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Abstract

Introduction—KRAS mutations drive tumorigenesis by altering cell signaling and the tumor 

immune microenvironment. Recent studies have shown promise for KRAS-G12C covalent 

inhibitors, which are advancing rapidly through clinical trials. The sequencing and combination of 

these agents with other therapies including immune checkpoint blockade (ICB) will benefit from 

strategies that also address the immune microenvironment to improve durability of response.

Areas covered—This paper reviews KRAS signaling and discusses downstream effects on 

cytokine production and the tumor immune microenvironment. RAS targeted therapy is introduced 

and perspectives on therapeutic targeting of KRAS-G12C and its immunosuppressive tumor 

microenvironment are offered.

Expert opinion—The availability of KRAS-G12C covalent inhibitors raises hopes for targeting 

this pervasive oncogene and designing better therapeutic combinations to promote anti-tumor 

immunity. A comprehensive mechanistic understanding of KRAS immunosuppression is required 

in order to prioritize agents for clinical trials.
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1. Introduction

1.1 RAS oncogenes

Following its original discovery from a murine sarcoma virus, decades of study of have 

firmly established the human KRAS oncogene as a key driver of tumorigenesis in non-small 

cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), colorectal cancer 

(CRC), and multiple other tumor types (1-3). KRAS has intrinsic GTPase activity and is 

active when bound to GTP and inactive when bound to GDP, a process that is catalyzed by 

RAS GTPase activating proteins (GAPs). The three commonly observed missense mutations 

in KRAS: G12, G13, and Q61, impair GAP binding (4), forcing it to rely on its slow 

intrinsic GTP hydrolysis rate and thus favoring constant downstream signaling (5, 6).

Pharmacologic targeting of KRAS has been hindered by structural characteristics of the 

KRAS protein along with its high affinity for GTP (7). To overcome the difficulties 

associated with direct targeting of KRAS, indirect approaches have been devised to target 

downstream signaling pathways, post-translational modifications, and associated chaperone 

proteins (5). However, as discussed in greater detail below, these approaches have been 

laden with difficulty due to achieving pharmacologically effective doses of inhibitors or 

activation of compensatory signaling pathways.

In this review we focus on recent molecular insights that have enabled covalent targeting of 

the KRAS-G12C isoform, as well as the increasing recognition that understanding how 

oncogenic KRAS and its co-mutations shape the immune microenvironment will likely be 

critical to achieving durable therapeutic responses. While KRAS-G12C inhibitors have 

entered phase I trials as monotherapy, preclinical efficacy is enhanced in combination with 

additional pathway inhibitors or with ICB (8, 9). KRAS signaling and associated co-

mutations also influence patterns of immune cell infiltration downstream of cytokines such 

as IL-6, and can promote T cell exclusion (10, 11). Thus, understanding the interplay 

between these different factors likely holds the key to precision KRAS-directed therapy that 

ultimately achieves durable response.

1.2 Oncogenic KRAS activation

The RAS gene family includes some of the most common oncogenes including KRAS, 
HRAS, and NRAS. KRAS is mutated in 20% of all cancer types, 90% of pancreatic cancers, 

45% of colorectal cancers, and 25% of NSCLC (5, 12). While NRAS and HRAS mutations 

are less common than KRAS mutations, NRAS mutations have been found in 29% of 

melanomas and HRAS mutations in 5% and 6% of head and neck squamous and bladder 

cancers, respectively (12).

RAS proteins mediate extracellular signals from receptor tyrosine kinases (RTKs). The main 

downstream effectors of RAS include the mitogen-activated protein kinase (MAPK), the 

phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR, and RAL signaling pathways. The RAS 

protein is a single-subunit small GTPase that switches between the GDP-bound state and the 

GTP-bound state. These two states are regulated by guanine nucleotide exchange factors 

