expressed whereas in lymphocytes, there is increased expression of the yc chain
compared to IL-13Ra.12°,

Once an IL-4-receptor complex has formed, intracellular Jak kinases become activated
leading to downstream activation of STAT629. STAT6 molecules dimerize and translocate to
the nucleus, activating transcriptional machinery with diverse effects for each cell type. For
example, IL-4-STAT6 signaling in macrophages upregulates Src kinase expression,
promoting M2 phenotype differentiation3%; in B cells the Aicda gene encoding AID
(activation-induced cytidine deaminase) is upregulated which is required for class
switching3; and in T cells the GATA-3transcription factor is upregulated which promotes
the Th2 cell phenotype32. Overall, IL-4 associated downstream signaling can be quite
diverse based on the cell targeted.

IL-4 signaling in the context of nerve injury and regeneration.

While the immune system is regarded as a major source providing IL-4 within nerve, IL-4 is
indeed expressed within cells specific to nerve after injury (Figure 4A). Systemically, blood
plasma levels of IL-4 do not change following sciatic nerve crush in a rodent model33. But,
locally within nerve, an inflammatory and regenerative milieu has been implicated to
produce IL-4. In both neuropathic and morphologically normal human sural nerves,
immunohistochemical staining for IL-4 were found in myelinating Schwann cells,
immunoreactive lymphocytes, and putative macrophages and fibroblasts34.

IL-4 signaling associated with cell populations specific to nerve after injury and regeneration
are still sources of ongoing investigations, but there is increasing evidence that IL-4 targets
these cells (Figure 4B). In the central nervous system, which also contains select neuronal
bodies of peripheral nerves such as motor neurons, many neuronal populations, astrocytes,
and microglia have been found to express IL-4R. Additionally, IL-4R has been found not
only on neuron cell bodies, but also axons of CNS neurons3. The role of IL-4 on injured
neurons and their axons has primarily been studied in the CNS. IL-4 mediates CNS
neuroprotection and regeneration following injury through inducing microglia and
macrophages to a pro-regenerative phenotype36:37 and additionally promotes
oligodendrocyte differentiation and subsequent remyelination38. But also, in a series of
studies relevant for peripheral nerve injuries, Jones’ group elucidated a critical role for IL-4
in nerve regeneration following peripheral injury affecting cranial nerves. Using facial nerve
transection models in mice, they showed that Th2 cells are necessary for facial motor
nucleus (FMN) survival post axotomy and that these immune cells’ neuroprotective effects
are dependent on 1L-4 expression3%-44, Walsh et al found similar results in the CNS,
showing an MHCII-independent neuroprotective role for a subset of IL-4 producing T
cells*>. For spinal nerves, the presence of T-cells (and therefore, potentially 1L-4) in the
DRG and sympathetic ganglia has been reported following sciatic nerve transection#6-49
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(Figure 2). But, the role of T cells and IL-4 in promoting survival of sensory and
sympathetic neurons, as well as spinal motor neurons, has yet to be elucidated. Furthermore,
how T cells affect the CNS to activate motoneurons is yet not clear, but could involve their
actions within the meninges®?51, as demonstrated for 1L-17 affecting brain®2.

IL-4 is directly involved in macrophage M2 polarization within nerve®3, where these
polarized M2 macrophages have a clear role in directing SC regenerative responses.
Increased Schwann cell proliferation and migration were seen in response to IL-4 induced
M2 macrophage-derived microvesicles®. Similar results were found with IL-4-stimulated
M2 macrophages in an /n vitro SC culture®®. During the pro-regenerative phase of nerve
repair, IL-4 signaling has been shown to increase Schwann cell mobility, conducing them to
form the cellular cords previously mentioned that guide regenerating axons®6. And finally,
during nerve regeneration across a nerve gap, IL-4 signaling was associated with promoting
SC myelination within the regenerated nerve gap?2:23. However, while these responses
involved IL-4 signaling, it is not yet clear whether direct IL-4 signaling via SCs was
involved, as SCs also express the IL-4Ra chain®’. From these studies, there is potential that
IL-4 signaling within SCs was partly involved in observed responses, rather than all effects
being mediated indirectly to SCs via IL-4 signaling to cells of the immune system (i.e.
macrophages).

