

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Diamond & Related Materials

journal homepage: www.elsevier.com/locate/diamond

Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages

Kamal A. Soliman^{a,*}, S. Abdel Aal^{a,b}

^a Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
 ^b Department of Chemistry, College of Science, Qassim University, Saudi Arabia

ARTICLE INFO

ABSTRACT

Keywords: DFT calculations Favipiravir Drug delivery C₂₄, B₁₂N₁₂, BC₂₃, and CB₁₁N₁₂ nanocages Smart implementation of novel advanced nanocarriers such as functionalized C_{24} and $B_{12}N_{12}$ nanocages is used supplement for antiviral activity 5-Fluoro-2-hydroxypyrazine-3-carboxamide (Favipiravir, Avigan; T-705), as treatment of COVID-19. The interaction energies of Favipiravir with perfect ($B_{12}N_{12}$ and C_{24}) and doped (BC_{23} and $CB_{11}N_{12}$) nanocages were studied at temperatures equal to 310.15 K and 298.15 K using DFT. Our results have shown that the interaction of the Favipiravir (C=O group) with BC_{23} and $CB_{11}N_{12}$ is more favorable than with the C_{24} and $B_{12}N_{12}$ nanocages in the gas and aqueous environments.

Additionally, the natural bond orbital, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), energy gap, chemical reactivity, molecular electrostatic potential, and thermodynamic parameters of the optimized structure have been examined. Furthermore, the UV–Vis and infrared spectroscopy have been evaluated for the investigation of the molecular orbitals Participated in the absorption spectrum of the Favipiravir before and after the interaction with the C_{24} , BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$, sites at maximum wavelength utilizing the time-dependent density functional theory (TD-B3LYP and TD-CAM-B3LYP). The intermolecular interactions have been analyzed by non-covalent interactions (NCI) and also, the electron localization function (ELF) is discussed.

1. Introduction

The 2019 infection pandemic (COVID-19) of the coronavirus is a serious bio-safety that has a serious impact on global society and the economy. COVID-19 has prompted the interest of scientists to treat this disease with an effective drug. Due to the ability of the COVID-19 virus to undergo antigenic changes and drug resistance, a significant objective of medical science and health care systems is the search for novel antivirals. Several developing drugs have been examined against COVID-19 [1]; favipiravir is one of the drugs cited for action against RNA-viral infections of COVID-19 [2] as broad-spectrum inhibitors [3]. Experimental treatment with Favipiravir for COVID-19 [4,5] has been provided that preliminary evidence for the prevention of viral infection with SARS-CoV-2. Favipiravir drug (5-Fluoro-2-hydroxypyrazine-3-carboxamide (T-705; Avigan; Favipiravir) was first prepared by Shi et al. [6], however, the performance of COVID-19 medications is still being questioned to date [7]. Consequently, the smart implementation of nanoscience has given great attention to exciting applications in the medical field and pharmaceutical studies [8]. The drug delivery systems are distinguished over free drugs in aspects such as selectivity, longer circulation time, and lower dosage with low side effects [9] and better therapeutic efficacy. Density functional studies were performed to the structure and energetics of the interaction of the drug pyrazinamide (PZA) with graphene-based nanomaterials using a noncovalent functionalization approach [10].

The synthesis and application of carbon and BN-nanocages has recently been of great interest as drug carriers or drug detectors due to their unique physical and chemical properties such as a great adsorbing capacity, high thermal stability, and low poisonous quality. First-principles calculations have been carried out on the effect of function-alization of B₁₂N₁₂ and C₂₄ nanocage using heteroatoms such as C- and B-doping [11]. Compared to defect-free nanocage surface (B₁₂N₁₂ and C₂₄), it is observed that their electronic properties can be modified by heteroatom doping. B- and C- atoms which can stimulate hole acceptor or donor states within the Fermi level [12,13] consequently enhance the electronic and conducting properties of B₁₂N₁₂ and C₂₄ nanocage. Additionally, the drug molecule interacts with C-doped B₁₂N₁₂ and B-doped C₂₄ nanocages with high sensitivity. Hosseinian et al. [14]

* Corresponding author. E-mail address: kamal.soliman@fsc.bu.edu.eg (K.A. Soliman).

https://doi.org/10.1016/j.diamond.2021.108458

Received 17 March 2021; Received in revised form 22 April 2021; Accepted 9 May 2021 Available online 15 May 2021 0925-9635/© 2021 Elsevier B.V. All rights reserved.

Fig. 1. Optimized structure for (a) T-705, (b) C_{24} , (c) $C_{23}B$ and (d) $B_{12}N_{12}$ (f) $CB_{11}N_{12}$ nanocages .

investigated the interaction between C_{24} and a widely used molecule for treating cancer – 5-fluorouracil (5-FU). Hazrati and Hadipour [15] investigated how modifications of fullerene C_{60} doped with B, Si and Al atoms influence the adsorption of 5-FU. Comprehensive reviews have been focused on boron-nitride (BN) fullerene-like materials since they have excellent properties [16–19]. A comprehensive experimental and theoretical study on BN nanomaterials for the adsorption of pharmaceutical drugs were performed to examine the synthesis and characterization of BN nanosheets and their applicability for the adsorption of pharmaceutical drugs [20].

The electronic and structural properties of 5-ALA functioned with $B_{12}N_{12}$ and $B_{16}N_{16}$ nanoclusters to further understand $B_{12}N_{12}$ and B₁₆N₁₆ capacity for use in drug delivery applications [21]. Interactions between fullerene C₂₄ as a potential carrier of ephedrine drug have been studied in detail by a combination of density functional theory (DFT), time dependent DFT (TD-DFT) calculations [22-24]. Parlak et al. [25] examined the interaction of favipiravir on undoped and Si-doped fullerene (C₆₀) and the results indicated that Si-doped fullerene are sensitive to the favipiravir molecule. Also, a recent study was conducted by Rad et al. [26] to analyze drug adsorption of favipiravir on first-row transition metals doped with fullerenes (C20) and the results showed that Fe, Cr, and Ni-doped fullerene would be potential drug delivery for COVID-19 treatment. Consequently, the objective of the present study is to investigate and compare theoretically the interaction of Favipiravir functionalized at perfect (B12N12 and C24) and doped (BC23 and CB₁₁N₁₂) nanocages to provide a useful guidance for the design and improvement of fullerene and boron nitride nanocages capacity for use in drug delivery applications.

2. Computational details

The quantum chemical calculations of structure optimizations, electronic structure, and adsorption properties of complexes that consist of Favipiravir drugs at the surface of un-doped C_{24} , $B_{12}N_{12}$, boron-doped C_{24} (B C_{23}), and carbon-doped $B_{12}N_{12}$ (CB $_{11}N_{12}$) nanocages were performed in gaseous and aqueous phase using the density functional theory (DFT) method with Becke-3-Parameter-Lee-Yang-Parr (B3LYP) and 6-31 g(d,p) basis set to examine of Favipiravir as antiviral for treatment of COVID-19. The aqueous phase was calculated using the self-consistency reaction field (SCRF) approach based on the conductor-

like polarizable continuum model (CPCM) [27].

The adsorption energy (E_{ads}) for the full optimization of the Favipiravir (T-705) at the C₂₄, BC₂₃, B₁₂N₁₂ and CB₁₁N₁₂ nanocages was calculated by:

$$E_{ads} = E(cage + T - 705) - E(cage) - E(T - 705)$$
(1)

where E(cage + T-705) is the energy of Favipiravir molecule@nanocage, Ecage is the total energy of nanocages, and E(T-705) is the total energy of the Favipiravir molecule.

The quantum molecular descriptors [28,29] of the optimized compounds for instance E_{HOMO} , E_{LUMO} , energy gap between HOMO and LUMO, dipole moment and natural charges [30,31], ionization potential (I = -E_{HOMO}), electron affinity (A = -E_{LUMO}), electronegativity $\left(\chi = \frac{I+A}{2}\right)$, global hardness ($\eta = \frac{I-A}{2}$), electronic chemical potential ($\mu = -\left(\frac{I+A}{2}\right)$) electrophilicity ($\omega = \frac{\mu^2}{2}$) [32], chemical softness ($\sigma = \frac{1}{2}$)

$$-\left(\frac{1+A}{2}\right)$$
, electrophilicity ($\omega = \frac{\mu}{\eta}$) [32], chemical softness ($\sigma = \frac{1}{2\eta}$)

were determined. The present proposals are to investigate the therapeutic potential of C_{24} , BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$ nanocage as a drugdelivery system for Favipiravir for treatment of COVID-19 and to explore the efficiency of nanostructure as a drug-delivery system. The principle aspects such as interaction mechanism between Favipiravir drug and C_{24} , $B_{12}N_{12}$, BC_{23} , and $CB_{11}N_{12}$ nanocages using DFT and TD-DFT calculations have been exhausted to further understand nanocages capacity that has attracted tremendous attention as a most promising drug delivery nanomaterial.