(GEFs), including son-of-sevenless homologue 1 (SOS1), GRB2, SHP2, in addition to the 

aforementioned GAPs. GEFs catalyze the exchange of GDP for GTP, and GAPs promote the 
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hydrolysis of GTP to GDP. The GTP-bound form of RAS activates RAF-MEK-ERK 

downstream signaling, promoting tumor cell survival and proliferation. The recognition that 

hotspot mutations in KRAS at G12, G13, and Q61 do not lock KRAS in the GTP-bound 

active state, but rather impair GAP mediated catalysis, forms the basis for the successful 

inhibition of KRAS-G12C by covalent inhibitors (see below). The frequency of hotspot 

mutations varies by tumor and isoform. G12 and G13 account for 83% and 14% of KRAS 
mutations, respectively, while Q61 accounts for 63% of NRAS mutations (5). Given its 

association with smoking, KRAS-G12C is the most common KRAS mutation in lung 

cancer, occurring in 40-50% of KRAS-mutant NSCLC (5, 13). On the other hand, KRAS-
G12D is the most common mutation in pancreatic ductal adenocarcinoma and colorectal 

adenocarcinoma (5). While all of these mutations sustain GTP-bound activation, some 

mutations (excluding KRAS-G12C) also differentially affect intrinsic hydrolysis and 

exchange between GDP and GTP (6, 7).

1.3 Impact of pro-tumorigenic cytokines

KRAS-mutant NSCLC is characterized by evasion of antitumor immunity alongside 

inflammation that fuels tumor growth and oncogenic mutations, resulting in part from 

enhanced production of suppressive inflammatory cytokines (Figure 1) (14, 15). In addition 

to the major KRAS downstream pathways MAPK and PI3K/AKT/mTOR, RAL signaling 

and IL-1β can activate TBK1 to promote NF-κB and IL-6 mediated autocrine STAT3 

pathway activation (16, 17). KRAS signaling and IL-1β pathway activation increases IL-6 

secretion and further reinforce a positive feedback autocrine cytokine circuit through STAT3 

mediated induction of the TBK1 homologue IKKε (16, 18). These effects are further 

magnified in the context of LKB1 inactivation as well as therapeutic MEK inhibition (10, 

19). In KRAS-LKB1 genetically engineered mouse models, IL-6 neutralizing antibody or 

JAK/TBK1 inhibitor treatment inhibited tumor growth, though escape occurred due to rapid 

cellular transcriptional adaptation (10, 19).

Constitutive generation of IL-1β by activation of inflammasomes in the lung can promote 

chronic inflammation and tumorigenesis. Indeed, depletion of GATA2, a regulator of IL-1β, 

has been reported to inhibit tumor growth in a mouse model of KRAS-mutant NSCLC (20). 

The inhibition of the NLRP3 pathway, a mediator of the inflammasome and IL-1β release, 

has also been reported to inhibit cell proliferation and migration in KRAS-mutant lung 

cancer cell lines (18). Canakinumab is a humanized anti-IL-1β monoclonal antibody which 

antagonizes its activity. In a serendipitous observation, canakinumab treatment strongly 

reduced the incidence of lung cancer in patients treated for atherosclerosis on the CANTOS 

trial (21). KRAS mutations were not specifically studied in the CANTOS trial, however, the 

frequency of a smoking history in a population with atherosclerosis was high and it is 

presumed that these patients have a high frequency of KRAS mutations. These protective 

effects were dose-dependent, strongly supporting that IL-1β is involved in lung cancer 

carcinogenesis in humans and highlighting the therapeutic potential of its blockade.

KRAS mutations can also enhance pro-tumorigenic immune interactions via metabolic 

reprogramming, as elegantly shown in models of the pancreatic cancer stroma (22). 

Blocking the upregulation of cytokine receptors on tumor cells could suppress interactions 
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with invading Th2 cells in the microenvironment, offering additional therapeutic targets to 

enhance antitumor immunity in KRAS-driven cancers.

2. RAS Targeted Therapy

2.1 Drugging the undruggable

While therapies targeting KRAS have been tested since the early 2000s, there has yet to be 

an approved agent. However, the identification of a covalent binding pocket in the KRAS-

G12C isoform (7) led to a paradigm shift and emergence of the first direct KRAS inhibitors 

with promising clinical data and predicted integration into clinical practice. Review of 

previous strategies for indirect KRAS inhibition, along with recent molecular breakthroughs 

enabling direct targeting, will inform development of additional KRAS inhibitory strategies 

and combination with other targeted and immune treatments.

2.2 Farnesyltransferase inhibitors

While directly targeting RAS initially proved difficult, inhibiting post-translational 

modification of RAS showed early promise. RAS proteins undergo post-translational 

modification by prenylation, allowing them to translocate to the cell membrane for 

activation. The number of isoprene units covalently bound to a free thiol of cysteine 

determines the type of prenylation: While HRAS, NRAS, and KRAS all undergo 

farnesylation (three isoprenes), NRAS and KRAS can also undergo geranylgeranylation 

(four isoprenes) (12). Therapies that inhibit these post-translational modifications lock RAS 

isoforms in an inactive confirmation.

