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Abstract: Renal cell carcinoma (RCC) is a malignant tumor associated with various tumor microen-
vironments (TMEs). The immune system is activated by the development of cancer and drives
T cell anti-tumor response. CD8 T cells are known to improve clinical outcomes and sensitivity to
immunotherapy, and play a crucial role against tumors. In contrast, tumor-associated macrophages
(TAMSs) suppress immunity against malignancy and lead to tumor progression. TAMs are promoted
from damaged TMEs and mount proinflammatory responses to pathogens. Initial immunotherapy
consists of interferon-« and interleukin-2. However, response to such therapy is unclear in most
patients, and it is associated with high levels of toxicity. Immune checkpoint inhibitors (ICIs), which
up-regulate immune responses by blocking the programed cell death protein 1 (PD-1) receptor,
the ligand of PD-1, or cytotoxic T-lymphocyte-associated protein 4 T cells, have led to a new era
of immunotherapy. Furthermore, combination strategies with ICIs have proven effective through
several randomized controlled trials. We expect the next generation of immunotherapy to lead to
better outcomes based on ongoing trials and inspire new therapeutic strategies.

Keywords: biomarkers; clinical trials; immune checkpoint inhibitor; immunotherapy; renal cell carci-
noma

1. Introduction

Renal cell carcinoma (RCC) is the most common type of kidney malignancy, con-
stituting 2-3% of all cancers. This nephron-arising neoplasm consists of heterogenous
subgroups according to histologic and molecular subtypes. Clear cell RCC (ccRCC) is an
aggressive subtype, constituting 70-80% of all RCCs [1]. Von Hippel-Lindau (VHL) is a
crucial component for maintaining the oxygen homeostasis of the cellular environment [2].
The loss of the VHL tumor suppressor drives the hypoxic pathway by hypoxia-inducible
factors (HIF) transcription factors. It activates several hypoxia-driven genes, such as vas-
cular endothelial growth factor (VEGF), and subsequently induces angiogenesis and cell
growth [3,4]. This VHL mutation course is the main pathway of ccRCC. Modifications
of various genes similarly manifest as other types of RCC. Papillary RCC is the second
most common subtype of RCC, and is classified into two subtypes: type I, which is mainly
associated with MET alterations, and type II, which is associated with the NRF2-antioxidant
response component [5]. Chromophobe RCC is associated with mutations of TP53 and
PTEN, while translocation RCC is associated with fusions of TFE3 or TFEB genes [6,7].

Decades ago, there were few options for systemic therapy in advanced RCC. Cytokine
therapy, represented by interleukin-2 (IL-2) and interferon alfa (IFN-c), showed some
benefits in a few advanced patients with RCC, but only proved efficacy in a limited
proportion of patients [8]. Moreover, cytokine therapy is associated with a high level
of toxicity, which limited its general use. With advances in genomic research by the
Cancer Genome Atlas (TCGA), targeted molecular therapeutics, specifically tyrosine kinase
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inhibitors (TKIs) targeting the VEGF receptor pathway, have now replaced cytokine therapy
and are widely used as first- or second-line therapy. The development of the TCGA also
led to a better understanding of the mammalian target of the rapamycin (mTOR) pathway
that is known to induce cell growth and division in ccRCC [3,9]. Subsequent development
and use of mTOR inhibitors have shown similar oncological outcomes to TKIs [10-12].

Immunity against malignancy varies depending on several components that make
up the tumor microenvironment (TME), and therefore clinical symptoms and the course
of treatment differ accordingly. RCC is classified as an immunogenic tumor based on its
response to immunotherapy, the incidence of spontaneous regression, and a high level
of tumor T cell infiltration [13]. Recent advances in immune checkpoint inhibitor (ICI)
therapy up-regulating immune responses by blocking the programed cell death protein 1
(PD-1) receptor, ligand of PD-1 (PD-L1) or cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), and T cells have overtaken cytokine-based regimens and are now key players in
the field of immunotherapy [14,15]. Unlike IFN-o and IL-2, for which only a limited range
of patients are eligible due to toxicity, ICIs are characterized by superior safety profiles and
oncological efficacy. Recently, updated guidelines recommend combining VEGF targeted
agents with ICIs depending on patient performance and comorbidity.

Risk stratification systems are essential for selecting the optimal treatment for a specific
patient. Unfortunately, there are no predictive biomarkers for RCC, which limits effective
strategies for management. Current international guidelines for risk stratification rely on
clinical variables to guide prognosis and treatment selection. The Memorial Sloan Kettering
Cancer Center (MSKCC) criteria incorporate five prognosticators: low performance status,
high level of serum dehydrogenase, high level of serum calcium, low concentration of
hemoglobin, and interval less than one year from diagnosis to treatment [16]. The Inter-
national Metastatic Renal Cell Carcinoma Database Consortium (IMDC) utilizes similar
prognosticators to those of MSKCC but includes high levels of neutrophil and platelet
counts instead of serum lactate dehydrogenase level [17,18]. Patients without any corre-
sponding prognostic factors are classified into a low-risk group, patients with one or two
prognosticators into an intermediate-risk group, and three or more into a poor-risk group.

In this comprehensive review, we will discuss up-to-date evidence on the microenvi-
ronments involved in the development of RCC and how treatment strategies targeted at
the host immune system are feasible for controlling disease progression. We summarize
progress made regarding systemic treatment, from the cytokine therapy era to the treatment
utilizing combined ICIs with or without targeted therapies. Lastly, we summarize ongo-
ing trials involving immunotherapies that will change the landscape of future systemic
therapies targeted at advanced RCC.

2. Tumor Microenvironment in Renal Cell Carcinoma

Chromosome 3p loss is the first genetic event characterizing sporadic ccRCC, followed
by VHL mutation [19]. VHL negatively regulates HIF 1/2«, which reduce oxygen demand
in the cellular environment by increasing glycolytic flux and reducing oxidative phos-
phorylation. This pathway induces oxygen supply by hyper-vascularization. Based on
metabolic pathway analysis by RNA sequencing, ccRCC is known to possess high levels of
metabolites during glycolysis and to reduce levels of metabolites associated with oxidative
phosphorylation [20]. Hyper-vascularity and the immune system are not independent, and
treatment targeting the VEGF receptor promotes the immune pathway by modifying the
aberrant blood supply [21].

TME are complicated, containing transformed cells and immune infiltrates. Tumor-
infiltrating cells promote or inhibit cancer activity according to the type of cancer. The
immune system is activated by cancer development and drives T cell anti-tumor response
by suppressing tumor cells directly, modulating various anti-tumor responses, facilitating
the emerging memorial system, and preparing specificity for tumor-derived proteins [8].
T cell activation, according to immunotherapy response, is a core component in the prog-
nosis of ccRCC. CD8 T cells play a crucial role in combating malignant tumors and are
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associated with favorable clinical outcomes and response to immunotherapy [22-26]. Pre-
sentation of major histocompatibility class I (MHC-I) molecules on cancer cells helps
T cell receptors recognize antigens. This pathway activates CD8 T cells, which subse-
quently activates antigen-specific immune response, and directly removes antigen-bearing
cells [27]. The antigen-presenting machinery (APM) promoted by activated CD8 T cells
is a component that interlinks antigens and MHC-1. Upregulation of APM genes refers
to the increased production of antigen-presentation and the number of T cells. CcRCC is
characterized by the highest T cell infiltration and immune infiltration when compared to
other malignancies. The immunogenicity of ccRCC is related to MHC-I and APM gene
expression, which may potentially serve as indicators of response to PD-1 inhibitors. The
promotion of APM expression is a unique feature of ccRCC [28]. In contrast, Th2 and
regulatory T cells are negatively associated with prognosis. An abundant environment
with Th2 and regulatory T cells suppresses the immune response and is associated with
the tumor mutation load [28].

Macrophages are phagocytic innate immune cells that regulate responses to tissue
damage. Macrophages are promoted based on consecutive signals from the damaged
microenvironment and mount proinflammatory responses to pathogens [29]. Macrophages
are abundantly observed in growing cancer cells and mediate lymphocyte trapping accord-
ing to interactions with CD8 T cells in tumor stroma. Cytokines and chemokines expressed
by tumor-associated macrophages (TAMs) suppress immunity against malignancy and
lead to tumor progression [30]. In an in vivo study, the efficiency of T cells increased when
TAMs were depleted by pexidartinib, a small molecule tyrosine kinase inhibitor that acts
against colony-stimulating factor 1. The depletion of TAMs not only increased the number
of tumor-infiltrating CD8 T cells but also improved their migration and ability to reach
cancer cells [31-33].