To comparatively analyze the interaction properties of Favipiravir drug based on BN and C_{24} nanocages, the bonding characteristics, adsorption ability, charge transfer, dipole moment, frontier orbitals, energy gaps, molecular electrostatic potential (MEP), partial density of states (PDOS), natural bond orbital (NBO), changes in Gibbs free energy of these complexes have been examined. The time-dependent density functional calculations (TD-B3LYP and TD-CAM-B3LYP) were used to simulate UV and infrared spectroscopy and to exhibit whether the interaction between $B_{12}N_{12}$ and C_{24} nanocages and Favipiravir produces some significant changes in the UV spectrum and vibrational frequencies during the detection of Favipiravir. The effect of long-range corrections has been carried out using the TD-CAM-B3LYP methods [33]. TD-CAMB3LYP methods [34] are used to provide a relatively accurate description of the energies of spectral bands, when there is a significant

Fig. 2. Optimized geometries of the possible interactions between the T-705 drug with (a) C₂₄, and (b) B₁₂N₁₂ nanocarrier calculated at B3LYP/6-31G(d,p) level of theory.

Fig. 3. Optimized geometries of the possible interactions between the T-705 drug with functionalized (a) BC₂₃, and (b) CB₁₁N₁₂ carrier calculated at the B3LYP/6-31G(d,p) level of theory.

charge transfer character in the excited states [35]. K. Petrushenko et al. [36] suggested that the Coulomb-attenuated CAM-B3LYP functional containing 19% short-range exact orbital exchange and 65% long-range exact orbital exchange improves sufficiently the description of CT transitions in comparison with the B3LYP hybrid functional, involving a fixed amount (20%) of exact exchange. Therefore, the TD-CAMB3LYP method can be used for the interpretation of experimental data of the close-lying LE and CT transitions. The thermodynamic parameters such as enthalpy change (Δ H), entropy change (Δ S), and Gibbs free energy (Δ G) were examined in the gas and aqueous phases for T-705@nanocages at 310.15 K (human body temperature) and 298.15 K (storage room temperature). These properties are elucidated using the Gaussian 09 [37]. The GaussSum program was used for PDOS of these systems [38].

Table 1Total energies of T-705/nanocages.

System	HF(Hartree)
$C_{24} + Drug(N)$	-1521.28179258
$C_{24} + Drug(NH2)$	-1521.29976973
$C_{24} + Drug(O)$	-1521.30338089
$C_{24} + Drug(OH)$	-1521.30280260
$B_{12}N_{12} + Drug(N)$	-1563.66433686
$B_{12}N_{12} + Drug(NH2)$	-1563.64235103
$B_{12}N_{12} + Drug(O)$	-1563.68383936
$B_{12}N_{12} + Drug(OH)$	-1563.65185512
$C_{23}B + Drug(N)$	-1508.11200329
$C_{23}B + Drug(O)$	-1508.12600456
C ₂₃ B + Drug(OH)	-1508.08755113
$CB_{11}N_{12} + Drug(N)$	-1576.75954799
$CB_{11}N_{12} + Drug(NH2)$	-1576.73889024
$CB_{11}N_{12} + Drug(O)$	-1576.76616441

Geometrical parameters (Å), adsorption energy (eV), and the angle H–N–H of T-705 molecules in the gas and aqeous phase. The values in brackets for double loaded T-705 on BC₂₃ nanocage.

	Gas phase			Aqueous	phase	
Structure	E _b	d _{T-705/} cage	∠H-N-H	E _b	d _{T-705/} cage	∠H-N-H
T-705/C ₂₄	-0.085	3.355	121.319 121.253 ^a	-0.055	3.526	120.511 120.303ª
T-705/ C ₂₃ B	-1.434 (-1.10)	1.539 (1.55)	123.179	-0.947	1.519	121.579
T-705/ B ₁₂ N ₁₂	-1.120	1.557	124.989	-1.218	1.527	122.994
T-705/ CB ₁₁ N ₁₂	-1.128	1.555	125.397	-1.208	1.525	123.193

^a Isolated T-705.

3. Results and discussion

3.1. The interaction of Favipiravir with functionalized C_{24} and $B_{12}N_{12}$ nanocages

3.1.1. Structural analysis

Initially, to identify the most favorable adsorption configurations, geometrically optimization of an individual T-705 at C_{24} , BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$ cages were carried out within the gas phase; Figs. 1–3, T-705 was originally located in different orientations around the nanocages surface.

As given in Table 1, it is observed that the adsorption of the drug from O atom (C=O) on the nanocage surface is a more convenient configuration. The optimized geometries of perfect (C_{24} , $B_{12}N_{12}$) and functionalized nanocages (BC23, CB11N12) in the presence of adsorbed T-705 does not affect the planarity of the nanocage. The calculated adsorption energies of the T-705 molecule over C24, BC23, B12N12, and CB₁₁N₁₂ cages are about (-0.085, -1.434, -1.120, and -1.128 eV) with corresponding binding distances of 3.355, 1.539, 1.557 and 1.555 Å, respectively. Also, the double T-705 molecules were loaded on BC_{23} nanocage that is more powerful than undoped nanocages, the calculated adsorption energy -1.10 eV. As seen in Table 2. According to the provided results, the T-705 molecule is physisorbed (-0.085 eV) toward C24. Compared to perfect B12N12 nanocage, the functionalized B12N12 (CB₁₁N₁₂) nanocage has a slightly higher adsorption energy than its counterpart in B12N12. However, for C24 and BC23, the binding energy in the gas phase is greater than the aqueous phase, for $B_{12}N_{12}$, $CB_{11}N_{12}$

Table	3
-------	---

binding energy is enhanced in the solvent phase. Hence, the solubility of the T-705/ $B_{12}N_{12}$ and T-705/ $CB_{11}N_{12}$ increases in the solvent phase with regard to the gas phase, indicating the electrostatic bond in the interaction process.

The average C—C and B—N bond lengths in C₂₄ and B₁₂N₁₂ nanocage are 1.492 and 1.486 Å, respectively, which is consistent with the reported values [39]. The experimental and theoretical geometrical parameters of T-705 molecule are presented in Table 3 [5,6]. Upon the interaction of T-705 molecule, the bond lengths of B—N for the B₁₂N₁₂ and CB₁₁N₁₂ cages clusters were found to be 1.576 and 1.554 Å. As a result, the bond length of nanocages is elongated due to the adsorption of T-705 at the nanocages. Moreover, the bond length N—H and angle H–N–H of the adsorbed T-705 molecule on the BC₂₃, B₁₂N₁₂ and CB₁₁N₁₂ cages, are higher than the isolated T-705 bond length (N–H = 1.007 Å) and ∠H–N–H 121.3° (Table 2).

The interaction between nanocages and pharmaceutical molecules affects the electronic properties, implying that the electronic properties of the BC₂₃, B₁₂N₁₂, and CB₁₁N₁₂ nanocages are very sensitive to the T-705 adsorption in comparison with the pure C₂₄ nanocage. Indeed, to understand the structure and reactivity of T-705, C₂₄, BC₂₃, B₁₂N₁₂, and CB₁₁N₁₂ and their complexes. The global softness (σ), chemical potential (μ), global hardness (η), and the electrophilicity index (ω) are presented in Table 4. According to the provided results, the energy gap and η of B₁₂N₁₂ nanocage equal to 6.84 eV and 3.422 eV respectively which in agreement with [40]. From Table 4, the energy gap and η values pointed that T-705@doped nanocages are more reactive than T705@perfect nanocages. As compared to the perfect C₂₄ and B₁₂N₁₂ nanocage, B doped C₂₄ (BC₂₃) and C doped B₁₂N₁₂ (CB₁₁N₁₂) nanocage, are more reactive as indicated from the energy gap and η values.

Upon the interaction of T-705 over nanocages, the energy gap reduces except T-705@BC₂₃ in the aqueous phase, indicating the improvement in reactivity. As seen in Table 4, the μ and ω value increases with the adsorption of T-705 on doped CB₁₁N₁₂ nanocage, implying the increase in reactivity and electrophilicity of the complex. Consequently, BC₂₃ and CB₁₁N₁₂ are more powerful toward electronrich or attracting nucleophiles moieties. In contrast, the adsorption of the T-705 molecule with the C₂₄ surface has less effect on the electronic properties of C₂₄ due to the lowest binding energy.