Although farnesyltransferase inhibitors advanced to phase III trials, they failed to meet 

primary endpoints (23). Preclinical work sheds light on potential mechanisms of resistance, 

which may have been obscured by over-reliance on HRAS mutant models in the 

development of farnesyltransferase inhibitors. Farnesyltransferase is critical for RAS 

anchoring to the membrane in HRAS mutant tumors, but geranylgeranyl transferase type I 

governs the process in the absence of farnesyltransferase in KRAS and NRAS mutant 

tumors, identifying a potential mechanism of resistance to farnesyltransferase inhibitors (23, 

24). These findings raise the possibility of future combination therapies to inhibit these post-

translational modifications in KRAS and NRAS mutant tumors.

2.3 Targeting RAS-activators

The critical cycling from the inactive GDP-bound state to the active GTP-bound 

confirmation nominated the catalyst of this cycle, the GEF SOS1, as a therapeutic target. In 

addition to its role as a GEF, SOS1 binds to GTP-coupled KRAS to promote a positive 

feedback loop via engagement of activating downstream signals. The selective SOS1 

inhibitor BI-3406 demonstrated efficacy in xenograft models of KRAS-mutant cancers and 

showed synergy with MEK inhibitors to prevent acquired resistance (25). A phase I clinical 

trial (NCT04111458) has opened to test the analog BI 1701963 as monotherapy, and in 

combination with trametinib in advanced KRAS-mutant solid tumors.
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SHP2 is a phosphatase that mediates activation of KRAS by RTKs. While the precise 

function of SHP2 has not yet been determined, it appears to bind GRB2 and SOS to mediate 

downstream activation of RAS (26). Thus, SHP2 inhibition favors the GDP bound state of 

KRAS by preventing effective GTP loading. SHP2 inhibitors are also being tested in 

combination with MEK inhibitions to prevent acquired resistance (27). The combination of 

MEK inhibitors and SHP099 (SHP2 inhibitor) showed efficacy in xenograft and genetically 

engineered models of KRAS-mutant cancers such as pancreatic, lung, and ovarian cancers, 

as well as KRAS-expressed triple-negative breast cancer (27-29). Inhibition of KRAS codon 

12 mutant cell proliferation has been observed with the selective SHP2 allosteric inhibitor 

RMC-4550 (26). Inhibition of codon 13 and 61 mutants, however, was not observed. These 

results suggest that each KRAS mutation conveys a different degree of intrinsic dependence 

on individual GEFs.

As expected from other studies of RTK vertical pathway inhibition, blocking KRAS 

effectors can synergize with direct KRAS targeting. In KRAS-G12C NSCLC and PDAC cell 

lines, adding a SHP2 inhibitor to a KRAS covalent inhibitor increased CD8-positive T cells 

in the TME while decreasing myeloid suppressor cells and enhancing the effect of PD-1 

inhibitors (9, 29). These results suggest that SHP2 inhibition can also influence the tumor 

immune microenvironment.

2.4 Targeting RAS effectors: MAPK, PI3K/AKT/mTOR and TBK1/JAK

Efforts to inhibit KRAS activity have focused on the primary downstream signaling 

pathways for RAS family proteins: MAPK, PI3K/AKT/mTOR and TBK1/JAK. Initial 

approaches to target the MAPK signaling pathway were carried out using the BRAF V600E 

inhibitors vemurafenib and dabrafenib, developed to treat melanoma (30). However, BRAF-

V600E inhibitors proved unsuccessful in KRAS-mutant tumors due to the preponderance of 

BRAF heterodimers (BRAF and CRAF). Additionally, in KRAS-mutant models, BRAF-

V600E inhibitors resulted in paradoxical activation of ERK (31, 32). MEK inhibitors were 

able to overcome this positive feedback loop, suggesting the possibility of single-agent 

activity to target KRAS effector function. While a number of MEK inhibitors have entered 

clinical trials for KRAS-mutant tumors, none have demonstrated significant efficacy (33, 

34). However, MEK inhibitors may prove more effective in combination with other agents. 