Tertiary lymphoid structures (TLS) are a lymphoid environment usually associated
with reactions to infection or inflammation [34]. TLS neogenesis is induced by chronic
bacterial or viral infection or by chronic inflammatory diseases such as multiple sclerosis,
Sjogren’s syndrome, or allograft rejection [35-39]. TME is similar to TLS and includes
several components associated with the immune system and T cell activation. Mature
dendritic cells (DCs), which are associated with activated CD8 T cells within the TLS, are
associated with favorable survival outcomes in ccRCC. On the other hand, DCs outside
of TLS are associated with poor survival outcomes in response to dysfunctional CD8
T cells [40,41].

The wide variety of clinical features and outcomes of immunotherapy in patients
with ccRCC are due to the heterogeneity of TME. A study that utilized mass cytometry
confirmed the subsets of T cells and TAMs, the critical components of TME [42]. In a
study comparing 73 patients with ccRCC and five healthy controls, 20 T cell phenotypes
and 17 TAMs phenotypes were identified. With ongoing research on the mechanisms of
treatment failure, TME heterogeneity is being perceived as a key factor.

3. Immunotherapy in the Early Era

Late recurrence after partial or radical nephrectomy, long-term stabilization of disease
without systemic treatment, and, in rare cases, spontaneous regression suggest that the
mechanisms of the host immune system are keystones of controlling tumor growth or
suppression [43—46].

IEN-o has been the primary agent used in the early immunotherapy era. The overall
response rate to IFN-o has been reported to be low as 12% [43]. Patients with visceral
metastatic RCC, particularly lung RCC, or with prior nephrectomy showed more favorable
survival outcomes [47,48]. However, maintenance of response was restricted to less than
two years [43].

Patients treated with high-dose IL-2 exhibit 4% complete response (CR), 8% partial
response, and 23 months of response duration. Moreover, high-dose IL-2 was related
to severe cardiovascular toxicity due to increased vascular permeability, with treatment-



Int. J. Mol. Sci. 2021, 22, 4452

40f13

related death occurring in 4% of patients [49,50]. Although oncological outcomes with
IFN-o or IL-2 are often dramatic in selected patients, most patients experienced no apparent
survival benefit. Hence, these agents are not considered as first- or second-line therapy
unless the patient has excellent performance status with normal organ function [8].

Combination therapy consisting of IFN-« and bevacizumab was studied in several
trials. Patients with metastatic RCC without previous treatment received IFN-o plus
bevacizumab or IFN-« with placebo. Progression-free survival (PFS) was superior in the
combination treatment arm. However, no significant improvements were observed in
overall survival (OS) during the study period [51-54].

4. Immune-Associated Novel Prognosticators of Renal Cell Carcinoma

Recent genomic studies of RCC have developed an understanding of tumor hetero-
geneity [3,55,56]. Much progress has been made in revealing the relationships between
the immune system and tumors, but immunotherapy responses differ in each case. Even
within a specific type of cancer, a subset of patients will show strong immune infiltration,
while others show little or no response to immunotherapy. This heterogeneity suggests that
pathological classification alone is insufficient to predict treatment effect and prognosis. A
more detailed sub-classification system is warranted [56,57].

Long non-coding RNAs (IncRNAs) are predictors that have become an important
focus of debate in recent years [58,59]. LncRNAs are non-protein coding RNAs longer
than 200 nucleotides [60,61] that are involved in tumor development and suppression by
regulating the immune system [62-65]. LncRNAs are more tumor-specific than protein-
coding RNAs, inducing up-regulated RCC carcinogenesis, promoting progression and
metastasis with a positive-feedback loop [66].

Khadirnaikar et al. found 143 immune-associated IncRNAs genes related to RCC by
examining 2378 genes in TCGA RNA sequence data [67]. They divided gene samples into
three groups (C1, C2, and C3) by K-means consensus clustering according to the expression
levels of immune IncRNAs. In a classification according to immune cluster, C3 showed a
significantly higher grade of tumor and metastasis and thus poorer prognosis than other
groups. These immune clusters yielded better survival prediction rates than those using
miRNA or mRNA. The analysis showed increased CD8 T cells and decreased DCs in the
C3 cluster when compared to other groups. Patients with C3 showed higher CD8 T cell
infiltration; however, they had a worse prognosis due to lack of DC, which plays a role in
T cell activation. On the other hand, in C1 and C2, naive B cell and neutrophil infiltration
associated with a better prognosis were higher than C3 [68,69]. Immune infiltration is
different depending on the expression level of IncRNAs, which may explain the differences
in prognosis.

Molecular subsets of RCC have been redefined according to differential clinical re-
sponses to angiogenesis blockade with or without ICI [70,71]. Motzer et al. performed
transcriptomic analysis of advanced RCC tumor samples, which revealed seven subsets
with distinct angiogenesis, immune, cell-cycle, metabolism, and stromal programs. Clinical
benefits with sunitinib and atezolizumab plus bevacizumab were observed in patients with
high angiogenesis, while atezolizumab plus bevacizumab was beneficial in patients with
high T-effector and/or cell-cycle transcription [57]. Overall, the results implied that RCC
may be molecularly classified to stratify patients for the optimal oncological outcome.

5. Immune Checkpoint Inhibitors for Renal Cell Carcinoma

Blockades of immune checkpoint components such as PD-1/PD-L1 and CTLA-4 have
shown considerable oncological benefit and have shifted treatment strategies targeted at
RCC. Clinical trials involving ICIs are summarized in Table 1.

CheckMate 025 was a phase 111, open-label, randomized study that compared nivolumab
with everolimus. A total of 821 patients with advanced ccRCC who had received previous
anti-angiogenic therapy were randomly allocated to receive nivolumab (3 mg/kg) every
two weeks or everolimus (10 mg) daily [72]. The median OS was favorable for nivolumab
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when compared to everolimus (25.0 months vs. 19.6 months; HR 0.73; 98.5% confidence
interval [CI] 0.57-0.93; p = 0.002). The objective response rate (ORR) was also superior in the
nivolumab arm (25% vs. 5%; 95% CI 3.68-9.72; p < 0.001). However, PFS was comparable
in both treatment arms (4.6 months vs. 4.4 months; HR 0.88; 95% CI 0.75-1.03; p = 0.11).
Superior quality-of-life (QoL) was observed in patients treated with nivolumab, with fewer
treatment-related adverse events (TRAEs) of grade 3 or 4 (19% vs. 37%) [73].

Sunitinib and pazopanib are common first-line agents used for patients with advanced
RCC. The recent development of combination treatments with ICIs is changing treatment
paradigms, especially for intermediate-risk or poor-risk patients. CheckMate 214 was a
phase III study that compared nivolumab and ipilimumab with sunitinib for patients with
treatment-naive advanced ccRCC [74]. A total of 1096 patients were allocated at a 1:1 ratio
to nivolumab (3 mg/kg) every two weeks and ipilimumab (1 mg/kg) every three weeks or
sunitinib (50 mg) daily for four weeks (6-week cycle). In patients with intermediate-risk or
poor-risk group by the IMDC criteria, the median OS was not reached in the combination
group, while 26 months was achieved in the sunitinib group (HR 0.63; p < 0.001). The
ORR was superior in the combination group compared to the sunitinib group a 42% versus
27% (p < 0.001). CR rates were also favorable in the combination group compared to the
sunitinib group (9% vs. 1%; p < 0.001). Median PFS was improved with combination
therapy (11.6 months vs. 8.4 months; HR 0.82; p = 0.03); however, it did not satisfy the
prespecified statistical threshold (alpha level = 0.009). Grade 3 or 4 TRAEs were observed
in 46% of the patients in the nivolumab and ipilimumab combination group, while 63% of
the patients in the sunitinib group. The patients were administered FKSI-19 questionnaires
to access health-related QoL, which revealed that the combination arm experienced more
significant improvement from baseline than the sunitinib arm (p < 0.001). ORR was lower
in the combination arm than the sunitinib arm (29% vs. 52%; p < 0.001). Median PFS was
also inferior in the combination arm than in the sunitinib arm (15.3 months vs. 25.1 months;
HR for progressive disease or death, 2.18; 99.1% CI, 1.29-3.68; p < 0.001).