The global electrophilicity index [41] measures the stability of energy when an electronic charge is acquired from the surrounding medium. Two descriptors can be used to explain the ability of a chemical species to donate or accept an electron. Eqs. (2) and (3) are used to calculate the electron donor capability (ω^{-}), electron acceptor capability

Bond length (Å)	Experimental [6]	B3LYP	Bond angle (^O)	Experimental [6]	B3LYP	Dihedral angle (^O)	Experimental [6]	B3LYP
C1-C4	1.390	1.394	C2-O14-H15	109.5	106.0	N8-C6-C3-N11	-0.4	-0.02821
C1-N12	1.306	1.331	O14-C2-N12	115.6	117.0	N8-C6-C3-C2	178.9	179.97212
C1-H5	0.930	1.086	O14-C2-C3	123.5	121.7	N11-C3-C2-N12	0.2	0.01715
C2-N12	1.306	1.338	C2-C3-C6	120.7	123.6	N11-C4-C1-N12	0.6	0.02034
C2-O14	1.328	1.338	07-C6-C3	119.7	122.6	C3-C2-N12-C1	0.3	-0.00888
C2-C3	1.397	1.417	C7-C6-N8	123.1	124.0	C3-N11-C4-C1	-0.9	-0.01187
C3-C6	1.481	1.511	C6-N8-H9	120.7	118.0	07-C6-C3-C2	-1.0	-0.00135
C3-N11	1.335	1.341	C6-N8-H10	120.7	120.7	07-C6-C3-N2	179.1	179.99833
C4-F13	1.339	1.340	C6-C3-N11	121.4	117.2	014-C2-N12-C1	179.7	179.98897
C4-N11	1.295	1.312	C3-N11-C4	116.3	118.6	F13- C4-C1-N12	179.2	179.98897
C6-O7	1.244	1.223	N11-C4-F13	116.8	117.6	F13- C4-N11-C3	0.4	0.01907
C6-N8	1.318	1.361	N11-C4-C1	123.3	122.7	014- C2-C3-C6	-1.0	-0.00902
N8-H9	0.860	1.007	F13-C4-C1	119.9	119.7	C2 -N12-C1-C4	-0.9	-0.01187
N8-H10	0.860	1.008	N12-C1-H5	119.4	118.6	C1-C4-N11-C3	-0.7	-0.00632
O14-H15	0.820	0.972	C1-N12-C2	117.0	118.5			
			014-C2-N12	115.6	117.0			
			H9-N8-H10	120.0	121.3			
			C4-C1-H5	119.4	121.6			
			N12-C2-C3	120.8	121.2			
			C3-C6-O7	119.7	122.6			
			N8-C6-C3	117.3	123.6			

	Gas phase	burner (22	n /71.17.17 4			-II and (27o	121 m	19co ann a	The court	Aqueous phas	e e							
Structure	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE (eV)	μ (ev)	η _(ev)	00 (eV)	00 ⁻ (eV)	$\omega^+_{(eV)}$	$\sigma \;^{-1}_{(eV)}$	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE (eV)	μ (eV)	η _(eV)	0 (eV)	0 ⁻ (eV)	$\omega^+_{(eV)}$	$\sigma \; ^{-1}_{(eV)}$
T-705	-6.82	-2.22	4.60	-4.52	2.3	4.441	6.988	2.469	0.217	-6.915	-2.183	4.731	-4.549	2.366	4.373	6.943	2.394	0.211
C24	-5.870	-3.356	2.513	-4.613	1.257	8.446	10.930	6.317	0.398	-5.789	-3.276	2.513	-4.532	1.256	8.174	10.598	6.065	0.398
C23B	-5.82	-3.13	2.683	-4.475	1.345	7.444	9.850	5.375	0.372	-5.738	-3.055	2.683	-4.396	1.342	7.203	9.568	5.172	0.373
$B_{12}N_{12}$	-7.70	-0.86	6.841	-4.282	3.422	2.678	5.246	0.966	0.146	-7.698	-0.805	6.892	-4.252	3.446	2.623	5.179	0.928	0.146
$CB_{11}N_{12}$	-5.49	-0.96	4.533	-3.225	2.265	2.296	4.192	0.966	0.221	-7.742	-5.490	2.252	-6.616	1.126	19.438	22.887	16.271	0.444
T-705/C ₂₄	-5.70	-3.192	2.508	-4.445	1.254	7.881	10.261	5.815	0.399	-5.801	-3.303	2.498	-4.552	1.249	8.294	10.727	6.174	0.400
T-705/C ₂₃ B	-5.079	-2.833	2.247	-3.956	1.124	6.966	15.261	11.176	0.445	-5.738	-3.055	2.683	-4.396	1.342	7.203	9.085	5.128	0.373
$T-705/B_{12}N_{12}$	-6.57	-3.38	3.194	-4.975	1.595	7.759	10.446	5.471	0.313	-6.974	-2.819	4.154	-4.897	2.078	5.772	8.479	3.583	0.241
$T-705/CB_{11}N_{12}$	-4.510	-3.374	1.137	-3.942	0.568	13.668	15.710	11.768	0.879	-4.809	-2.829	1.979	-3.819	0.989	7.368	9.402	5.583	0.505

 (ω^+) values [40], respectively.

$$\omega^{-} = \frac{(3I+A)^2}{16(I-A)}$$
(2)

$$\omega^{+} = \frac{(I+3A)^{2}}{16(I-A)}$$
(3)

The electron-donating capability (ω^{-}) value of T-705 was observed to be greater than its electron-accepting (ω^+) capability as well as the electron-accepting (ω^+) capability values of nanocages are greater than T-705 molecule. The aforementioned results show that the T-705 molecule has good kinetic stability and electron-donating ability.

3.2. Frontier molecular orbital analysis

The eigenvalue of the Frontier molecular orbitals (HOMO and LUMO) and $\Delta E_{HOMO-LUMO}$ energy gap for these complexes play a significant role in controlling many chemical activity, electrical, and optical properties [42,43]. They are responsible for properties of charge transfer, the energies of HOMO and LUMO values indicate the ability of a system to donate and accept an electron. The aforementioned results show that the doping atoms reduce the energy gap of the nanocarriers. As seen in Table 4 the energy gap of the complex is much lower than those of isolated nanocages and T-705. Concerning the Favipiravir molecule, the energy gap of 4.6 eV that is consistent with [5].

3.3. Molecular electrostatic potential (MEP) analysis

Molecular electrostatic potential (MEP) analysis explored the reactivity and the interaction mechanism between T-705 and B₁₂N₁₂, CB₁₁N₁₂, C₂₄, BC₂₃ nanocages. MEP plots are used for predicting nucleophilic and electrophilic attacks and hydrogen bonding interaction [44]. Electrophilic reactivity was associated with the negative (red color) of MEP with the high electron density and the positive regions (blue color) with the low electron density. As demonstrated in these configurations, the positive charges over the T-705 were illustrated by the blue colors in the adsorption process that acts as an electron donor (Fig. 4). Whereas the negative charges over the $B_{12}N_{12}$, $CB_{11}N_{12}$, C_{24} , BC23 nanocages are represented by the red colors that acts as an electron acceptor. Hydrogen atoms of OH group of drug molecules have the lowest electron density with blue color (electropositive atom), consequently it can be considered as the acidic hydrogen atom, the electrons around the B-O bond are depleted and accumulated on O atom with a small charge of about 0.08e transfer from the gas molecule to the surface.

3.4. Thermodynamic parameters and nature of the binding forces

The thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy (ΔG) were evaluated in the gas and aqueous phases for T-705@nanocages at 310.15 K (human body temperature) and 298.15 K (storage room temperature). The values of Δ G, Δ H, and Δ S are collected in Table 6. The adsorption of drug molecules is an exothermic process. As seen in Table 5 that the positive ΔG value of T-705@C24 indicated that the reactions are non-spontaneous that not favorable adsorption at ambient conditions in agreement with [45]. In contrast, the thermodynamic parameters imply that the adsorption of T-705 @ B12N12, T-705 CB11N12, and T-705 BC23 complexes is strongly favorable due to the spontaneously adsorption of drug on the host nanocage surface. Comparison results of thermodynamic parameters demonstrate that the adsorption of T-705 on functionalized (CB₁₁N₁₂, and BC₂₃) nanocage are more favorable than the pristine model ($B_{12}N_{12}$ and C_{24}) surfaces.

To examine the effect of solvent on the interaction of T-705 drug at the pristine surface, C-doped $B_{12}N_{12}$ and B-doped C_{24} nanocages, the

rable 4

K.A. Soliman and S.A. Aal

Fig. 4. ESP of the most stable T-705 @ nanocages.

Thermodynamic parameters (Kcal/mol) of T-705/C₂₄, T-705/C₂₃B, T-705/B₁₂N₁₂ and T-705/CB₁₁N₁₂ complexes in gas and aqueous phases at T = 298.15 and 310.15 K.