Mesenchymal cells within nerve, such as stromal cells and fibroblasts, play a central role in
tissue injury and regeneration. These cells are also receptive to cytokines, stimulating them
to take on a variety of phenotypes depending on the tissue and circumstance. In the wound-
healing response, type Il cytokines play an important role influencing fibroblasts to deposit
ECM to enable tissue repair. Early in this process, IL-4 has been shown to specifically
induce expression of tenascin by fibroblasts. Tenascin is important in wound-healing as it
precedes collagen deposition and cellular migration®®. Furthermore, 1L-4 signaling induces
increased migration and ECM protein deposition by fibroblasts®®. However, when type 11
signaling and fibroblast activity is extended beyond the normal wound-healing timeline, as
in allergic diseases, tissue scarring and fibrosis can occur. Whether these processes are
recapitulated within nerve is not yet known, but overall, 1L-4 signaling within cell
populations specific to nerve could clearly be instrumental to injury and regenerative
responses.

The potential of exogenous IL-4 as a therapy

Type 2 immunity and therapies targeting IL-4/IL-13 might play a significant role in
overcoming severe nerve injuries that do not regenerate, or regenerate to a degree but yield
inadequate recovery. In Table 1, the findings from studies of exogenous IL-4 and its effects
on rodent models of neuropathies are presented. While many of these studies are not specific
to traumatic peripheral nerve injury (PNI), the results suggest some findings could be
extrapolated and hold promise in the context of PNI. The studies were broadly divided into
two categories — systemically versus locally administered IL-4 treatments — and into a third
category for resveratrol, an IL-4R-modulating drug.
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Systemic treatment using exogenous IL-4 was associated with improved regenerative
outcomes in rodent neuropathy models. Studies using autoimmune models of neuropathy
reported significantly reduced severity of symptoms with exogenous IL-4, and that treatment
attenuated neuronal inflammation and progressive demyelination3®60, \ogelaar et al found
that IL-4 therapy ameliorated disease progression equally whether treatment begun in early
or late stages of disease. Interestingly, when IL-4 therapy was administered at an early
phase, symptoms and inflammation from the disease model were both reduced. However at a
late phase, symptoms were reduced while no change in inflammation was observed —
suggesting a potential nonimmune mechanism for IL-4 during chronic demyelinating
diseases like MS3. Finally, systemic IL-4 used in a spinal cord contusive injury model
demonstrated decreased inflammation throughout the spinal cord and increased numbers of
oligodendrocytes and motor neurons in the ventral horn compared to untreated models®2.
While additional research is needed to confirm the relevance of these findings to PNI, these
findings suggest that an 1L-4 therapy may need to target neuronal populations to promote
regeneration.

Studies considering the effects of IL-4 on peripheral nerve injury models focused on the
effects of locally administered IL-4 at the site of peripheral neuropathy. Overall, these
studies found an increase in pro-regenerative processes associated with IL-4 treatment.
Nerve conduit repair models showed greater axon regeneration and axon density across a
nerve gap when using IL-4-filled conduits compared to no drug within a onduit62:63,
Additionally, IL-4 treatment increased Schwann cell migration into the conduit and was
associated with increased numbers of macrophages in the nerve. Upon further analysis, this
greater macrophage population was composed primarily of M2 macrophages and had a
decreased M1 macrophage ratio compared to controls®®. Alternatively, perineural injected
IL-4 treatment attenuated neuropathic pain in a dose-dependent fashion in models of
neuropathic pain®4. IL-4 treatment was also associated with increased M2 macrophage
populations in the affected nerve. Interestingly, Celik et al reported IL-4-induced M2
macrophages produced increased levels of opioid peptides compared to untreated groups,
unveiling a potential mechanism whereby IL-4 treatment reduces neuropathy-associated
pain. Compared to the previously discussed systemic IL-4 studies, the findings here carry
greater relevance for applications to treat peripheral nerve injury. However, given the
heterogeneity of local environments that PNS neuron components project their axons to, and
the heterogeneity of the neurons themselves, more research is needed to elucidate the
specific effects 1L-4 has on the various cells of the PNS environments (nerve gap, proximal
and distal stumps, DRG, dorsal horn, ventral horn, etc.) and how these effects might work
together to promote nerve repair and regrowth.