IMmotion151 was a phase III, open-label, randomized study that compared ate-
zolizumab plus bevacizumab with sunitinib for chemotherapy-naive advanced RCC pa-
tients with clear cell or sarcomatoid pathology [75,76]. A total of 915 patients were ran-
domly allocated at a 1:1 ratio to atezolizumab (1200 mg) and bevacizumab (15 mg/kg)
every three weeks or sunitinib (50 mg) daily for four weeks (6-week cycle). Overall, 40% of
the patients exhibited PD-L1 expression, with more than 1% in tumor-infiltrating immune
cells. In PD-L1 positive patients, the median PFS was superior in the combination arm
compared to the sunitinib arm (11.2 months vs. 7.7 months; HR 0.74; 95% CI 0.57-0.96;
p = 0.022). The intention-to-treat (ITT) cohort exhibited similar favorable results in the com-
bination arm (11.2 months vs. 8.4 months; HR 0.83; 95% CI 0.70-0.97; p = 0.022). However,
median OS was comparable in both PD-L1 positive (HR 0.84; 95% CI 0.62-1.15; p = 0.286)
and in ITT patients (HR 0.93; 95% CI 0.76-1.14; p = 0.475) in the second interim analysis.
In subgroup analyses, PD-L1 positive patients who were administered atezolizumab plus
bevacizumab exhibited superior PFS regardless of MSKCC and IMDC risk classification
criteria. Previous nephrectomy and the absences of liver metastasis and sarcomatoid histol-
ogy were factors associated with favorable PFS in the combination arm. ORR was superior
with atezolizumab plus bevacizumab (43%) than with sunitinib (35%) in PD-L1 positive
patients. The rate of CR was comparable between the combination versus the sunitinib
arms (9% vs. 4%). Grade 3 or 4 TRAEs were noted in 40% of patients in the combination
arm and 54% of patients in the sunitinib arm.

JAVELIN Renal 101 also involved a combination of ICIs as the first-line of therapy [77].
This phase III trial involved 886 patients with treatment-naive advanced RCC and ran-
domized patients at a 1:1 ratio to compare avelumab (10 mg/kg) every two weeks plus
axitinib (5 mg) twice daily with sunitinib (50 mg) once daily for four weeks (6-week cycle).
In the PD-L1 positive patients, the median PFS was favorable for avelumab plus axitinib
compared to sunitinib (13.8 months vs. 7.2 months; HR 0.61; 95% CI 0.47-0.79; p < 0.001).
The ORR in the avelumab and axitinib group was higher than that of the sunitinib group
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in both the PD-L1 positive group and the overall group (55.2% vs. 25.5% and 51.4% vs.
25.7%, respectively). The rate of CR was also higher in the combination group in both the
PD-L1 positive group and in the overall group (12% vs. 6% and 15% vs. 8%, respectively).
TRAESs appeared in 99.5% of patients who received avelumab plus axitinib, but in 99.3% of
patients who received sunitinib. More patients needed subsequent therapy after sunitinib
compared to combination therapy (39.2% vs. 20.8%).

Table 1. Phase III clinical trials investigating combination immune checkpoint inhibitor therapies for advanced renal

cell carcinoma.

Trial Agents Clinical Setting OS (Months) PFS (Months) ORR (%) TRAEs (%) *
25.0 vs. 19.6 4.6 vs. 4.4 25.0vs. 5.0
CheckMate 025 [72] Nivolumab vs. Everolimus Second-line ® :VS 002) (P :Vg.ll) @< ‘6.5001) 19.0 vs. 37.0
i ili First-li
CheckMate 214 [74] vaolumagu;ilgrllli%numab vs. Inter;rlsed;;ee_ or Not reachgc;()vls. 26.0 11.6 vs. S.i 42.0 vosogo 46.0 vs. 63.0
poor-risk (p <0.001) (p=0.03) * (p<0.001)
. Atezolizumab + First-line 34.0vs. 3271 11.2vs. 7.7
IMmot; 151 [75
motion [75] Bevacizumab vs. Sunitinib PD-L1 +, ITT (p = 0.286) (p = 0.0217) 43.0 vs. 35.0 40.0 vs. 54.0
JAVELIN Renal Avelumab + Axitinib vs. First-line Patients continued 13.8 vs. 7.2 55.2 vs. 25.5 712 vs. 715
101 [77] Sunitinib PD-L1 + to be followed (p <0.001) ¥ oo
Pembrolizumab + Axitinib vs. . . Not reached in both 15.1vs. 11.1 59.3 vs. 35.7
. 7 -
KEYNOTE-426 [78] Sunitinib First-line groups (p < 0.001) (p < 0.001) 62.9 vs. 58.1

* Treatment-related adverse event grade 3 or 4. % Not significant per the prespecified alpha level 0.009 threshold. ¥ Not estimated at the
second interim analysis. T The stratified odds ratio 3.73. ITT, intention-to-treatment; ORR, objective response rate; OS, overall survival;
PD-L1, programed death-ligand 1; PFS, progression-free survival; TRAEs, treatment-related adverse events.

KEYNOTE-426 was a phase III study that compared pembrolizumab plus axitinib
with sunitinib. A total of 861 patients with chemotherapy-naive, advanced RCC were
randomly allocated at a 1:1 ratio to receive pembrolizumab (200 mg) every three weeks
with axitinib (5 mg) twice daily or sunitinib (50 mg) daily for four weeks (6-week cycle) [78].
The estimated survival rate at 12 months was 89.9% in the pembrolizumab plus axitinib
arm and 78.3% in the sunitinib arm. The median survival was not reached in both arms;
however, the possibility of death was significantly lower in the combination therapy arm
(HR 0.53; 95% CI 0.38-0.74; p < 0.001). The median PFS was four months longer in the
pembrolizumab and axitinib arm than in the sunitinib arm (15.1 months vs. 11.1 months;
HR 0.69; 95% CI 0.57-0.84; p < 0.001). The survival advantages of pembrolizumab plus
axitinib were observed regardless of IMDC risk classification and PD-L1 expression. The
ORR and CR were superior in the combination arm compared to the sunitinib arm (59.3% vs.
35.7%; p < 0.001 and 5.8% vs. 1.9%, respectively). Subsequent chemotherapy was needed in
50.0% of patients in the pembrolizumab plus axitinib arm and in 60.7% of the patients in the
sunitinib arm. TRAEs were observed in 96.3% of the patients in the pembrolizumab-axitinib
arm and 97.6% of the patients in the sunitinib arm. Notably, the rate of grade 3 or higher
TRAEs was higher in the pembrolizumab-axitinib arm than the sunitinib arm (62.9% vs.
58.1%). An extended study with a median follow-up of 30.6 months also showed benefits
in the pembrolizumab plus axitinib combination arm [71]. The OS was not reached in the
pembrolizumab-axitinib arm, while 35.7 months was observed in the sunitinib arm within
the ITT population (HR 0.68; 95% CI 0.55-0.85; p < 0.001). In this extended exploratory
analysis, patients with favorable-risk based on the IMDC criteria showed no difference in
OS (HR 1.06; 95% CI 0.60-1.86; p = 0.58), while patients with intermediate-risk or poor-risk
showed significant benefit (HR 0.63; 95% CI 0.50-0.81; p < 0.001).

6. Ongoing Trials Involving Immune Checkpoint Inhibitors

Several phase IlI clinical trials involving ICIs are ongoing and are expecting results [79].
A summary of these ongoing trials is presented in Table 2.
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Table 2. Ongoing phase III clinical trials investigating first-line therapies for advanced renal cell carcinoma.