Structure	298.15						310.15					
	Gas phase			Aqueous pl	nase		Gas phase			Aqueous pl	hase	
	ΔG	ΔS	ΔH	ΔG	ΔS	ΔH	ΔG	ΔS	ΔH	ΔG	ΔS	ΔH
T-705/C ₂₄	7.472	-27.948	-1.048	8.256	-27.487	0.066	7.612	-26.348	-0.562	8.586	-27.343	0.109
T-705/C ₂₃ B	-19.805	-41.235	-30.666	-19.427	-49.797	-34.266	-8.303	-44.096	-21.972	-18.829	-49.79	-34.264
T-705/B ₁₂ N ₁₂	-10.897	-45.233	-24.467	-13.384	-44.155	-26.542	-10.445	-45.173	-24.448	-12.854	-44.079	-26.519
T-705/CB11N12	-11.237	-45.065	-24.858	-13.552	-43.362	-26.475	-10.890	-43.533	-24.391	-13.033	-43.28	-26.449

changes of ΔG in the water as an important solvent in the biological system are calculated. According to the provided results in Table 5, all the thermodynamic functions of C_{24} and BC_{23} in the gas phase are higher than those in the aqueous phase, whereas for $B_{12}N_{12}$ and $CB_{11}N_{12}$ they are higher in the aqueous phase than gas phase. This can be explained due to the molecular polarities of $B_{12}N_{12}$ and $CB_{11}N_{12}$ in the gas phase are lower than in the aqueous phase, which in turn increased the thermodynamic parameters to some extent. Furthermore, compared to the ΔH values, the calculated ΔG values are less negative, implies an entropy reduction associated with the examined complexes. The negative value of ΔS indicates that the interaction that takes place between T-705 drug and $B_{12}N_{12}$, $CB_{11}N_{12}$, and BC_{23} nanocage $\Delta H < 0$, $\Delta S < 0$ is corresponding to the van der Waals interaction and hydrogen bond formation, this is agreement with [46]. The thermodynamic parameters and adsorption calculations indicate that B₁₂N₁₂ and the functionalized CB₁₁N₁₂, BC₂₃ nanocage can be a good promising candidate for delivery of T-705 drug.

3.5. Non-covalent interactions

The non-covalent interactions (NCI) are visualization tools that play an essential role in maintaining the 3D structure. The NCI used to recognize non-covalent interactions involve intermolecular forces within molecules such as van der Waals, hydrogen bonds, and steric clashes based on electron density and gradient electron density (RDG). RDG is defined as

$$RDG(r) = \frac{1}{2(3\pi^2)^{1/3}} \frac{|\nabla\rho(r)|}{\rho(r)^{4/3}}$$
(4)

To examine the non-covalent interactions between the favipiravir drug and the nanocage, as plotted in Figs. 5 and 6 the scatter graphs between the reduced density gradient (RDG) and the electron density (ρ). From the graph, sign (λ_2) ρ decreases for strong interactions such as H-bond are represented by blue color, sign (λ_2) ρ increases for red colors that represented strong repulsion such as steric effect in cage, while near zero for the van der Waals (vdW) interactions are represented by green color. The vdW interactions are short-range and weak interaction. As seen from Figs. 5 and 6, The non-covalent interactions of T-705 drugs with nanocages are weak interactions which is an advantage for drug release from the nanocage.

3.6. The electron localization function

The electron localization function (ELF) is a method used to measure electron localization in atomic and molecular systems [47]. ELF images

Fig. 5. Non-covalent interaction of complex between the drug molecule T-705 and the perfect nanocages.

of nanocages and drug-nanocages are shown in Fig. 6. The values of ELF are in range from 0.0 to 1.0 that value of 0.0 corresponding to zero localization (blue areas) where the value 0.5 and 1.0 corresponding to the electron gas (green areas) and perfect localization(red areas), respectively [48,49]. The electron density of nanocages were changed after the nanocage-drug formation as ELF seen in Figs. 7 and 8.

Images of ELF provide information about transition occurring from nanocages to drug and from drug to nanocages as seen in Table 6 of NBO analysis of the complexes.

3.7. Natural bond orbital (NBO) analysis

NBO analysis is effective for identifying inter- and intra-molecular bonding [50,51]. On the basis of the NBO analysis, this bonding–antibonding interaction can be described quantitatively using second-order perturbation interaction energy $E^{(2)}$. From the second-order perturbation approach, the stabilization energy $E^{(2)}$ associated with i (donor) - j (acceptor) delocalization is investigated:

$$E^{(2)} = q \frac{F^2(i,j)}{\varepsilon_j - \varepsilon_i} \tag{5}$$

where q_i is the occupancy of donor orbital, ε_i and ε_j are orbital energies (diagonal elements) and F(i,j) is the off-diagonal Fock matrix element. The analysis of NBO for these complexes represented that the binding of T-705 drug to the functionalized C_B-doped B₁₂N₁₂ and B-doped C₂₄ nanocage arises essentially from the induced polarization of the T-705 molecule under the electric field created by the doped nanocages. In the most stable configurations, the charges of about 0.323, 0.299, and 0.303 electrons are transferred from the T-705 molecule as an electron donor

to the BC₂₃, B₁₂N₁₂, and CB₁₁N₁₂ (electron acceptor). Therefore, the strongest stabilization of the interaction occurs between effective acceptors and effective donors.

As given in Table 6, for T-705/C24 the value of E2 for the intramolecular interactions within T-705 was mainly between Π^* (C37-C30) and Π^* (C26-O25) is equal 83.07 kcal mol^{-1} . It is remarkable to mention that the intermolecular interactions between C_{24} and T-705 was lower with E^2 value of 0.99 kcal mol⁻¹. The T-705/ BC₂₃, T-705/B₁₂N₁₂, and T-705/ CB₁₁N₁₂ complexes show strong intermolecular between nanocage and drug molecule with E^2 values of 153.22, 131.59, and 98.19 kcal mol⁻¹. The intermolecular interactions of The T-705/ BC23 was mainly between LP (O25) and σ^* (B3), for T-705/B₁₂N₁₂ was mainly between LP (O25) and σ^* (B6), and for T-705/ CB₁₁N₁₂ was mainly between LP (O25) and σ^* (N17-B6). The stabilization energy of T-705/BC23 is greater than those for T-705/ B12N12 and T-705/CB11N12 complexes due to the stronger hyperconjugative intermolecular interactions. Intramolecular interactions for T-705/BC23, T-705/B12N12, and T-705/ CB11N12 complexes were lower compared with The intermolecular interactions. The intramolecular interaction for T-705/BC23 within BC23 was between II (C5-C6) and LP* (B3) with E^2 value 9.53 kcal mol⁻¹, for T-705/B₁₂N₁₂ within B12N12 was between LP (N20) and σ^* (B6-O25) with E² value 12.07, and for T-705/ CB₁₁N₁₂ within T-705 was between σ (C30-N31) and σ^* (C26-O25) with E² value 0.92 kcal mol⁻¹. In terms of the NBO approach, it can be shown that strong intermolecular interactions have mainly contributed to the increased stability in the T-705/ BC₂₃, T-705/B₁₂N₁₂, and T-705/ CB₁₁N₁₂ systems.

3.8. The projected density of states (PDOS) analysis

The projected density of states (PDOS) of T-705 adsorbed at C_{24} , BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$ in gas and aqueous media as a real living

Fig. 6. Non-covalent interaction of complex between the drug molecule T-705 and the doped nanocages.

environment has been explained to analyze the interactions between the T-705 drug and the C₂₄, BC23, B₁₂N₁₂ and CB₁₁N₁₂ sites. The PDOS of the T-705 at BC₂₃, B₁₂N₁₂, and CB₁₁N₁₂ complexes in different forms was significantly affected owing to the interaction with various nanocages. The PDOS of the studied complex show lowering in the energy gap as compared to isolated nanocages due to the formation of a new peak in the region of the band gap. The band gap of nanocage BC₂₃, B₁₂N₁₂ and CB₁₁N₁₂ are 2.683, 6.841, 4.533 eV, while the band gap of the T-705 adsorbed at BC23, B₁₂N₁₂ and CB₁₁N₁₂ complexes are 2.247, 3.194, 1.137 eV. As observed in Figs. 9 and 10, the calculated PDOS of C-2p, B-2p, O-2p orbitals on B₁₂N₁₂, CB₁₁N₁₂, and BC₂₃ appear stronger hybridization than C₂₄ due to 2p states distribution from -7.3 to -16.8 eV below the Fermi level.

Also, the intensity of carbon and boron states of T-705@BC23 and T-705@CB11N12 above the Fermi level reduces when compared with boron and carbon states without T-705 as shown in Figs. 9 and 10, meaning that O-2p orbitals of T-705 not interact only with C-n orbitals but also with C- π^* orbitals that doped at BN nanocage. The oxygen atom of C=O (T-705) form essentially a planar structure with c-doped and Bdoped atoms (functionalized nanocages) which means sp² orbital hybridization. It is worth noting that the PDOS of C atoms show stronger intensity near the Fermi level, indicating the BC₂₃ is more active than the CB₁₁N₁₂, corresponds to the binding energies listed in Tables 2 and 6. The interaction of T-705 with the BC23, B₁₂N₁₂ and CB₁₁N₁₂, the overlap between the B atom states (BC $_{23}$) and the states of oxygen atom (C=O T-705) spread over from -6.4 eV to -16.8 eV as seen in Figs. 9 and 10. Moreover, a significant overlap of C atom (CB₁₁N₁₂) with oxygen atom of C=O (T-705) between -7.6 eV and -17.3 eV has been observed. Additionally, the PDOS of T-705 at the C_{24} and $CB_{11}N_{12}$ in

water solvent, no band appear in the region of the band gap and this is due to the inclusion of water molecules in the system. The positions of HOMO and LUMO changed due to inclusion of water molecules and this led to decreasing the band gap value of T-705@C₂₄, T-705@BC23 but increasing of T-705@B₁₂N₁₂ and T-705@CB₁₁N₁₂.