In combination with docetaxel, the selective allosteric MEK1 and MEK2 inhibitor 

selumetinib showed promise in a phase II trial of second-line treatment in KRAS-mutant 

NSCLC. However, the combination failed to show efficacy as compared to docetaxel 

monotherapy in a phase III trial (SELECT-1; NCT01933932) (35). Concurrent inhibition of 

multiple signaling pathways downstream of KRAS was also considered a promising 

therapeutic strategy. In a preclinical model, the combination of MEK and PI3K inhibitors 

was found to inhibit tumor growth in KRAS-mutant lung cancer (36). Concurrent inhibition 

of MAPK and TBK1 also showed promising results in preclinical model (19). However, 

combination treatment MEK inhibitors and PI3K inhibitors, as well as the combination of 

MEK inhibitors and TBK1 inhibitors, failed in clinical trials because of dose-limiting 

toxicities from MEK inhibitor effects on normal cells (37, 38) and inadequate dosing to 

inhibit TBK1, for example (39).
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2.5 KRAS-G12C covalent inhibitors

The high affinity of KRAS for GTP prevents the steric hindrance approaches that have 

proven successful with TKIs. Agents that bind to multiple sites of RAS (40) and inhibit the 

dimerization of KRAS (41), were tried and failed. A breakthrough came by considering 

KRAS mutations separately, with identification of a previously unknown binding pocket in 

KRAS-G12C (7). Compounds that covalently bind this pocket trap the enzyme its inactive, 

GDP-bound state. Viewed more broadly, in contrast with kinase inhibitors that bind the 

active protein conformation, these drugs can inhibit KRAS activity by binding the 

nonfunctional state (42). As expected, binding of these agents to GDP-bound KRAS-G12C 

inhibits activation of downstream signaling such as RAF. Of note, these treatments bind only 

to GDP-bound KRAS-G12C and not to wild-type KRAS. In addition, although 75% of 

KRAS-G12C is GTP-bound, this covalent approach is effective due to the fact that KRAS 

maintains intrinsic GTPase activity (5, 43).

Since the initial observation by Ostrem et al., a number of KRAS-G12C inhibitors have 

undergone preclinical and clinical development. Targeting this mutation with the covalent 

binding agent ARS-1620 showed initial promise in animal models (43, 44). AMG 510 was 

the first agent with reported success in clinical trials for KRAS-mutant cancers. In 

preclinical studies, AMG 510 inhibited cell proliferation in KRAS-G12C-carrying cell lines 

and slowed xenograft tumor growth (45). This study additionally showed synergistic effects 

with chemotherapy (carboplatin), ICB (PD-1 inhibitor), and vertical pathway inhibition with 

MEK inhibitors. Phase I trials also showed promising results, in particular with NSCLC 

patients (46). Among the fifty-nine NSCLC patients receiving AMG 510, 32.2% had a 

confirmed objective response and 88.1% achieved disease control. Of the forty-two CRC 

patients, 7.1% had a confirmed objective response while 73.8% achieved disease control 

(46). The FDA granted a fast-track designation to AMG 510 for patients with previously 

treated metastatic NSCLC harboring KRAS-G12C mutations, with several clinical trials 

ongoing to assess long-term safety and efficacy, alone or in combination with chemotherapy, 

targeted or immune therapies, compared with chemotherapy alone (NCT03600883, 

NCT04303780, NCT04625647, NCT04185883).

MRTX849 is another covalent KRAS-G12C inhibitor currently undergoing phase I and II 

trials. Preclinical studies demonstrated that MRTX849 could suppress proliferation in cell 

lines and caused tumor regression in 65% of KRAS-G12C patient-derived xenograft models 

(47). MRTX849 treatment led to partial responses in 3/6 NSCLC patients and 1/4 CRC 

patients, with stable disease in the remaining patients with NSCLC and CRC (47-49). 

CRISPR screening was used to identify potential combination therapies, with RTKs and 

components of the mTOR pathway as hits (9). CRISPR/Cas9 screening also identified 

potential mechanisms of acquired resistance to MRTX849, including alterations in cell cycle 

genes and loss of KEAP1 or NRAS (9). MRTX849 is being studied in combination with 

ICB, TKIs, and the SHP2 inhibitor TNO155 in ongoing clinical trials compared with 

chemotherapy (NCT04613596, NCT04685135, NCT04330664). A similar covalent inhibitor 

JNJ-74699157 has completed recruitment, with results expected soon (NCT04006301)(5).
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3. Immunotherapy in RAS-Mutant Cancers

3.1 Immune checkpoint blockade

ICB has transformed care for patients with non-small cell lung cancers, and colorectal 

cancers with microsatellite instability (50-52). Checkpoint inhibitors, which bind and inhibit 

the actions of PD-1, PD-L1, and CTLA-4 inhibitory molecules on tumor and immune cells, 

unleash cytotoxic T-cells to generate antitumor immunity.