Trial Identifier Comparing Agents Primary Endpoint
KEYNOTE-679/ . b .
ECHO-302 [30] NCT03260894 Pembrolizumab + Epacadostat vs. Sunitinib or Pazopanib ORR
CLEAR [81] NCT02811861 Lenvatinib + (Everolimus or Pembrolizumab) vs. Sunitinib PFS
CheckMate 9ER [82] NCT03141177 Nivolumab + Cabozantinib + Ipilimumab vs. Sunitinib PFS
COSMIC-313 [83] NCT03937219 Cabozantinib + vaoluma'b. + Ipilimumab vs. Nivolumab + PFS
Ipilimumab
PDIGREE [84] NCT03793166 Nivolumab + Ipilimumab - Nivolumab + Cabozantinib vs. 05
Nivolumab
(Atezolizumab or Avelumab or Nivolumab or
CONTACT-03 [85] NCT04338269 Pembrolizumab) — PD — Atezolizumab + Cabozantinib vs. OS, PFS
Cabozantinib
CheckMate 914 [86] NCT03138512 Radial or partial nephrectomy — Nivolumab =+ Ipilimumab DFS
vs. Placebo
Cytoreductive nephrectomy + Nivolumab + Ipilimumab —
NORDIC-SUN [87] NCT03977571 Nivolumab vs. No surgery + Nivolumab + Ipilimumab — oS
Nivolumab
PROSPER RCC [85] NCT03055013 Radical or partlal‘ nephrect(?my + perioperative Nivolumabvs. PFS
Radial or partial nephrectomy only
RAMPART [89] NCT03288532 Radical or partial nephrectomy — (Active monitoring vs. DFS, 05

Durvalumab vs. Durvalumab + Tremelimumab)

DFS; disease-free survival, ORR, objective response rate; PD, progressive disease; PFS, progression-free survival.

KEYNOTE-679/ECHO-302 is a phase III, open-label, randomized controlled trial
comparing pembrolizumab plus epacadostat with standard TKI treatment such as sunitinib
or pazopanib in patients with treatment-naive, locally advanced or metastatic ccRCC
(NCT03260894) [80]. Patients of the combination therapy group receive pembrolizumab
(200 mg) intravenously every three weeks and epacadostat (100 mg) orally twice daily.
Standard-of-care patients receive sunitinib (50 mg) once daily for four weeks (6-week
cycle) or pazopanib 800 mg once daily. The primary endpoint is ORR, while the secondary
endpoints are safety and tolerability.

CLEAR is a phase Il randomized study comparing lenvatinib in combination with
everolimus or pembrolizumab versus sunitinib alone in the first-line setting of advanced
RCC (NCT02811861) [81]. Patients who receive lenvatinib (18 mg) daily plus everolimus
(5 mg) daily or lenvatinib (20 mg) daily plus pembrolizumab (200 mg) every three weeks
are compared with patients who receive sunitinib (50 mg) once daily for four weeks (6-week
cycle). The primary endpoint is PFS, and the secondary endpoints are ORR, OS, TRAEs,
health-related QoL, and PFS until the next-line of therapy.

CheckMate 9ER is a phase III, open-label, randomized trial of nivolumab combined
with cabozantinib versus sunitinib in patients with previously untreated advanced or
metastatic RCC (NCT03141177) [82]. The primary endpoint is PFS, and the secondary
endpoints are OS, ORR, and TRAEs.

COSMIC-313 is a phase III, double-blind, randomized trial comparing cabozantinib
in combination with nivolumab and ipilimumab (four doses) versus nivolumab and ipili-
mumab (four doses) in patients with treatment-naive, advanced or metastatic ccRCC of
intermediate-risk or poor-risk (NCT03937219) [83]. The primary endpoint is PFS, and the
secondary is OS.

PDIGREE is a phase III, open-label, randomized trial comparing nivolumab and ip-
ilimumab followed by nivolumab versus cabozantinib with nivolumab in patients with
untreated metastatic RCC (NCT03793166) [84]. Patients receive nivolumab and ipilimumab
intravenously every three weeks for up to four cycles. Patients with progressive disease re-
ceive cabozantinib daily until further disease progression or unacceptable toxicity. Patients
with CR continue nivolumab intravenously every four weeks. Patients with a non-CR and
non-progressive disease receive nivolumab intravenously every four weeks or nivolumab
every four weeks plus cabozantinib daily in the absence of disease progression or unac-



Int. J. Mol. Sci. 2021, 22, 4452

8 of 13

ceptable toxicity. The primary endpoint is OS, and the secondary endpoints are PFS, CR,
ORR, TRAES.

CONTACT-03 is a phase III, open-label, randomized trial to investigate the efficacy
and safety of atezolizumab plus cabozantinib versus cabozantinib monotherapy in patients
with inoperable, locally advanced, or metastatic RCC who exhibit radiographic tumor
progression during or after ICI treatment (NCT04338269) [85]. Patients with disease
progression after treatment of atezolizumab, avelumab, pembrolizumab, or nivolumab
receive atezolizumab (1200 mg) every three weeks with cabozantinib (60 mg) orally once
daily or cabozantinib alone. The primary endpoints are PFS and OS. Ongoing trials
associated with surgical treatments are summarized in Table 2 [86-89].

7. Summary and Future Directions

Advancements in ICIs have led to improved therapeutic efficacy and safety for various
types of tumors, including advanced RCC. The immune mechanisms underlying the
development and progression of RCC make ICIs the most valuable potential systemic
therapy in RCC management.

Early cytokine immunotherapy played an important role in the management of ad-
vanced RCC, but its high toxicity profile and low response rate limited its widespread use.
TKIs targeting the VEGF receptor pathway have made significant advancements in TKIs
without adverse events. Newly developed ICls and their combined treatments have shown
favorable results in terms of oncological outcomes and safety profiles and are currently
recommended as first-line therapy.

Cytokines and chemokines expressed by TAMs suppress anti-tumor immune mecha-
nisms, leading to tumor progression [30,90,91]. Furthermore, TAMs are known strongly
associated with resistance to TKIs and ICls. Specific pathways regulating the recruitment,
polarization, and metabolism of TAMs have been identified in preclinical studies [92].

Understanding TME is an important step in understanding immune mechanisms
involved in RCC development. TKI inhibits the process in which mutations of the VHL
gene induces HIF to accelerate VEGF for neovasculation and tumor development. Novel
approaches are underway to develop biomarkers associated with TAM and to integrate
novel radiomic modalities. Accumulation of mannosylated liposome containing fluorescent
dye in TAMs has been demonstrated in a mouse model of lung carcinoma [93]. This
indicates that mannose-coated liposomes combined with therapeutic agents could be
delivered to TME. A pilot study that quantified TAM using ferumoxytol-enhanced MRI
illustrated the possibility that TME could be accessed with modified MR technology [94].
New approaches and applications of functional and structural imaging for RCC are being
investigated, and are expected to be useful decision-making tools in the near future [95-97].

Recent trials have shown that combined ICI therapies are oncologically superior to
single-agent targeted therapies in terms of OS and PFS outcomes as well as TRAEs profiles.
Future studies are warranted to elucidate the optimal combination and sequencing of
these agents for maximal survival benefit. Further research on novel diagnostic modalities
remains to be performed.
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Abbreviations

APM antigen-presenting machinery

ccRCC clear cell renal cell carcinoma

CI confidence interval

CR complete response

CTLA-4  cytotoxic T-lymphocyte-associated protein 4
DC dendritic cell

HIF hypoxia-inducible factors

ICI immune checkpoint inhibitor

IFN-« interferon-alfa

IL-2 interleukin-2

IMDC International Metastatic Renal Cell Carcinoma Database Consortium
ITT intention-to-treat

IncRNA  long non-coding RNA

MHC-I  major histocompatibility class I

MSKCC  Memorial Sloan Kettering Cancer Center
mTOR  mammalian target of the rapamycin

ORR objective response rate

(O] overall survival

PD-1 programed cell death protein 1
PD-L1 ligand of programed cell death protein 1
PFS progression-free survival

QoL quality-of-life

TAM tumor-associated macrophage
TCGA The Cancer Genome Atlas

TKI tyrosine kinase inhibitor

TLS tertiary lymphoid structures
TME tumor microenvironment

TRAEs treatment-related adverse events
VEGF vascular endothelial growth factor

VHL Von Hippel-Lindau

References

1. Linehan, W.M. Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics. Genome Res.
2012, 22, 2089-2100. [CrossRef] [PubMed]