Finally, an interesting study was done using resveratrol, as opposed to IL-4. Resveratrol is a
naturally-derived polyphenol that is known for its wide-spread beneficial effects (i.e.
cardioprotective, antioxidant, anti-inflammatory, anti-tumorigenic, etc.) with myriad
proposed mechanisms of action®. Additionally, resveratrol has been shown to improve
outcomes of various kinds of nerve injury. Xu et al found that resveratrol attenuates
neuropathic pain through IL-4R-mediated signaling. With resveratrol treatment, they
observed an upregulation of anti-inflammatory receptors and signaling in the spinal dorsal
horn, leading to reduced mechanical allodynia and thermal hyperalgesia. This resveratrol-
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induced anti-inflammatory signaling was reversed with an IL-4Ra knock out, suggesting an
IL-4R-dependent mechanism for resveratrol-mediated alleviation of neuropathic pain®.

Translating an IL-4 therapy

Given the role endogenous IL-4 plays in guiding the regenerative phase of the wound
response and the encouraging results from its exogenous use in treating PNI in rodents, there
is great clinical translational potential for an IL-4-focused therapy. While exogenous IL-4
attenuates neuropathy and promotes significant nerve regeneration with recovery, the exact
cellular mechanisms whereby IL-4 treatment promotes nerve regrowth still needs
considerable attention. And, while there seems high potential to translate 1L-4 therapies to
the clinic given these early results, exogenous IL-4 treatment is not devoid of risks and
potential side effects. Although IL-4 is critical for promoting tissue regeneration, chronic
IL-4 exposure in tissues promotes excessive tissue remodeling, fibrosis, and chronic
inflammation. Chronic inflammatory diseases frequently result in tissue fibrosis and are
attributed to a significant proportion of deaths worldwide®7:68, Excessive IL-4 signaling has
been implicated in various chronic inflammatory conditions like allergic asthma. As such,
many therapies have been developed to block IL-4 signaling and diminish its long-term
effects on tissue inflammation and scarring2969. Thus, great care needs to be taken in
developing an exogenously applied IL-4 treatment to maintain the desired regenerative
effects while attenuating unwanted scarring and potential fibrosis.

Based upon these concerns, some risk could be minimized by IL-4 local delivery at the
nerve injury site through injections or nerve conduits, rather than systemic administration. If
unwanted side effects pose a serious roadblock for treatment design, having an
understanding of I1L-4 signaling pathways within specific cells would be critical for
potentially developing IL-4 therapies specific to the cells and sites required for stimulating
nerve regeneration. Given the structure and distribution of the IL-4R subtypes, it might be
possible to accomplish this. Non-hematopoietic cells principally express the type 2 IL-4R,
whereas hematopoietic cells express both type 1 and type 2. Attempts to mutate IL-4 to
preferably activate the type 1 receptor, preventing fibrotic side effects, has been met with
setbacks, but recent results are promising and show potential for developing a hematogenous
cell-selective “superkine”2%70, Alternatively, it also might be worthwhile to search for
additional therapies that modify or promote IL-4 signaling without administering exogenous
IL-4 itself. This method could pose fewer side effects compared to native IL-4 therapy and
potentially be easier to develop and administer. The recent results from Xu et al using
resveratrol to stimulate IL-4-mediated signaling are encouraging for this form of PNI
treatment. However, care needs to be taken as some studies have found negative effects for
resveratrol as a pro-oxidizing agent8®. Overall, more research will need to be done to ensure
treatment safety in the context of peripheral nerve injury, but therapies targeting 1L-4
signaling have demonstrated promise to potentially better manage PNIs.