3.2 ICB in RAS-mutant NSCLC

Amongst cancers harboring KRAS mutations, NSCLC is the most commonly and 

successfully treated with ICB. PD-1, PD-L1, and CTLA-4 antibodies are now approved for 

NSCLC treatment as single agents, in combination, and as a partner to chemotherapy. 

KEYNOTE-42 showed the efficacy of pembrolizumab monotherapy as first-line treatment in 

NSCLC with high PD-L1 compared to platinum-doublet chemotherapy, leading to the use of 

PD-L1 as a predictive biomarker (53). Subsequent trials demonstrated the efficacy of ICB in 

combination with chemotherapy in patients both with and without PD-L1 expression (54, 

55). Nivolumab plus ipilimumab is also FDA-approved for patients with NSCLC whose 

tumors express PD-L1(≥1%) (56). In addition to PD-L1 expression, tumor mutation burden 

and tumor infiltrating lymphocytes (TILs) have been reported as predictive factors for ICB 

(56, 57), but these factors alone are insufficient as predictive biomarkers in current clinical 

practice.

While KRAS-mutant NSCLC responds better to ICB than NSCLC harboring EGFR 

mutations or ALK fusions, which respond poorly (58-60), the wide variation in response 

suggests other influences (50, 52). NSCLCs with KRAS mutations are more frequently PD-

L1 positive and are associated with induced MEK-mediated downstream signaling (61). Co-

mutations also influence NSCLC response to ICB (52). KRAS-mutant NSCLC can be 

divided into categories based on co-occurring mutations: TP53 (KP) and STK11/LKB-1 
(KL). LKB-1 mutations carry a poor prognosis in NSCLC (62), and KP and KL tumors 

demonstrate distinct immune response gene signatures (11). KP tumors are more likely to 

exhibit an interferon-driven inflammatory response, which correlates with improved 

response to ICB (11). While KP tumors had a 35.7% response rate, KL tumors only 

exhibited a 7.4% response rate. Another study suggested that progression-free survival and 

overall survival were also significantly shorter in KL tumors, which demonstrated few PD-

L1 positive tumor cells and CD8-positive T-cells (52). Although STK11/LKB1 loss is 

associated with low PD-L1, response to ICB in PD-L1 positive KL remained inferior to KP. 

As discussed above, KL tumors produce abundant IL-6, resulting in an immunosuppressive 

environment (10). TMB is higher in KP as compared to KRAS wild-type tumors (with or 

without TP53 mutations), which may also influence ICB response (63). These results 

indicate that other mechanisms in addition to PD-L1 may contribute to the poor response to 

ICB observed in KL tumors.
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4. Combined KRAS G12C Inhibition and Innate Immune Targeting

4.1 Inhibiting the immune suppressive TME

While KRAS-G12C inhibitors have shown promising results, especially in NSCLC, targeted 

agents often fail to cure patients due to acquired resistance. While ICB combinations are 

underway, the fact that KRAS mutations create an immune TME favorable for tumor growth 

suggests that other combination therapies with agents capable of reshaping TME may be 

needed. Early trial data demonstrate that KRAS-G12C inhibitors lack severe side effects 

compared with MAPK or PI3K inhibition because of their mutation-specific mechanism. 

Combination of TBK inhibition or IL-1β inhibition may thus be an additional option with 

KRAS-G12C inhibitors (Figure 1). The low incidence of adverse effects with KRAS-G12C 

inhibitors may enable sufficient TBK inhibition to have a therapeutic effect. Inhibitors of 

IL-1β have the potential to break positive feed-forward loops in the TME, as discussed 

above. IL-1β inhibitors may prove especially effective in early lung cancer because they are 

likely to affect tumor initiation based on the results of the CANTOS trial. These 

combinations offer hope of enhancing the direction inhibition of KRAS by reversing the 

growth promoting TME that likely promotes KRAS-G12C inhibitor escape

4.2 cGAS-STING pathway activation

Cytokines such as IL-6 and IL-1β, which induce chronic inflammation, play an important 

role in tumorigenesis, while the accumulation of immune cells such as CD8-positive T cells 

is relevant to the treatment of advanced lung cancer. KL tumors have fewer Tumor 

Infiltrating Lymphocytes (TILs) compared to KP tumors (64). KRAS-G12C inhibitors have 

been reported to be effective in combination with ICB and MEK inhibitors (45), and are also 

expected to be effective in combination with therapies that increase TILs in KL tumors.