2. latif, E; Tory, K,; Gnarra, J.; Yao, M.; Duh, E-M.; Orcutt, M.L.; Stackhouse, T.; Kuzmin, I.; Modi, W.; Geil, L.; et al. Identification of
the von hippel-lindau disease tumor suppressor gene. Science 1993, 260, 1317-1320. [CrossRef]

3. Network, C.G.A.R. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43-49.

4. Kaelin, W.G,, Jr. The von hippel-lindau tumour suppressor protein: O, sensing and cancer. Nat. Rev. Cancer 2008, 8, 865-873.
[CrossRef] [PubMed]

5. Network, C.G.A.R. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. |. Med. 2016, 374,
135-145.

6. Davis, C.E; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.; Fahey, C.C; et al. The
somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 2014, 26, 319-330. [CrossRef]

7. Malouf, G.G.; Monzon, EA.; Couturier, J.; Molinié, V.; Escudier, B.; Camparo, P,; Su, X.; Yao, H.; Tamboli, P; Lopez-Terrada, D.;
et al. Genomic heterogeneity of translocation renal cell carcinoma. Clin. Cancer Res. 2013, 19, 4673-4684. [CrossRef]

8. Motzer, RJ.; Bander, N.H.; Nanus, D.M. Renal-cell carcinoma. N. Engl. J. Med. 1996, 335, 865-875. [CrossRef]

9.  Sabatini, D.M. mTOR and cancer: Insights into a complex relationship. Nat. Rev. Cancer 2006, 6, 729-734. [CrossRef]

10. Kwiatkowski, D.J.; Manning, B.D. Molecular basis of giant cells in tuberous sclerosis complex. N. Engl. |. Med. 2014, 371, 778-780.
[CrossRef]

11.  Yu, Y; Yoon, S.-O.; Poulogiannis, G.; Yang, Q.; Ma, X.M.; Villén, J.; Kubica, N.; Hoffman, G.R.; Cantley, L.C.; Gygi, S.P; et al.
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011,
332, 1322-1326. [CrossRef] [PubMed]

12.  Motzer, R].; Escudier, B.; Oudard, S.; Hutson, T.E; Porta, C.; Bracarda, S.; Griinwald, V.; Thompson, J.A; Figlin, R.A.; Hollaender,

N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial.
Lancet 2008, 372, 449-456. [CrossRef]


http://doi.org/10.1101/gr.131110.111
http://www.ncbi.nlm.nih.gov/pubmed/23038766
http://doi.org/10.1126/science.8493574
http://doi.org/10.1038/nrc2502
http://www.ncbi.nlm.nih.gov/pubmed/18923434
http://doi.org/10.1016/j.ccr.2014.07.014
http://doi.org/10.1158/1078-0432.CCR-12-3825
http://doi.org/10.1056/NEJM199609193351207
http://doi.org/10.1038/nrc1974
http://doi.org/10.1056/NEJMcibr1406613
http://doi.org/10.1126/science.1199484
http://www.ncbi.nlm.nih.gov/pubmed/21659605
http://doi.org/10.1016/S0140-6736(08)61039-9

Int. J. Mol. Sci. 2021, 22, 4452 10 of 13

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Vuong, L.; Kotecha, R.R.; Voss, M.H.; Hakimi, A.A. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer
Discov. 2019, 9, 1349-1357. [CrossRef] [PubMed]

Harshman, L.C.; Drake, C.G.; Choueiri, T.K. PD-1 blockade in renal cell carcinoma: To equilibrium and beyond. Cancer Immunol.
Res. 2014, 2, 1132-1141. [CrossRef]

Rosenblatt, J.; McDermott, D.F. Inmunotherapy for renal cell carcinoma. Hematol. Oncol. Clin. N. Am. 2011, 25, 793-812.
[CrossRef]

Motzer, R.J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. Survival and prognostic stratification of 670 patients
with advanced renal cell carcinoma. J. Clin. Oncol. 1999, 17, 2530. [CrossRef]

Heng, D.Y.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, ].D.; Cheng, T.; North, S.; et al.
Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth
factor—targeted agents: Results from a large, multicenter study. J. Clin. Oncol. 2009, 27, 5794-5799. [CrossRef] [PubMed]

Heng, D.Y,; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov,
F; Tan, M.-H.; et al. External validation and comparison with other models of the international metastatic renal-cell carcinoma
database consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141-148. [CrossRef]

Hsieh, J.J.; Le, VH.; Oyama, T.; Ricketts, C.J.; Ho, TH.; Cheng, E.H. Chromosome 3p loss—orchestrated VHL, HIF, and epigenetic
deregulation in clear cell renal cell carcinoma. J. Clin. Oncol. 2018, 36, 3533. [CrossRef]

Hakimi, A.A.; Reznik, E.; Lee, C.-H.; Creighton, C.J.; Brannon, A.R; Luna, A; Aksoy, B.A,; Liu, EM,; Shen, R.; Lee, W,; et al. An
integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016, 29, 104-116. [CrossRef]

Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics:
Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325. [CrossRef]

Galon, J.; Costes, A.; Sanchez-Cabo, E,; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pages, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind,
P; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313,
1960-1964. [CrossRef]

Galon, ]J.; Fridman, W.-H.; Pages, F. The adaptive immunologic microenvironment in colorectal cancer: A novel perspective.
Cancer Res. 2007, 67, 1883-1886. [CrossRef]

Pages, F,; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F; Bruneval, P; et al. In
situ cytotoxic and memory t cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009, 27, 5944-5951.
[CrossRef]

Tumeh, P.C.; Harview, C.L.; Yearley, ].H.; Shintaku, L.P; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu,
V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568-571. [CrossRef]
Gajewski, T.F; Schreiber, H.; Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14,
1014-1022. [CrossRef]

Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen
presentation. Nat. Rev. Immunol. 2011, 11, 823-836. [CrossRef]

Senbabaoglu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, EM.; de Velasco, G.; Miao, D.; Ostrovnaya, L; Drill, E.;
Luna, A ; et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and
immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016, 17, 1-25. [CrossRef]

Yuri, P; Shigemura, K.; Kitagawa, K.; Hadibrata, E.; Risan, M.; Zulfiqqar, A.; Soeroharjo, I.; Hendri, A.Z.; Danarto, R.; Ishii,
A.; et al. Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients” survival and
responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int. 2020, 8, 62—69. [CrossRef]

Pathria, P.; Louis, T.L.; Varner, J.A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019, 40, 310-327.
[CrossRef]

Peranzoni, E.; Lemoine, J.; Vimeux, L.; Feuillet, V.; Barrin, S.; Kantari-Mimoun, C.; Bercovici, N.; Guérin, M.; Biton, J.; Ouakrim,
H.; et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti—-PD-1 treatment. Proc. Natl.
Acad. Sci. USA 2018, 115, E4041-E4050. [CrossRef] [PubMed]

Dagher, N.N.; Najafi, A.R.; Kayala, KM.N.; ElImore, M.R.; White, T.E.; Medeiros, R.; West, B.L.; Green, K.N. Colony-stimulating
factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflamm.
2015, 12, 139. [CrossRef]

Tap, W.D.; Wainberg, Z.A.; Anthony, S.P.; Ibrahim, P.N.; Zhang, C.; Healey, ].H.; Chmielowski, B.; Staddon, A.P.; Cohn, A.L,;
Shapiro, G.I.; et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 2015, 373,
428-437. [CrossRef] [PubMed]

Dieu-Nosjean, M.-C.; Gog, J.; Giraldo, N.A.; Sautes-Fridman, C.; Fridman, W.H. Tertiary lymphoid structures in cancer and
beyond. Trends Immunol. 2014, 35, 571-580. [CrossRef] [PubMed]

Neyt, K,; Perros, F,; GeurtsvanKessel, C.H.; Hammad, H.; Lambrecht, B.N. Tertiary lymphoid organs in infection and autoimmu-
nity. Trends Immunol. 2012, 33, 297-305. [CrossRef]