3.9. UV-visible analysis

The time-dependent density functional theory (TD-DFT) calculations were investigated with the CAM-B3LYP functional [50] since it gives rise to more reliable results compared to pure B3LYP on the nature of electronic transitions spectra to get further insights into the electronic absorption of T-705-nanocage complexes in the gas and aqueous phases. The theoretical UV-vis parameters of T-705, nanocages, and the T-705-nanocage complexes are summarized in Tables 7 and 8. According to theoretical calculations represented in Table 7, the T-705 shows four strong peaks at 287.37, 208.63, 181.49, and 163.23 nm with energies of 4.314, 5.943, 6.831 and 7.596 eV for the main electron transitions, respectively. The UV spectrum of T-705 has a sharply intense peak in 165.72-289.33 nm in the water phase. The largest contribution to charge transition at 287.4 nm for T-705 was 98% from HOMO to LUMO [51,52]. The pure CB₁₁N₁₂ UV spectrum shows two separated peaks of absorption, located at wavelengths of 216.00 and 261.56 nm. It displayed that the maximum absorption at 518.47, 191.45, 272.61 nm for the BC_{23} , $B_{12}N_{12}$, $CB_{11}N_{12}$ corresponds to 2.391, 6.476, and 4.548 eV that represent the HOMO to LUMO excitation, and in turn is a charge transfer from the T-705 to nanocage. After the interaction of T-705 and nanocage with the B atom of B12N12, B-doped of the BC23 and C-doped of, CB₁₁N₁₂, the main absorption peaks are shifted to higher

Fig. 7. ELF of the perfect nanocages and complexes.

wavelengths (λ_{max}) at 299.75, 571.96 and 329.38 nm and the adsorption intensity decreased to 4.136, 2.168 and 3.764 eV than isolated T-705 and nanocage.

For the aqueous phase the first absorption peak of the complexes (T-705 at C₂₄, BC₂₃, and B₁₂N₁₂), is located at the wavelength of 381.17, 563.71, and 305.22 nm, which is a shift of 4.96-8.25 nm in comparison with the gas phase, however, the shift of the T-705-CB₁₁N₁₂ absorption peak is even more pronounced (22.74) nm. For T-705/BC23 complex, the maximum absorption at 571.96 nm is assigned to the transition from the HOMO-2 to the LUMO (55%) molecular orbital in the visible region. This predicted transition is $n-\pi^*$ nature. The HOMO-3 - LUMO (88%) transition (n - π^* nature) is assigned to the absorption band of T-705- $CB_{11}N_{12}$ located at 329.2 nm in the calculated spectrum (f = 0.0032). The most significant contribution form T-705@B12N12 complex noticed from HOMO-3 - LUMO with 74% of the 0.1837 oscillator strength. Furthermore, it is significant that, when T-705 is adsorbed over the C₂₄ nanocage, the wavelength of adsorption is significantly increased to 386.1 nm, which arised from HOMO-3 to LUMO+1 with 56% of the 0.0592 oscillator strength and π - π * transition. In contrast, the CAM-B3LYP method exhibited slight overestimates on the excitation energies of T-705/BC23, T-705/B $_{12}N_{12}$, and T-705/CB $_{11}N_{12}$ complexes and underestimates at T-705/C $_{24}$ as compared to the UB3LYP method in gas and aqueous phases, Tables 9 and 10.

3.10. IR spectrum

Vibrational frequencies for the perfect (B₁₂N₁₂ and C₂₄) and doped (BC23 and CB11N12) nanocages and their complexes with Favipiravir drug were investigated to evaluate the changes in the bonds stretching vibrational frequency of the Favipiravir before and after the interaction with nanocages. According to Fig. 11, the location of each vibration for doped (BC₂₃ and CB₁₁N₁₂) differ compared to the pure ($B_{12}N_{12}$ and C_{24}) nanocages due to the presence of doped B and C atoms. Literature review revealed that the stretching vibration of B—C is about 1020 cm^{-1} [53], that is in agreement with the calculated values. As expected, the number of vibration peaks for doped (BC23 and CB11N12) nanocages is greater than those for perfect (B₁₂N₁₂ and C₂₄) [53]. The most important associated vibration frequencies were strongly examined: ν (C=O) and ν (N–H) bonds of amid functional group and ν (O–H) bond of the Favipiravir molecule were completely in accordance with the Favipiravir molecule in the literature [5]. When Favipiravir get adsorbed on the surface of perfect (B12N12 and C24) and doped (BC23 and CB11N12) nanocages, the value of vibrational frequencies as well as IR intensity were altered. Fig. 11 shows that not only the new vibrations bond appeared upon adsorption of this molecule on doped (BC₂₃ and CB₁₁N₁₂) nanocages, but also some peaks were shifted. For instance, the ν (C=O) of the drug before adsorption (1802 cm^{-1}) shifted to the low values (1785, 1716, 1724 and 1723 cm⁻¹) depending on the kind of nanocage C₂₄,

Fig. 8. ELF of the doped nanocages and complexes.

 BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$ sites. it is observed that a low-intensity vibrational frequency associated with the interaction of Favipiravir with C_{24} , BC_{23} , $B_{12}N_{12}$ and $CB_{11}N_{12}$ sites complex.

4. Conclusions

The computational calculations were conducted to characterize the mechanism of the interaction between the drug 5-Fluoro-2-hydroxypyrazine-3-carboxamide (T-705) and C24, BC23, B12N12, and CB11N12 based nanocarriers using the density functional theory (DFT) and the timedependent density functional theory (TD-B3LYP and TD-CAM-B3LYP). Adsorption properties of these complexes: geometry optimization, molecular structure, MEP, spectroscopic (UV/Vis, excited State and IR), and the thermodynamic parameters have been examined. Interestingly, the presence of nanocage does not induce any major structural deformation in the T-705, and the incorporation of heteroatoms in perfect C₂₄ and B12N12 (BC23 and CB11N12) nanocages exhibits comparatively higher interacting energies compared to perfect nanocage. Moreover, the energy gap of CB11N12 drastically lowers by 2.31 eV, Indicating increase in reactivity and a decrease in stability. For the T-705/CB₁₁N₁₂ complexes, the excitation from the HOMO to LUMO. The reduction of the energy gap of excited-state showed that the λ_{max} was red-shifted by 79 nm.

analysis explored the charge transfer within different orbitals in the studied complexes. The projected density of states (PDOS) of these complexes without and with solvent has been explained to examine the role of water in the interaction of T-705 with C_{24} , $B_{12}N_{12}$, BC23 and $CB_{11}N_{12}$ nanoparticles. The essence of interaction between T-705 drug and nanocage is explored by NCI which illustrated that weak interaction between drug molecule and the nanocage. The change in electron density after drug adsorption on nanocage is investigated by ELF maps.

The two different temperatures (298.15 to 310.15 K) were examine for the interaction of T-705 molecule with $B_{12}N_{12}$, $CB_{11}N_{12}$, C_{24} , BC_{23} in the gas and aqueous. The derived thermodynamic parameters of T-705@ BC_{23} , T-705@ $B_{12}N_{12}$ and T-705@ $CB_{11}N_{12}$ with negative ΔG implying the spontaneity of the interaction. Consequently, the BC_{23} , $B_{12}N_{12}$, and $CB_{11}N_{12}$ nanocages can be utilized as promising drug delivery vehicle for a potential antiviral T-705. T-705 can be considered a highly promising antiviral drug for COVID-19.

CRediT authorship contribution statement

K. A. Soliman conceived of the idea, writing-original draft of the manuscript and reviewed it. **S. Abdel Aal** writing-original draft of the manuscript and reviewed it.

MEP predict the electrophilic and nucleophilic sites and NBO

Natural bond orbital analysis for The donor–acceptor interactions and second-order perturbation energies ($E^{(2)}$, kcal mol⁻¹) related to charge transfer between T-705 and C₂₄, C₂₃B, B₁₂N₁₂, CB₁₁N₁₂ in complexes.