Conclusion

IL-4 is a promising target for managing peripheral nerve injury and enhancing recovery. It is
the principal cytokine governing the pro-regenerative type 2 immune response, suppressing
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inflammation and stimulating immune cells to a healing phenotype. The cells implicated in
nerve regeneration — Schwann cells, macrophages, fibroblasts, neurons, etc. — respond to
IL-4 signaling, either indirectly via other immune cells or directly, and subsequently
promote regrowth. Without IL-4, nerve recovery post-injury is greatly hindered. IL-4
treatments for nerve injury and neuropathy in rodent models have shown encouraging
preliminary results and indicate targeting IL-4 signaling as a promising translational therapy
for recovery from traumatic nerve injury. More study is needed to characterize the precise
signaling network — IL-4 sources, targets, and effects — between the various cells of post-
trauma nerve that is necessary for regeneration. With that knowledge, more specific and
robust therapies could potentially be developed to optimize nerve regeneration without the
unwanted effects of systemically stimulated type Il immunity.
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Figure 1 —. Schematic of nerve injury and regeneration.
An overview of the affected central and peripheral nervous system compartments is shown

in the context of a nerve transection resulting in a nerve gap.
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Spinal Cord

Figure 2 —. Focused schematic of the response to peripheral nerve injury within the central
compartment and the cells implicated in IL-4 signaling.

Following axotomy, injury-induced retrograde signals activate a regeneration-associated
gene (RAG) program within neurons. This gene program results in release of pro-
inflammatory cytokines and axon outgrowth. IL-4 signaling in the ventral horn and DRG
further stimulate pro-regenerative processes within neurons, promoting cell survival and
recovery. TH2 cells (Effector T cells) have been implicated as a source or regulator for IL-4
signaling post axotomy. IL-4 signaling to motoneurons promotes their survival, although its
effects to sensory neurons is less clear despite the known accumulation of T cells within
dorsal root ganglia.
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Proximal Nerve Nerve Gap Distal Nerve

Figure 3 —. Focused schematic of the inflammatory and pro-regenerative phases of nerve post-
axotomy.

In the proximal nerve, retrograde signals and calcium influx signal neurons to injury
activating a RAG program (see figures 1&2). Within the nerve gap, the pro-inflammatory
phase of injury involves leukocyte accumulation including platelets (P), neutrophils,
macrophages (M), and inflammatory cytokines forming a clot to promote inflammation and
a provisional ECM. This inflammation resolves as T-cells arrive in the nerve gap and
promote pro-regenerative processes including IL-4 regulation and leukocyte modulation and
recruitment. The pro-regenerative phase involves changes to macrophages from Type 2 (i.e.
IL-4) cytokines leading to promotion of neovascularization, angiogenesis, ECM remodeling,
and then recruitment of aligned Schwann cell (SC) channels within the gap. In the distal
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nerve, axons undergo Wallerian degeneration, where SCs dedifferentiate into a pro-
inflammatory, phagocytic phenotype recruiting other phagocytic leukocytes. Following this
inflammatory phase, these dedifferentiated SCs then align themselves into channels (Bands
of Bungner) to facilitate axon growth from the proximal nerve.
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Figure 4 —. Schematic of interleukin (IL)-4 signaling sources (A) and targets (B).
(A) Cell sources of IL-4 signaling include: Type 2 T-helper (TH2) cells, eosinophils,

basophils, mast cells, natural killer (NK) T-cells, follicular T-helper cells, fibroblasts, and
Schwann cells (SC). IL-4 signals via IL-4R, a complex of either the type | (IL-4Ra and -yc)

or type Il (IL-4Ra and IL-13Ral) chains. The type | receptor co

mplex activates janus

kinases (JAK), whereas type Il (IL-13Ra1) activates tyrosine kinase 2 (TYK2) and JAKSs,
which in turn activate STAT-6 leading to dimerization and transmigration to the nucleus to

transduce changes to response genes. (B) Cells of hematopoietic

origin (i.e. macrophages, T-

cells, B-cells) express both Type | and Type II IL-4 receptors, whereas non-hematopoietic
cells (i.e. oligodendrocytes, Schwann cells, fibroblasts) only express the type Il IL-4
receptor. This signaling promotes cell-specific gene expression, such as promoting M2
macrophage phenotypes. In non-hematopoietic cells specific to nerve, 1L-4 signaling
promotes myelination in oligodendrocytes, migration and remyelination in Schwann cells,

and extracellular matrix (ECM) deposition and remodeling in fib
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