Lucchesi, D.; Bombardieri, M. The role of viruses in autoreactive B cell activation within tertiary lymphoid structures in
autoimmune diseases. J. Leukoc. Biol. 2013, 94, 1191-1199. [CrossRef] [PubMed]


http://doi.org/10.1158/2159-8290.CD-19-0499
http://www.ncbi.nlm.nih.gov/pubmed/31527133
http://doi.org/10.1158/2326-6066.CIR-14-0193
http://doi.org/10.1016/j.hoc.2011.04.010
http://doi.org/10.1200/JCO.1999.17.8.2530
http://doi.org/10.1200/JCO.2008.21.4809
http://www.ncbi.nlm.nih.gov/pubmed/19826129
http://doi.org/10.1016/S1470-2045(12)70559-4
http://doi.org/10.1200/JCO.2018.79.2549
http://doi.org/10.1016/j.ccell.2015.12.004
http://doi.org/10.1038/nrclinonc.2018.29
http://doi.org/10.1126/science.1129139
http://doi.org/10.1158/0008-5472.CAN-06-4806
http://doi.org/10.1200/JCO.2008.19.6147
http://doi.org/10.1038/nature13954
http://doi.org/10.1038/ni.2703
http://doi.org/10.1038/nri3084
http://doi.org/10.1186/s13059-016-1092-z
http://doi.org/10.1016/j.prnil.2019.12.001
http://doi.org/10.1016/j.it.2019.02.003
http://doi.org/10.1073/pnas.1720948115
http://www.ncbi.nlm.nih.gov/pubmed/29632196
http://doi.org/10.1186/s12974-015-0366-9
http://doi.org/10.1056/NEJMoa1411366
http://www.ncbi.nlm.nih.gov/pubmed/26222558
http://doi.org/10.1016/j.it.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25443495
http://doi.org/10.1016/j.it.2012.04.006
http://doi.org/10.1189/jlb.0413240
http://www.ncbi.nlm.nih.gov/pubmed/23812327

Int. J. Mol. Sci. 2021, 22, 4452 11 0f 13

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in
secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130,
1089-1104. [CrossRef] [PubMed]

Le Pottier, L.; Devauchelle, V.; Fautrel, A.; Daridon, C.; Saraux, A.; Youinou, P,; Pers, J.-O. Ectopic germinal centers are rare
in sjogren’s syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 2009, 182, 3540-3547. [CrossRef]
[PubMed]

Baddoura, FK.; Nasr, LW.; Wrobel, B.; Li, Q.; Ruddle, N.H.; Lakkis, F.G. Lymphoid neogenesis in murine cardiac allografts
undergoing chronic rejection. Am. J. Transplant. 2005, 5, 510-516. [CrossRef]

Giraldo, N.A ; Becht, E.; Vano, Y,; Petitprez, F.; Lacroix, L.; Validire, P.; Sanchez-Salas, R.; Ingels, A.; Oudard, S.; Moatti, A.; et al.
Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma.
Clin. Cancer Res. 2017, 23, 4416-4428. [CrossRef]

Giraldo, N.A.; Becht, E.; Pages, E; Skliris, G.; Verkarre, V.; Vano, Y.; Mejean, A.; Saint-Aubert, N.; Lacroix, L.; Natario, L.; et al.
Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell
cancer. Clin. Cancer Res. 2015, 21, 3031-3040. [CrossRef] [PubMed]

Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al.
An immune atlas of clear cell renal cell carcinoma. Cell 2017, 169, 736-749.e718. [CrossRef]

Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, ].R.; Zhao, S.; et al. The
landscape of long noncoding rnas in the human transcriptome. Nat. Genet. 2015, 47, 199-208. [CrossRef]

Sahu, A.; Singhal, U.; Chinnaiyan, A.M. Long noncoding RNAs in cancer: From function to translation. Trends Cancer 2015, 1,
93-109. [CrossRef]

Perkel, ].M. Visiting “noncodarnia”. Biotechniques 2013, 301, 303-304. [CrossRef] [PubMed]

Cabianca, D.S.; Casa, V.; Bodega, B.; Xynos, A.; Ginelli, E.; Tanaka, Y.; Gabellini, D. A long ncRNA links copy number variation to
a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012, 149, 819-831. [CrossRef] [PubMed]

Prensner, J.R.; Chinnaiyan, A.M. The emergence of IncRNAs in cancer biology. Cancer Discov. 2011, 1, 391-407. [CrossRef]
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A,;
et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472, 120-124.
[CrossRef]

Zhao, L.;Ji, G,; Le, X,; Wang, C.; Xu, L.; Feng, M.; Zhang, Y.; Yang, H.; Xuan, Y.; Yang, Y.; et al. Long noncoding RNA 1inc00092 acts
in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 2017, 77, 1369-1382. [CrossRef]
[PubMed]

Zhou, M.; Zhao, H.; Xu, W.; Bao, S.; Cheng, L.; Sun, ]. Discovery and validation of immune-associated long non-coding RNA
biomarkers associated with clinically molecular subtype and prognosis in diffuse large b cell lymphoma. Mol. Cancer 2017, 16,
1-13. [CrossRef] [PubMed]

Zhai, W.; Zhu, R;; Ma, J.; Gong, D.; Zhang, H.; Zhang, J.; Chen, Y.; Huang, Y.; Zheng, J.; Xue, W. A positive feed-forward loop
between IncRNA-URRCC and EGFL7/P-AKT/FOXO3 signaling promotes proliferation and metastasis of clear cell renal cell
carcinoma. Mol. Cancer 2019, 18, 81. [CrossRef]

Khadirnaikar, S.; Kumar, P.; Pandi, S.N.; Malik, R.; Dhanasekaran, S.M.; Shukla, S.K. Immune associated IncRNAs identify novel
prognostic subtypes of renal clear cell carcinoma. Mol. Carcinog. 2019, 58, 544-553. [CrossRef]

Treffers, L.W.; Hiemstra, L.H.; Kuijpers, T.W.; Van den Berg, T.K.; Matlung, H.L. Neutrophils in cancer. Immunol. Rev. 2016, 273,
312-328. [CrossRef] [PubMed]

Wikberg, M.L,; Ling, A.; Li, X.; Oberg, A.; Edin, S.; Palmqvist, R. Neutrophil infiltration is a favorable prognostic factor in early
stages of colon cancer. Hum. Pathol. 2017, 68, 193-202. [CrossRef] [PubMed]

Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.].; Salm, M.P; Varela, I; Fisher, R.; McGranahan, N.; Matthews, N.; Santos, C.R.;
et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014,
46, 225. [CrossRef]

Chen, F,; Zhang, Y.; Senbabaoglu, Y.; Ciriello, G.; Yang, L.; Reznik, E.; Shuch, B.; Micevic, G.; De Velasco, G.; Shinbrot, E.; et al.
Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 2016, 14, 2476-2489. [CrossRef]

Motzer, R.J.; Banchereau, R.; Hamidi, H.; Powles, T.; McDermott, D.; Atkins, M.B.; Escudier, B.; Liu, L.E; Leng, N.; Abbas, A.R,;
et al. Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade. Cancer Cell 2020, 38, 803-817.
[CrossRef]

Wirth, M. Immunotherapy for metastatic renal cell carcinoma. Urol. Clin. N. Am. 1993, 20, 283. [CrossRef]

Rosenberg, S.A.; Lotze, M.T.; Muul, L.M.; Chang, A.E.; Avis, EP.; Leitman, S.; Linehan, W.M.; Robertson, C.N.; Lee, R.E.; Rubin,
J.T.; et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and
interleukin-2 or high-dose interleukin-2 alone. N. Engl. |. Med. 1987, 316, 889-897. [CrossRef]

Law, T.M.; Motzer, R.J.; Mazumdar, M.; Sell, KW.; Walther, P.; O’Connell, M.; Khan, A.; Vlamis, V.; Vogelzang, N.J.; Bajorin, D.E.
Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with
advanced renal cell carcinoma. Cancer 1995, 76, 824-832. [CrossRef]