We reported that the expression of Stimulator of Interferon Genes (STING), which is 

important for innate immunity, is suppressed in KL tumors (64). Antitumor immunity 

proceeds in a stepwise fashion starting with innate immune recognition of cancer cells and 

subsequent activation of cytotoxic T-lymphocytes. The activation of STING results from 

cytoplasmic dsDNA recognition by the enzyme cGAS, leading to production of the cyclic 

dinucleotide second messenger 2’3’-cGAMP. During activation, TBK1 and IRF3 undergo 

cascade phosphorylation (65). Initiation of the STING-TBK1-IRF3 pathway promotes the 

secretion of type I interferons and cytokines including CXCL10, eliciting T-cell recruitment. 

Silencing of STING in KL tumors thus prevents IRF3 engagement and is responsible for 

enhancing pro-tumorigenic IL-6 production downstream of TBK1. Thus, restoring STING 

expression in KL cells rewires cytokine production towards an anti-tumorigenic interferon 

response (64).

Activating the STING-TBK1-IRF3 signaling in cancer cells by enhancing cytoplasmic DNA 

accumulation is being explored from a therapeutic perspective. Indeed, the accumulation of 

cytoplasmic DNA from radiotherapy and DNA-damaging agents activates the cGAS-STING 

pathway, leading to antitumor immunity (66, 67). Other strategies for activating the STING 

pathway include the use of PARP inhibitors against BRCA-mutant tumors to promote 

genomic instability and the accumulation of cytoplasmic DNA (68). Taxanes, such as 
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paclitaxel, also activate the STING pathway (69). While promising results from preclinical 

studies show that direct injection of cyclic dinucleotide STING agonists can enhance 

immunogenicity and restrict tumor growth in mice, results from clinical trials are thus far 

disappointing, possibly due to delivery and pharmacodynamic issues (65).

Most prior research has focused on activating STING in immune cells, and clinical trials of 

STING agonists have been conducted in combination with ICB. Yet effective therapeutic 

combinations may require restoration of tumor cell STING expression, as we have shown for 

KL tumors. Indeed, we demonstrated that STING expression is silenced in KL NSCLC by 

epigenetic mechanisms involving EZH2 and DNMT1 (64). Since KRAS-G12C inhibitors 

are effective in patients with KL tumors (47), they may act in part by increasing interferon-

associated cytokine release to promote T cell infiltration (8), Thus priming STING re-

expression by treatment with EZH2 and/or DNMT1 inhibitors may also enhance response to 

KRAS-G12C inhibitors and limit resistance to treatment by restoring immunogenicity, even 

in advanced stages of disease (Figure 2).

4. Conclusions

For tumors with KRAS mutations, future treatments will focus on specific isoforms to build 

on the recent success of KRAS-G12C inhibitors. ICB monotherapy has proven relatively 

ineffective for certain tumors harboring KRAS mutations, and additional combinations may 

be necessary to reverse the immunosuppressive KRAS TME.

5. Expert opinion

Current treatments for KRAS-mutant tumors depend on the specific isoform and co-

mutations. The early success of KRAS-G12C inhibitors, both in suppressing tumor growth 

and activating antitumor immunity in historically suppressed TMEs, gives hope for 

therapeutic breakthroughs to help large percentages of patients with NSCLC. The precise 

role of these new agents in the NSCLC armamentarium remains unclear. In order to gain 

first-line approval and maximize response, they will likely need to be combined with other 

targeted and immune therapies. Indeed, as discussed above, trials are underway combining 

covalent KRAS G12C inhibitors with inhibitors of PD-1, PD-L1, SHP2, MEK, EGFR, 

CDK, mTOR, and HER2. This panoply of targets, while promising and based on rigorous 

mechanistic studies, does risk restricting statistical power to identify the most promising 

combinations and may add years to the development timetable.