	Donor (i)	Acceptor (j)	E ⁽²⁾	E(j) - E(i)	F(i, j)
T-705/C ₂₄	П (С26-О25)	П* (СЗ-С5)	0.06	2.05	0.047
	П (С26-О25)	П* (СЗ-С5)	0.06	0.39	0.023
	LP (O25)	П* (С2-С19)	0.99	0.27	0.040
	σ (C30-C26)	σ* (C26-O25)	0.54	1.26	0.019
	σ (C30-N31)	σ* (C26-O25)	1.35	1.46	0.047
	П (С26-О25)	П* (С26-О25)	1.01	0.37	0.041
	LP (O25)	σ* (C26-N27)	2.33	1.15	0.010
	LP (O25)	σ* (C30-C26)	1.91	1.06	0.005
	П* (С37-С30)	П* (С26-О25)	83.07	0.03	0.005
	LP (O25)	σ* (C26-N27)	2.33	1.15	0.015
T-705/C ₂₃ B	σ(C26-O25)	σ* (B3)	20.06	1.17	0.201
	LP (O25)	σ* (B3)	9.23	0.58	0.101
	LP (O25)	σ* (C2-B3)	1.85	0.85	0.051
	LP (O25)	σ* (B3)	153.22	0.67	0.410
	LP (O25)	σ* (C5-B3)	2.10	0.75	0.055
	LP (O25)	σ* (C4-B3)	1.75	0.74	0.050
	σ (C2-B3)	σ*(N27-H28)	1.22	0.89	0.042
	II (C5-C6)	LP* (B3)	9.53	0.35	0.074
	σ (C5-B3)	11*(C17-C8)	1.01	0.59	0.033
	σ (C7-C12)	σ* (C4-B3)	1.42	1.00	0.048
	$\Pi(C/-C4) = (C(-C10))$	II^ (B3)	b.11 1.67	0.34	0.060
	$\sigma (C24 C10)$	6" (C3-B3) **(C3-B2)	1.07	1.00	0.052
	σ (C10 C2)	6"(C2-B3)	1.40	1.07	0.047
	в (С19-С2)	0 (C2-B3)	5.33	0.35	0.042
	П (С19-С2)	LP (B3) ====================================	1.14	0.55	0.037
	σ (C4 B3)	$\sigma^{*}(C7 C4)$	1.14	1.05	0.055
	σ (C4-B3)	o (C18-C1)	3.42	1.00	0.035
T-705/BasNas	σ (B6-O25)	BY*1 (C26)	3.42	1.00	0.075
1,00,01212112	σ (B6-O25)	BY*4 (C26)	0.51	3 13	0.036
	σ (B6-O25)	σ*(B6-N19)	0.63	1.23	0.025
	σ (B6-O25)	σ*(B6-N20)	1.03	1.16	0.031
	σ (B6-O25)	σ*(C30-C26)	5.22	1.19	0.071
	σ (B6-O25)	σ*(C26-O25)	17.38	1.28	0.037
	П (В7-N19)	σ*(B6-O25)	13.26	0.58	0.080
	σ (C30-C26)	σ*(B6-O25)	4.19	1.01	0.059
	σ(C26-O25)	σ*(B6-O25)	1.63	1.32	0.042
	LP (N17)	σ*(B6-O25)	8.25	0.56	0.064
	LP (N20)	σ*(B6-O25)	12.07	0.54	0.078
	LP (O25)	σ* (B6)	131.59	1.70	0.047
T-705/CB11N12	σ (N19-B6)	σ* (C26-O25)	0.57	1.11	0.032
	σ (N20-B6)	σ* (C26-O25)	0.29	1.04	0.022
	σ (N20-B6)	П* (С26-О25)	0.31	0.50	0.018
	σ (C30-N31)	σ* (C26-O25)	0.92	1.36	0.045
	σ (C26-O25)	σ* (O25-B6)	0.80	1.32	0.042
	П (С26-О25)	σ* (N19-B6)	1.14	0.84	0.039
	σ (C26-O25)	σ* (N20-B6)	15.34	0.78	0.051
	LP (O25)	LP* (B6)	18.68	1.74	0.044
	LP (O25)	σ* (N17-B6)	98.19	0.78	0.052
	LP (025)	σ* (N19-B6)	0.93	0.90	0.037
	LP (O25)	σ* (O25-B6)	0.25	0.76	0.018
	σ* (O25-B6)	σ*(C26-O25)	1.66	0.18	0.087

Fig. 9. The projected density of states (PDOS) of (a) C_{24} (b)T-705/ C_{24} in gas phase, (c) T-705/ C_{24} in aqueous phase (d) $C_{23}B$, (e) T-705/ $C_{23}B$ in gas phase and (f) T-705/ $C_{23}B$ in aqueous phase. The Fermi level is set to be 0.

Fig. 10. The projected density of states (PDOS) of (a) $B_{12}N_{12}$ (b) T-705/ $B_{12}N_{12}$ in gas phase, (c) T-705/ $B_{12}N_{12}$ in aqueous phase (d) $CB_{11}N_{12}$, (e) T-705/ $CB_{11}N_{12}$ in gas phase and (f) T-705/ $CB_{11}N_{12}$ in in aqueous phase. The Fermi level is set to be 0.

Selected excitation energies (E, eV), wavelength (λ , nm) oscillator strength (f), and relative orbital contributions calculated for the most stable configuration of T-705, C₂₄, BC₂₃, B₁₂N₁₂ and CB₁₁N₁₂ nanocages in the gas and aqueous phase using B3LYP approximations.

Gas phase					Aqueous pl	hase			
Structure	Е	λ	f	MO contributions	Structure	Е	λ	f	MO contributions
T-705	4.3144	287.37	0.1088	HOMO→LUMO (98%)	T-705	4.2852	289.33	0.1819	HOMO→LUMO (94%)
	5.9429	208.63	0.1460	H-5 → LUMO (11%), H-1 → L + 1 (79%), H-2 → L + 1 (7%)		5.8746	211.05	0.1591	HOMO \rightarrow L + 1 (88%), H-5 \rightarrow LUMO (9%)
	6.8316	181.49	0.1803	H-5 → LUMO (78%), H-9 → LUMO (4%), H-6 → LUMO (4%), H-1 → L + 1 (8%),		6.7875	182.67	0.2341	H-5 → LUMO (82%), H-6 → LUMO (3%), HOMO→L + 1 (8%)
	7.5955	163.23	0.1420	H-5 \rightarrow L + 1 (19%), H-1 \rightarrow L + 2 (73%)		7.4814	165.72	0.1557	H-5 → L + 1 (16%), HOMO→L + 2 (78%)
C ₂₄	3.7436	331.19	0.0182	H-4 → L + 2 (17%), H-3 → LUMO (26%), H-2 → L + 6 (11%)	C ₂₄	3.7362	331.84	0.0228	H-5 → LUMO (12%), H-4 → L + 1 (15%), H-4 → L + 2 (14%), H-3 → LUMO (10%)
C ₂₃ B	2.3913	518.47	0.0104	$\begin{array}{l} \text{H-2(B)} \rightarrow \text{LUMO(B)} \ (78\%), \ \text{H-3(A)} \rightarrow \text{L}+2 \\ \text{(A)} \ (4\%), \ \text{HOMO(A)} \rightarrow \text{L}+2 \\ \text{(A)} \ (3\%) \end{array}$	C ₂₃ B	2.3772	521.54	0.0141	$H-2(B) \rightarrow LUMO(B)$ (78%), $H-3(A) \rightarrow LUMO(A)$ (2%), $H-3(A) \rightarrow L + 2(A)$ (3%)
$B_{12}N_{12}$	6.4762	191.45	0.0336	H-1 → L + 3 (36%), HOMO→L + 4 (16%), H- 4 → L + 2 (9%), H-3 → LUMO (3%), H-3 → L + 2 (6%)	$B_{12}N_{12}$	6.5100	190.45	0.0470	H-1 → L + 3 (36%), HOMO→L + 4 (22%), H-4 → LUMO (5%), H-3 → L + 2 (9%),
$CB_{11}N_{12}$	5.7400	216.00	0.0131	H-4(B) → LUMO(B) (74%), H-2(A) → L + 2 (A) (2%), HOMO(A) → L + 11(A) (9%), H-1 (B) → LUMO(B) (3%)	$CB_{11}N_{12}$	5.7120	217.06	0.0230	$H-4(B) \rightarrow LUMO(B)$ (85%), $H-1(B) \rightarrow LUMO(B)$ (3%), $H-1(B) \rightarrow L + 3(B)$ (3%)
	4.5481	272.61	0.0116	$\begin{split} &\text{HOMO(A)} \rightarrow \text{L} + 5(\text{A}) \ (84\%), \ \text{HOMO(A)} \rightarrow \text{L} \\ &+ 2(\text{A}) \ (8\%), \ \text{HOMO(A)} \rightarrow \text{L} + 9(\text{A}) \ (3\%) \end{split}$		4.6087	269.02	0.0162	$\begin{split} &\text{HOMO(A)} \to \text{L} + 5(\text{A}) \; (82\%), \text{HOMO} \\ &\text{(A)} \to \text{L} + 2(\text{A}) \; (8\%), \text{HOMO(A)} \to \text{L} + \\ &9(\text{A}) \; (3\%). \end{split}$

Table 8

Selected excitation energies (E, eV), wavelength (λ , nm) oscillator strength (f), and relative orbital contributions calculated for the most stable configuration of T-705/C₂₄, T-705/C₂₃B, T-705/C₂₃B, T-705/B₁₂N₁₂ and T-705/CB₁₁N₁₂ complexes in the gas and aqueous phase using B3LYP approximations.