Vogelzang, N.J.; Lipton, A.; Figlin, R.A. Subcutaneous interleukin-2 plus interferon alfa-2a in metastatic renal cancer: An
outpatient multicenter trial. J. Clin. Oncol. 1993, 11, 1809-1816. [CrossRef]


http://doi.org/10.1093/brain/awm038
http://www.ncbi.nlm.nih.gov/pubmed/17438020
http://doi.org/10.4049/jimmunol.0803588
http://www.ncbi.nlm.nih.gov/pubmed/19265132
http://doi.org/10.1111/j.1600-6143.2004.00714.x
http://doi.org/10.1158/1078-0432.CCR-16-2848
http://doi.org/10.1158/1078-0432.CCR-14-2926
http://www.ncbi.nlm.nih.gov/pubmed/25688160
http://doi.org/10.1016/j.cell.2017.04.016
http://doi.org/10.1038/ng.3192
http://doi.org/10.1016/j.trecan.2015.08.010
http://doi.org/10.2144/000114037
http://www.ncbi.nlm.nih.gov/pubmed/23750541
http://doi.org/10.1016/j.cell.2012.03.035
http://www.ncbi.nlm.nih.gov/pubmed/22541069
http://doi.org/10.1158/2159-8290.CD-11-0209
http://doi.org/10.1038/nature09819
http://doi.org/10.1158/0008-5472.CAN-16-1615
http://www.ncbi.nlm.nih.gov/pubmed/28087599
http://doi.org/10.1186/s12943-017-0580-4
http://www.ncbi.nlm.nih.gov/pubmed/28103885
http://doi.org/10.1186/s12943-019-0998-y
http://doi.org/10.1002/mc.22949
http://doi.org/10.1111/imr.12444
http://www.ncbi.nlm.nih.gov/pubmed/27558343
http://doi.org/10.1016/j.humpath.2017.08.028
http://www.ncbi.nlm.nih.gov/pubmed/28882699
http://doi.org/10.1038/ng.2891
http://doi.org/10.1016/j.celrep.2016.02.024
http://doi.org/10.1016/j.ccell.2020.10.011
http://doi.org/10.1016/S0094-0143(21)00487-0
http://doi.org/10.1056/NEJM198704093161501
http://doi.org/10.1002/1097-0142(19950901)76:5&lt;824::AID-CNCR2820760517&gt;3.0.CO;2-N
http://doi.org/10.1200/JCO.1993.11.9.1809

Int. J. Mol. Sci. 2021, 22, 4452 12 0f 13

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Minasian, L.M.; Motzer, R.J.; Gluck, L.; Mazumdar, M.; Vlamis, V.; Krown, S.E. Interferon alfa-2a in advanced renal cell carcinoma:
Treatment results and survival in 159 patients with long-term follow-up. J. Clin. Oncol. 1993, 11, 1368-1375. [CrossRef] [PubMed]
Fossd, S.; Martinelli, G.; Otto, U.; Schneider, G.; Wander, H.; Oberling, F.; Bauer, H.; Achtnicht, U.; Holdener, E. Recombinant
interferon alfa-2a with or without vinblastine in metastatic renal cell carcinoma: Results of a european multi-center phase III
study. Ann. Oncol. 1992, 3, 301-305. [CrossRef] [PubMed]

Fyfe, G.; Fisher, R.I.; Rosenberg, S.A.; Sznol, M.; Parkinson, D.R.; Louie, A.C. Results of treatment of 255 patients with metastatic
renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 1995, 13, 688-696. [CrossRef]
[PubMed]

Allard, C.B.; Gelpi-Hammerschmidt, F.; Harshman, L.C.; Choueiri, TK.; Faiena, I.; Modi, P.; Chung, B.I,; Tinay, I; Singer, E.A.;
Chang, S.L. Contemporary trends in high-dose interleukin-2 use for metastatic renal cell carcinoma in the united states. Urol.
Oncol. 2015, 33, 496.e11-496.e16. [CrossRef]

Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta,
E.; et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomised, double-blind phase
III trial. Lancet 2007, 370, 2103-2111. [CrossRef]

Escudier, B.; Bellmunt, J.; Négrier, S.; Bajetta, E.; Melichar, B.; Bracarda, S.; Ravaud, A.; Golding, S.; Jethwa, S.; Sneller, V. Phase III
trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (avoren): Final analysis of overall
survival. J. Clin. Oncol. 2010, 28, 2144-2150. [CrossRef]

Rini, B.IL; Halabi, S.; Rosenberg, J.E.; Stadler, WM.; Vaena, D.A.; Ou, S.-S.; Archer, L.; Atkins, ].N.; Picus, J.; Czaykowski, P; et al.
Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma:
CALGB 90206. |. Clin. Oncol. 2008, 26, 5422. [CrossRef]

Rini, B.I.; Halabi, S.; Rosenberg, J.E.; Stadler, W.M.; Vaena, D.A.; Archer, L.; Atkins, ].N.; Picus, J.; Czaykowski, P.; Dutcher, J.;
et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell
carcinoma: Final results of CALGB 90206. J. Clin. Oncol. 2010, 28, 2137. [CrossRef]

Brunet, J.P.; Tamayo, P.; Golub, T.R.; Mesirov, ].P. Metagenes and molecular pattern discovery using matrix factorization. Proc.
Natl. Acad. Sci. USA 2004, 101, 4164-4169. [CrossRef]

Powles, T.; Plimack, E.R.; Soulieres, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko,
L; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma
(KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563-1573. [CrossRef]
Motzer, R.J.; Escudier, B.; McDermott, D.F,; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.;
Plimack, E.R. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 2015, 373, 1803-1813. [CrossRef]
Choueiri, TK,; Escudier, B.; Powles, T.; Mainwaring, PN.; Rini, B.I,; Donskov, F; Hammers, H.; Hutson, T.E; Lee, J.-L.; Peltola, K,;
et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. |. Med. 2015, 373, 1814-1823. [CrossRef]
Motzer, R.J.; Tannir, N.M.; McDermott, D.F,; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta,
C.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378,
1277-1290. [CrossRef] [PubMed]

Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F,; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F; Lee, J.L.;
et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma
(immotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019, 393, 2404-2415. [CrossRef]

Motzer, R.].; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.E,; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, E; Lee, J.-L.;
et al. Immotion151: A randomized phase III study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal
cell carcinoma (mrcc). J. Clin. Oncol. Am. Soc. Clin. Oncol. 2018, 36, 578. [CrossRef]

Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura,
M.; et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1103-1115.
[CrossRef]

Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, E.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al.
Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. ]. Med. 2019, 380, 1116-1127. [CrossRef]
[PubMed]

Hofmann, F; Hwang, E.C.; Lam, T.B.; Bex, A.; Yuan, Y.; Marconi, L.S.; Ljungberg, B. Targeted therapy for metastatic renal cell
carcinoma. Cochrane Database Syst. Rev. 2020. [CrossRef]

US National Library of Medicine. A Randomized, Open-Label, Phase 3 Study to Evaluate Efficacy and Safety of Pembrolizumab
(MK-3475) Plus Epacadostat vs Standard of Care (Sunitinib or Pazopanib) as First-Line Treatment for Locally Advanced
or Metastatic Renal Cell Carcinoma. Available online: https://clinicaltrials.gov/ct2/show/NCT03260894 (accessed on 1
March 2021).

US National Library of Medicine. A Multicenter, Open-Label, Randomized, Phase 3 Trial to Compare the Efficacy and Safety
of Lenvatinib in Combination with Everolimus or Pembrolizumab Versus Sunitinib Alone in First-Line Treatment of Subjects
with Advanced Renal Cell Carcinoma. Available online: https://clinicaltrials.gov/ct2/show/NCT02811861 (accessed on 1
March 2021).


http://doi.org/10.1200/JCO.1993.11.7.1368
http://www.ncbi.nlm.nih.gov/pubmed/8315435
http://doi.org/10.1093/oxfordjournals.annonc.a058185
http://www.ncbi.nlm.nih.gov/pubmed/1390305
http://doi.org/10.1200/JCO.1995.13.3.688
http://www.ncbi.nlm.nih.gov/pubmed/7884429
http://doi.org/10.1016/j.urolonc.2015.06.014
http://doi.org/10.1016/S0140-6736(07)61904-7
http://doi.org/10.1200/JCO.2009.26.7849
http://doi.org/10.1200/JCO.2008.16.9847
http://doi.org/10.1200/JCO.2009.26.5561
http://doi.org/10.1073/pnas.0308531101
http://doi.org/10.1016/S1470-2045(20)30436-8
http://doi.org/10.1056/NEJMoa1510665
http://doi.org/10.1056/NEJMoa1510016
http://doi.org/10.1056/NEJMoa1712126
http://www.ncbi.nlm.nih.gov/pubmed/29562145
http://doi.org/10.1016/S0140-6736(19)30723-8
http://doi.org/10.1200/JCO.2018.36.6_suppl.578
http://doi.org/10.1056/NEJMoa1816047
http://doi.org/10.1056/NEJMoa1816714
http://www.ncbi.nlm.nih.gov/pubmed/30779529
http://doi.org/10.1002/14651858.CD012796
https://clinicaltrials.gov/ct2/show/NCT03260894
https://clinicaltrials.gov/ct2/show/NCT02811861

Int. J. Mol. Sci. 2021, 22, 4452 13 0f 13

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

US National Library of Medicine. A Phase 3, Randomized, Open-Label Study of Nivolumab Combined with Cabozantinib
Versus Sunitinib in Participants with Previously Untreated Advanced or Metastatic Renal Cell Carcinoma. Available online:
https://clinicaltrials.gov /ct2 /show /NCT03141177 (accessed on 1 March 2021).