Previous trials for SHP2 and MEK inhibitors showed modest activity, suggesting possible 

benefit in combination with direct KRAS targeting. The known toxicity profile and 

experience in NSCLC nominates these agents for rapid clinical development in combination 

with covalent KRAS G12C inhibitors. Toxicity may prove to be a major obstacle, as MAPK 

signaling is critical for normal cellular function especially in the skin and GI tract, and 

downstream inhibitors are notoriously unpopular with patients. Furthermore, while dual 

vertical pathway inhibition has precedent in other oncogene driven lung cancers (EGFR, 

ALK, BRAF mutations), acquired resistance remains a fundamental barrier. In contrast, 
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combinations to enhance antitumor immunity could lead to durable long-term responses and 

even cures by eliminating “persister” cells.

In our view, therapeutic combinations to enhance the observed inflammatory activation from 

KRAS G12C inhibition represents one of the most promising approaches. Combining KRAS 

G12C inhibitors with PD-1/PD-L1 checkpoint inhibitors is the most straightforward initial 

approach and may ease the integration into first line therapy since many patients with 

KRAS-mutant NSCLC would receive these agents as standard of care. Concerns remain 

regarding overlapping side effects, including the possibility of pneumonitis, though 

emerging clinical data for AMG 510 and MRTX849 will allow for a better assessment of 

this risk. Combinations targeting immune signaling components such as IL-1β or the cGAS-

STING pathway, which regulate the suppressed immune response in KL tumors, show 

potential to enhance response rates from KRAS-G12C inhibitors and prevent acquired 

resistance. These approaches are earlier in development and would likely apply to select 

patient subsets. Treatments that generate cytosolic DNA, such as chemotherapy or PARP 

inhibitors, represent an alternate approach to activate innate immune signaling and may 

integrate nicely with existing practice for patients scheduled to receive (or already benefiting 

from) cytotoxic therapy. Epigenetic treatments to restore STING expression, such as EZH2 

or DNMT inhibitors, should also be tested in future trials, though their activity and efficacy 

in NSCLC is currently unproven.

A better understanding of the direct immunosuppressive effects of KRAS, as well as the 

importance of molecular context in specific tumor types, will allow for combination 

therapies to reverse KRAS immunosuppression and activate antitumor immunity. Ongoing 

translational efforts epitomized by the development of AMG 510 and MRTX849 will allow 

for real-time re-evaluation of therapeutic combinations as they progress through trials. To 

that end, reliable functional assays that reflect patient clinical responses (i.e. organoids and 

other ex vivo culture systems), can maximize the knowledge gained from each patient 

enrolled on trial. As we enter a new era in lung cancer treatment, we hope that the previously 

parallel development of targeted and immune therapeutics can merge to overcome the 

weaknesses of each and extend survival for patients with these challenging cancers.
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Article Highlights

• KRAS downstream pathways enhance production of suppressive 

inflammatory cytokines such as IL-6 and IL-1β and create an immune TME 

favorable for tumor growth.

• KRAS mutation isoform and co-mutations are critical to designing targeted 

therapies, as evidenced by the recent clinical success of KRAS-G12C 

inhibitors.

• KRAS-G12C inhibitors showed promising results in clinical trials for NSCLC 

and showed synergistic effects with other treatments such as chemotherapy, 

ICB, and MEK inhibitors in preclinical models.

• KRAS-G12C inhibitors and targeting inflammatory cytokine immune 

signaling such as IL-1β have the potential to enhance response by altering the 

TME.

• STING is suppressed in KL NSCLC, and restoring STING could induce T 

cell infiltration. Combining KRAS-G12C inhibitors and activators of the 

cGAS-STING pathway may have synergistic effects.
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Figure 1. 
Enhancing pro-inflammatory signaling in KRAS-driven lung cancer. Immunosuppressive 

signaling pathways downstream of mutant KRAS and opportunities for pharmacologic 

inhibition to suppress cytokine signaling.
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Figure 2. 
Activating STING in KRAS/LKB1-mutant NSCLC to synergize with KRAS-G12C 

inhibition. STING re-expression by enhancer of zeste homolog 2 (EZH2) and/or DNA 

methyltransferase 1 (DNMT1) inhibitors in KRAS/LKB1-mutant NSCLC. KRAS-G12C 

inhibition prevents downstream signaling and may release immunogenic antigens while 

STING re-expression enhances immunogenicity through TBK1-IRF3 signaling. STING = 

stimulator of interferon genes; IFN = interferon; HLA = human leukocyte antigen; Me 

signifies histone methylation to suppress gene transcription.
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