Gas phase					Aqueous pha	ase			
Structure	Е	λ	f	MO contributions	Structure	Е	λ	f	MO contributions
T-705/C ₂₄	3.2109	386.13	0.0592	H-3 → LUMO (15%), H-3 → L + 1 (56%), H-3 → L + 2 (27%)	T-705/C ₂₄	3.2527	381.17	0.0072	$ H-4 \rightarrow LUMO (48\%), H-4 \rightarrow L + 1 \\ (13\%), H-4 \rightarrow L + 2 (29\%), H-8 \rightarrow L + 1 \\ (3\%), H-3 \rightarrow LUMO (3\%) $
T-705/ C ₂₃ B	2.1677	571.96	0.0014	$\begin{split} &\text{HOMO(A)} \rightarrow \text{L} + 4(\text{A}) \; (33\%), \text{H-2(B)} \rightarrow \\ &\text{LUMO(B)} \; (55\%), \text{H-2(B)} \rightarrow \text{L} + 1(\text{B}) \; (3\%), \\ &\text{HOMO(B)} \rightarrow \text{L} + 5(\text{B}) \; (3\%) \end{split}$	T-705/ C ₂₃ B	2.1994	563.71	0.0015	$H-2(A) \rightarrow LUMO(A)$ (47%), $H-2(A) \rightarrow L + 1(A)$ (18%), $H-1(B) \rightarrow L + 4(B)$ (12%)
T-705/ B ₁₂ N ₁₂	4.1363	299.75	0.1837	H-3 → LUMO (74%), H-6 → LUMO (18%), H-8 → LUMO (5%)	T-705/ B ₁₂ N ₁₂	4.0621	305.22	0.2867	$H-2 \rightarrow LUMO (97\%)$
T-705/ CB ₁₁ N ₁₂	3.7641	329.38	0.0032	H-3(A) → LUMO(A) (88%), H-12(A) → LUMO(A) (2%), H-12(B) → LUMO(B) (2%)	T-705/ CB ₁₁ N ₁₂	4.0432	306.65	0.2600	$H-2(A) \rightarrow LUMO(A) (50\%), H-3(B) \rightarrow LUMO(B) (44\%), H-4(A) \rightarrow LUMO(A) (2%)$

Selected excitation energies (E, eV), wavelength (λ , nm) oscillator strength (f), and relative orbital contributions calculated for the most stable configuration of T-705, C₂₄, BC₂₃, B₁₂N₁₂ and CB₁₁N₁₂ nanocages in the gas and aqueous phase using CAM-B3LYP approximations.

Gas phase					Aqueous p	hase			
Structure	Е	λ	f	MO contributions	Structure	Е	λ	f	MO contributions
T-705	4.1240	300.64	0.0017	H-1(A) → LUMO(A) (44%), H-1(B) → LUMO(B) (44%)		4.3214	286.91	0.0028	H-1(A) → LUMO(A) (43%), H-1(B) → LUMO(B) (43%)
	4.5547	272.21	0.1749	H-2(A) → LUMO(A) (37%), H-2(B) → LUMO(B) (37%)		4.4953	275.81	0.2202	HOMO(A) \rightarrow LUMO(A) (48%), HOMO(B) \rightarrow LUMO(B) (48%)
	5.4011	229.56	0.0212	H-2(A) → LUMO(A) (49%), H-2(B) → LUMO(B) (49%)		5.5953	221.59	0.0340	$H-2(A) \rightarrow LUMO(A)$ (49%), $H-2(B) \rightarrow LUMO(B)$ (49%)
	6.1749	200.79	0.1395	HOMO(A) \rightarrow L + 1(A) (43%), HOMO(B) \rightarrow L + 1(B) (43%)		6.1103	202.91	0.1690	HOMO(A) \rightarrow L + 1(A) (43%), HOMO(B) \rightarrow L + 1(B) (43%)
C ₂₄	4.2472	291.92	0.0462	$H-2 \rightarrow L + 4 (10\%), HOMO \rightarrow L + 3 (32\%),$ HOMO $\rightarrow L + 4 (13\%)$		4.2037	292.562	0.0589	H-2 → L + 4 (11%), HOMO→L + 3 (34%), HOMO→L + 4 (15%)
C ₂₃ B	2.9533	419.82	0.0070	H-1(A) → L + 1(A) (21%), H-2(B) → LUMO(B) (37%)		2.9468	420.74	0.0104	H-1(A) → L + 1(A) (17%), H-2(B) → LUMO(B) (41%)
$B_{12}N_{12}$	6.3118	193.50	0.0231	H-1 → L + 3 (34%), HOMO→L + 4 (17%), H-4 → L + 2 (11%),	$B_{12}N_{12}$	6.7057	192.43	0.0358	H-1 → L + 3 (34%), HOMO→L + 4 (21%), H-4 → LUMO (9%)
$CB_{11}N_{12} \\$	5.3745	230.69	0.0146	H-4(B) → LUMO(B) (10%), H-1(B) → LUMO(B) (78%)		5.3533	231.60	0.0184	H-4(B) → LUMO(B) (10%), H-1(B) → LUMO(B) (74%)
	4.4042	281.52	0.0007	HOMO(A) \rightarrow LUMO(A) (84%), HOMO (A) \rightarrow L + 6(A) (11%)		4.4665	277.59	0.0009	HOMO(A) \rightarrow LUMO(A) (84%), HOMO (A) \rightarrow L + 6(A) (11%)

Table 10

Selected excitation energies (E, eV), wavelength (λ , nm) oscillator strength (f), and relative orbital contributions calculated for the most stable configuration of T-705/C₂₄, T-705/C₂₃B, T-705/B₁₂N₁₂ and T-705/CB₁₁N₁₂ complexes in the gas and aqueous phase using CAM-B3LYP approximations.

Gas phase					Aqueous pha	ise			
Structure	Е	λ	f	MO contributions	Structure	E	λ	f	MO contributions
T-705/C ₂₄	4.2502	291.71	0.0536	H-2 → L + 4 (19%), H-2 → L + 5 (26%), HOMO→L + 5 (20%)	T-705/C ₂₄	3.0527	387.20	0.0011	H-3 → LUMO (36%), H-2 → L + 1 (13%), H-3 → L + 2 (29%)
T-705/ C ₂₃ B	2.4801	499.91	0.0013	$HOMO(A) \rightarrow LUMO(A) (79\%)$	T-705/ C ₂₃ B	2.5204	491.92	0.0037	$HOMO(A) \to L + 2(A) (82\%)$
T-705/ B ₁₂ N ₁₂	4.3493	285.06	0.2057	$H-6(A) \rightarrow LUMO(A)$ (21%), HOMO(A) → LUMO(A) (18%), $H-6(B) \rightarrow LUMO(B)$ (21%), HOMO(B) → LUMO(B) (18%)	T-705/ B ₁₂ N ₁₂	4.3215	289.06	0.3890	H-5(A) → LUMO(A) (22%), HOMO(A) → LUMO(A) (19%), H-6(B) → LUMO(B) (23%),
T-705/ CB ₁₁ N ₁₂	4.3718	283.60	0.2738	$H-6(A) \rightarrow LUMO(A)$ (39%), $H-6(B) \rightarrow LUMO(B)$ (16%), $H-5(B) \rightarrow LUMO(B)$ (26%)	T-705/ CB ₁₁ N ₁₂	4.2919	288.88	0.3420	H-2(A) → LUMO(A) (27%), $H-1(A) →LUMO(A) (21%), H-2(B) → LUMO(B)(21%), H-1(B) → LUMO(B) (25%)$

3000

-CB11N12

- T-705/CB11N12

3000

3500

4000

3500

4000

Fig. 11. IR spectra of T-705, nanocages and their complexes.

Declaration of competing interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.diamond.2021.108458.

References

- [1] A.E. Allam, H.K. Assaf, H.A. Hassan, K. Shimizuc, A.M.M. Elshaier, An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19, RSC Adv. 10 (2020) 29983-29998.
- Y. Furuta, K. Takahashi, K. Shiraki, K. Sakamoto, D.F. Smee, D.L. Barnard, B. [2] B. Gowen, J.G. Julander, J.D. Korrey, T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections, Antiviral Res. 82 (2009) 95-102.
- [3] Y. Furuta, B. Gowen, K. Takahashi, K. Shiraki, D.F. Smee, D.L. Barnard, Favipiravir (T-705), a novel viral RNA polymerase inhibitor, Antiviral Res. 100 (2013) 446-454.

