Skip to main content
. 2021 Apr 23;22(9):4435. doi: 10.3390/ijms22094435

Table 3.

Complex-based models. Summary of recent work using a protein-ligand complex for active molecule or binding affinity prediction. The year of publication, the name of the authors or the model, the complex encoding and the machine/deep learning model(s) are shown in the respective columns. Classification (class.) implies predicting e.g. hit or non-hit, whereas regression (reg.) evaluates e.g., pIC50 values. CNNs, coupled with 3D grids, have become frequent in state-of-the-art studies.

Year Name Complex Encoding 1 ML/DL Model Framework
2010 Sato et al. [84] IFP SVM, RF, MLP class.
2016 Wang et al. [135] IFP Adaboost-SVM class.
2019 Li et al. [136] IFP MLP class.
2018 gnina [90] 3D grid CNN class.
2018 KDEEP [91] 3D grid CNN reg.
2018 Pafnucy [89] 3D grid CNN reg.
2018 DenseFS [137] 3D grid CNN class.
2019 DeepAtom [92] 3D grid CNN reg.
2019 Sato et al. [138] 3D grid CNN class.
2019 Erdas-Cicek et al. [94] 3D grid CNN reg.
2019 BindScope [93] 3D grid CNN class.
2018 PotentialNet [96] graph GGNN reg.
2019 Lim et al. [95] graph GANN class.
2017 TopologyNet [97] topol. CNN reg.
2019 Math-DL [139] topol. GAN, CNN reg.
2018 Cang et al. [140] topol. CNN reg.
2016 DeepVS [99] atom contexts CNN class.
2019 OnionNet [141] atom pairs CNN reg.
2020 Zhu et al. [98] atom pairs MLP reg.

1 Abbreviations: IFP: interaction fingerprints, topol.: algebraic topology.