US National Library of Medicine. A Randomized, Double-Blind, Controlled Phase 3 Study of Cabozantinib in Combination with
Nivolumab and Ipilimumab Versus Nivolumab and Ipilimumab in Subjects with Previously Untreated Advanced or Metastatic
Renal Cell Carcinoma of Intermediate or Poor Risk. Available online: https://clinicaltrials.gov/ct2/show/NCT03937219
(accessed on 1 March 2021).

US National Library of Medicine. PD-Inhibitor (Nivolumab) and Ipilimumab Followed by Nivolumab vs. VEGF TKI Cabozantinib
with Nivolumab: A Phase III Trial in Metastatic Untreated Renal Cell Cancer. Available online: https:/ /clinicaltrials.gov/ct2
/show /NCT03793166 (accessed on 1 March 2021).

US National Library of Medicine. A Phase III, Multicenter, Randomized, Open-Label Study to Evaluate the Efficacy and Safety
of Atezolizumab Given in Combination with Cabozantinib Versus Cabozantinib Alone in Patients with Inoperable, Locally
Advanced, or Metastatic Renal Cell Carcinoma Who Experienced Radiographic Tumor Progression during or after Inmune
Checkpoint Inhibitor Treatment. Available online: https://clinicaltrials.gov/ct2/show /NCT04338269 (accessed on 1 March 2021).
US National Library of Medicine. A Phase 3 Randomized, Double-Blind Study of Nivolumab Monotherapy or Nivolumab
Combined with Ipilimumab vs Placebo in Participants with Localized Renal Cell Carcinoma Who Underwent Radical or Partial
Nephrectomy and Who Are at High Risk of Relapse. Available online: https://clinicaltrials.gov/ct2/show/NCT03138512
(accessed on 31 March 2021).

US National Library of Medicine. Multicenter Randomized Phase III Trial of Deferred Cytoreductive Nephrectomy in Synchronous
Metastatic Renal Cell Carcinoma Receiving Checkpoint Inhibitors: A DaRenCa and NoRenCa Trial Evaluating the Impact of
Surgery or No Surgery: The NORDIC-SUN-Trial. Available online: https:/ /clinicaltrials.gov/ct2/show /NCT03977571 (accessed
on 31 March 2021).

US National Library of Medicine. A Phase 3 RandOmized Study Comparing PERioperative Nivolumab vs. Observation in
Patients with Renal Cell Carcinoma Undergoing Nephrectomy (PROSPER RCC). Available online: https:/ /clinicaltrials.gov/ct2
/show /NCT03055013 (accessed on 31 March 2021).

US National Library of Medicine. An International Investigator-led Phase III Multi Arm Multi Stage Multi-centre Randomised
Controlled Platform Trial of Adjuvant Therapy in Patients with Resected Primary Renal Cell Carcinoma (RCC) at High or
Intermediate Risk of Relapse. Available online: https://clinicaltrials.gov/ct2/show/NCT03288532 (accessed on 31 March 2021).
Sawa-Wejksza, K.; Kandefer-Szerszeri, M. Tumor-associated macrophages as target for antitumor therapy. Arch. Immunol. Ther.
Exp. 2018, 66, 97-111. [CrossRef]

Petty, A.J.; Yang, Y. Tumor-associated macrophages: Implications in cancer immunotherapy. Immunotherapy 2017, 9, 289-302.
[CrossRef] [PubMed]

Schmid, M.C.; Khan, S.Q.; Kaneda, M.M.; Pathria, P.; Shepard, R.; Louis, T.L.; Anand, S.; Woo, G.; Leem, C.; Faridi, M.H.; et al.
Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 2018, 9, 1-14. [CrossRef] [PubMed]

Locke, L.W.; Mayo, M.W.; Yoo, A.D.; Williams, M.B.; Berr, S.S. PET imaging of tumor associated macrophages using mannose
coated 64Cu liposomes. Biomaterials 2012, 33, 7785-7793. [CrossRef] [PubMed]

Iv, M.; Samghabadi, P.; Holdsworth, S.; Gentles, A.; Rezaii, P; Harsh, G.; Li, G.; Thomas, R.; Moseley, M.; Daldrup-Link, H.E.; et al.
Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced mri: A pilot study. Radiology 2019, 290,
198-206. [CrossRef] [PubMed]

Yin, Q.; Hung, S.-C.; Wang, L.; Lin, W,; Fielding, ].R.; Rathmell, WK.; Khandani, A.H.; Woods, M.E.; Milowsky, M.I.; Brooks, S.A.;
et al. Associations between tumor vascularity, vascular endothelial growth factor expression and PET/MRI radiomic signatures
in primary clear-cell-renal-cell-carcinoma: Proof-of-concept study. Sci. Rep. 2017, 7, 43356. [CrossRef] [PubMed]

Yin, Q.; Hung, S.-C.; Rathmell, WK_; Shen, L.; Wang, L.; Lin, W,; Fielding, ].R.; Khandani, A.H.; Woods, M.E.; Milowsky, M.I;
et al. Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma. Clin. Radiol. 2018,
73,782-791. [CrossRef]

Baldewijns, M.; Thijssen, V.; Van den Eynden, G.; Van Laere, S.; Bluekens, A.; Roskams, T.; Van Poppel, H.; De Bruine, A.;
Griffioen, A.; Vermeulen, P. High-grade clear cell renal cell carcinoma has a higher angiogenic activity than low-grade renal cell
carcinoma based on histomorphological quantification and gRT-PCR mRNA expression profile. Br. . Cancer 2007, 96, 1888-1895.
[CrossRef]


https://clinicaltrials.gov/ct2/show/NCT03141177
https://clinicaltrials.gov/ct2/show/NCT03937219
https://clinicaltrials.gov/ct2/show/NCT03793166
https://clinicaltrials.gov/ct2/show/NCT03793166
https://clinicaltrials.gov/ct2/show/NCT04338269
https://clinicaltrials.gov/ct2/show/NCT03138512
https://clinicaltrials.gov/ct2/show/NCT03977571
https://clinicaltrials.gov/ct2/show/NCT03055013
https://clinicaltrials.gov/ct2/show/NCT03055013
https://clinicaltrials.gov/ct2/show/NCT03288532
http://doi.org/10.1007/s00005-017-0480-8
http://doi.org/10.2217/imt-2016-0135
http://www.ncbi.nlm.nih.gov/pubmed/28231720
http://doi.org/10.1038/s41467-018-07387-4
http://www.ncbi.nlm.nih.gov/pubmed/30568188
http://doi.org/10.1016/j.biomaterials.2012.07.022
http://www.ncbi.nlm.nih.gov/pubmed/22840225
http://doi.org/10.1148/radiol.2018181204
http://www.ncbi.nlm.nih.gov/pubmed/30398435
http://doi.org/10.1038/srep43356
http://www.ncbi.nlm.nih.gov/pubmed/28256615
http://doi.org/10.1016/j.crad.2018.04.009
http://doi.org/10.1038/sj.bjc.6603796

	Introduction 
	Tumor Microenvironment in Renal Cell Carcinoma 
	Immunotherapy in the Early Era 
	Immune-Associated Novel Prognosticators of Renal Cell Carcinoma 
	Immune Checkpoint Inhibitors for Renal Cell Carcinoma 
	Ongoing Trials Involving Immune Checkpoint Inhibitors 
	Summary and Future Directions 
	References