K.A. Soliman and S.A. Aal

- [4] L. Caly, J.D. Druce, M.G. Catton, D.A. Jans, K.M. Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir. Res. 178 (2020) 104787.
- [5] L. Rhyman, M. Tursun, H.H. Abdallah, Y.S. Choong, C. Parlak, P. Kharkar, P. Ramasami, Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus, Phys. Sci. Rev. 20170198 (2018).
- [6] F.Y. Shi, Z.T. Li, L.J. Kong, Y.C. Xie, T. Zhang, W.F. Xu, Synthesis and crystal structure of 6-fluoro-3-hydroxypyrazine-2-carboxamide, Drug Discov. Ther. 8 (2014) 117–120.
- [7] D. Buttler, Ebola drug trials set to begin amid crisis, Nature. 513 (2014) 156.
 [8] P.M. Tiwari, K. Vig, V.A. Dennis, R. Shree, Functionalized gold nanoparticles and their biomedical applications, Nanomaterials. 1 (2011) 31–63.
- [9] Y. Wang, Z. Xu, Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing, RSC Adv. 6 (2016) 314–322.
- [10] K. Seino, W.G. Schmidt, Reflectance anisotropy of uracil covered Si(0 0 1) surfaces: Ab initio predictions, Surf. Sci. 548 (2004) 183–186.
- [11] E. Duverger, T. Gharbi, E. Delabrousse, F. Picaud, Quantum study of boron nitride nanotubes functionalized with anticancer molecules, Phys. Chem. Chem. Phys. 16 (2014) 18425–18432.
- [12] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater. 9 (2010) 430–435.
- [13] B. Guo, L. Fang, B. Zhan, J.R. Gong, Graphene doping: a review, Insci. J. 1 (2011) 80–89.
- [14] A. Hosseinian, E. Vessally, S. Yahyaei, L. Edjlali, A. Bekhradnia, A density functional theory study on the interaction between 5-fluorouracil drug and C24 fullerene, J. Clust. Sci. 28 (2017) 2681–2692.
- [15] M.K. Hazrati, N.L. Hadipour, Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: a first-principles study, Phys. Lett. A 380 (2016) 937–941.
- [16] W.L. Wang, Y. Bando, C.Y. Zhi, W.F. Fu, E.G. Wang, D. Golberg, Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes, J. Am. Chem. Soc. 130 (2008) 8144–8145.
- [17] G. Ciofani, V. Raffa, A. Mencissi, P. Dario, Preparation of boron nitride nanotubes aqueous dispersions for biological applications, J. Nanosci. Nanotechnol. 8 (2008) 6223–6231.
- [18] C.Y. Zhi, J.L. Zhang, Y. Bando, T. Terao, C.C. Tang, H. Kuwahara, D. Golberg, New crystalline phase induced by boron nitride nanotubes in polyaniline, J. Phys. Chem. C 112 (2008) 17592–17595.
- [19] G. Ciofani, V. Raffa, A.J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Mencissi, A. Cuschieri, Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery, Curr. Nanosci. 5 (2009) 33–38.
- [20] A. Soltani, A. Sousaraei, M. Bezi Javan, M. Eskandaric, H. Balakheyli, Electronic and optical properties of 5-AVA-functionalized BN nanoclusters: a DFT study, New J. Chem. 40 (2016) 7018–7026.
- [21] D.V. Shtansky, K.L. Firestein, D.V. Golberg, Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids, Nanoscale. 10 (2018) 17477–17493.
- [22] B.T. Tomic, C.S. Abraham, S. Pelemis, S.J. Armakovic, S. Armakovic, Fullerene C24 as a potential carrier of ephedrine drug – a computational study of interactions and influence of temperature, Phys. Chem. Chem. Phys. 21 (2019) 23329–23337.
- [23] A. Goyal, D. Aggarwal, S. Kapoor, N. Goel, S. Singhal, J. Shukl, A comprehensive experimental and theoretical study on BN nanosheets for the adsorption of pharmaceutical drugs, New J. Chem. 44 (2020) 3985–3997.
- [24] S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, Nanoscale. 10 (2018) 12871–12934.
- [25] C. Parlak, Ö. Alver, M. Şenyel, Computational study on favipiravir adsorption onto undoped- and silicon-decorated C60 fullerenes, J. Theor. Comput. Chem. 16 (2017) 1750011.
- [26] A.S. Rad, M. Ardjmand, M.R. Esfahani, B. Khodashenas, DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV-vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 247 (2021) 119082.
- [27] Y. Takano, K.N. Houk, Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules, J. Chem. Theory Comput. 1 (2005) 70–77.
- [28] A. Soltani, M.T. Baei, A.S. Ghasemi, E.T. Lemeski, K.H. Amirabadi, Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes, Superlattice. Microst. 75 (2014) 564–575.
- O.A. El-Gammal, T.H. Rakha, H.M. Metwally, G.M. Abu El-Reash, Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn (II), Cd(II) and Hg(II) complexes, Spectrochim. Acta A. 127 (2014) 1144–156.
- [31] A. Tariq, S. Nazir, A.W. Arshad, F. Nawaz, K. Ayub, J. Iqbal, DFT study of the therapeutic potential of phosphorene as a new drug-delivery system to treat cancer, RSC Adv. 9 (2019) 24325–24332.

- [32] M. Sheikhi, S. Shahab, M. Khaleghian, R. Kumar, Interaction between new anticancer drug Syndros and CNT(6,6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigation, Appl Surf Sci 434 (2018) 504–513.
- [33] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393 (2004) 51–57.
- [34] K.B. Petrushenko, I.K. Petrushenko, O.V. Petrova, L.N. Sobenina, I.A. Ushakov, B. A. Trofimov, Environment-responsive 8-CF3-BODIPY dyes with aniline groups at the 3 position: synthesis, optical properties and RI-CC2 calculations, Asian J. Org Chem. 6 (2017) 852–861.
- [35] M.J.G. Peach, P. Benfield, T. Helgaker, D.J. Tozer, Excitation energies in density functional theory: an evaluation and a diagnostic test, J. Chem. Phys. 128 (2008), 044118.
- [36] I.K. Petrushenko, K.B. Petrushenko, Effect of methyl substituents on the electronic transitions in simplemeso-aniline-BODIPY based dyes: RI-CC2 and TD-CAM-B3LYP computational investigation, Spectrochim. Acta A Mol. Biomol. Spectrosc. 190 (2018) 239–245.
- [37] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuij, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
- [38] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, cclib: A library for packageindependent computational chemistry algorithms, J. Comput. Chem. 29 (2008) 839–845.
- [39] M. Shahid, M. Salim, M. Khalid, M.N. Tahir, M.U. Khan, A.A.C. Braga, Synthetic, XRD, non-covalent interactions and solvent dependent nonlinear optical studies of sulfadiazine-Ortho-vanillin Schiff base: (E)-4-((2-hydroxy-3-methoxy- benzylidene) amino)-N-(pyrimidin-2-yl)benzene-sulfonamide, J. Mol. Struct. 1161 (2018) 66–75.
- [40] N. Saikia, R.C. Deka, Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes, New J.Chem. 38 (2014) 1116–1128.
- [41] A. Ashraf, M. Khalid, M.N. Tahir, M. Yaqub, M.M. Naseer, G.M. Kamal, B. Saifullah, A.A.C. Braga, Z. Shafiq, W. Rauf, A facile and concise route to (hydroxybenzoyl) pyrido[2,3-d]pyrimidine heterocycle derivatives: synthesis, and structural, spectral and computational exploration, RSC Adv. 9 (2019) 34567–34580.
- [42] A. Soltani, M.B. Javanc, Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study, RSC Adv. 5 (2015) 90621–90631.
- [43] S. Moro, M. Bacilieri, C. Ferrari, G. Spalutto, Autocorrelation of molecular electrostatic potential surface properties combined with partial least squares analysis as alternative attractive tool to generate ligand-based 3D-QSARs, Curr. Drug Discov. Technol. 2 (2005) 13–21.
- [44] E.M.D. Lestard, D.M. Gil, O. Estévez-Hernández, M.F. Erben, J. Duque, Structural, vibrational and electronic characterization of 1-benzyl-3-furoyl-1-phenylthiourea: an experimental and theoretical study, New J. Chem. 39 (2015) 7459–7471.
- [45] E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials, Adv. Quantum Chem. 11 (1979) 115–193.
- [46] B. Kumar Paul, D. Ray, N. Guchhait, Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: results and challenges, Phys. Chem. Chem. Phys. 15 (2013) 1275–1287.
- [47] A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92 (1990) 5397.
- [48] A. Soltani, M.B. Javan, M.S. Hoseininezhad-Namin, N. Tajabor, E.T. Lemeski, F. Pourarian, Interaction of hydrogen with Pd- and co-decorated C24 fullerenes: density functional theory study, Synth. Met. 234 (2017) 1–8.
- [49] J. Galy, G. Couégnat, E. Vila, S.F. Matar, Stereochemistry of nitrogen E lone pair in NH3E, NOFE, N2O3E2, AgNO2E, and NCl3E, C R Chim. 20 (4) (2017) 446–459.
- [50] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393 (2004) 51–57.
- [51] E.D. Glendening, J. Badenhoop, F. Weinhold, Natural resonance theory: III. Chemical applications, J. Comput. Chem. 19 (1998) 628–646.
- [52] J. Foster, F. Weinhold, Natural hybrid orbitals, J. Am. Chem. Soc. 102 (1980) 7211–7218.
- [53] J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, F. Hawthorne, J.D. Robertson, L. Firlej, B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, Infrared study of boron–carbon chemical bonds in boron-doped activated carbon, Carbon 54 (2013) 208–214.