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Abstract: Recent advances in artificial intelligence (AI) have certainly had a significant impact on
the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders,
irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical
illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and
techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate
the outcomes of urological diseases. Furthermore, we explain the advantages that come from using
AI over any existing traditional methods.

Keywords: urology; artificial intelligence; machine learning; urinary incontinence; kidney stone dis-
ease; fertility; reproductive urology; renal cell carcinoma; hydronephrosis; urinary reflux; urolithiasis;
endourology; pediatric urology; prostate cancer; bladder cancer

1. Introduction

Advances made in digital technologies, electronic health records, and computing
power are producing vast amounts of data in the medical field [1]. With expanded channels,
quantity, and quality of data, physicians encounter new obstacles while performing data
analysis to establish a reliable diagnosis, planning individualized care, and forecasting the
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future. Thus, physicians are now relying on artificial intelligence (AI) to build automated
models to enhance patient treatment across all aspects of healthcare [2].

In the healthcare industry, AI refers to all the applications, systems, algorithms, and
devices that help physicians in providing healthcare based on computer systems and big
data. Medical data are ideally used for advising doctors and patients during the decision-
making process and identifying the most suitable treatment. The role of AI here is to create
new methods for analyzing labor-intensive data, which involves the usage of disciplines of
AI. Along with providing improved patient care, it will also enhance efficiency and research
and development (R&D), in addition to highlighting disease patterns and correlations
earlier than what would be possible via traditional methods. In recent times, AI has seen
an explosion in investment and application in the field of medicine, as there is cumulative
evidence that it may enhance the delivery of healthcare [3]. This article discusses how AI
algorithms and techniques are used in the medical field to detect, treat, and estimate the
outcomes of urological diseases and further explains the advantages of using AI over any
existing methods.

2. Materials and Methods
2.1. Search Strategy and Article Selection

A non-systematic review of the literature associated with urology and artificial intel-
ligence that was published between the years 2010 and 2020 was conducted in October
2020 using PubMed and MEDLINE, along with Scopus and Google Scholar. The search
strategy involved using a search string based on a set of keywords that included the follow-
ing: urology, artificial intelligence, machine learning, urinary incontinence, kidney stone
disease, fertility, reproductive urology, renal cell carcinoma, hydronephrosis, urinary reflux,
urolithiasis, endourology, pediatric urology, prostate cancer, and bladder cancer.

Inclusion criteria:

1. Articles related to artificial intelligence in urology;
2. Original articles of full-text length covering the diagnoses, treatment plans, and results

of urologic conditions.

Exclusion criteria:

1. Abstracts, review articles, and chapters from books;
2. Animal, laboratory, or cadaveric studies.

The review of the literature was performed in compliance with the guidelines for
inclusion and exclusion criteria. The assessment of titles and abstracts followed by the
screening and assessment of the full article text was done according to the inclusion
criteria for the selected articles. Further, a manual review of the references list for the
chosen articles was conducted to screen for any supplementary work of interest. After a
discussion, our authors successfully resolved the disagreements regarding the eligibility
for a consensus decision.

2.2. What Is Artificial Intelligence?

AI emphasizes constructing an autonomous computer that will effectively execute
activities done by humans, using sophisticated non-linear mathematical simulation systems
with simple building blocks that replicate human neurons. It begins by searching for ways
in which a human mind perceives, understands, and executes cognitive functions. The
human mind is capable of intelligence, creativity, language recognition, memory, pattern
identification, vision, reasoning, and the creation of ties among facts. AI aims to replicate
the aforementioned skills to perform wide-ranging functions, from small, manageable tasks
like object recognition to complex tasks like forecasting. AI strategies include learning from
known data without bias, dependent only on statistical models, and estimating unknown
data about the future, thereby making the task of decision-making smarter and easier [2].

The ultimate goal of AI is to build a machine that can perceive its environment
and perform tasks to maximize its probability of success. The process of achieving this
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goal is quite complex and involves various AI subfields such as machine learning (ML),
artificial neural networks (ANNs) and deep learning (DL), natural language processing
(NLP), computer vision, predictive analytics, evolutionary and genetic computing, expert
systems, vision recognition, and speech processing, of which most are used in medicine
and healthcare today. Thus, some of them need defining for further discussion on the
clinical impact of artificial intelligence on various sub-specialties of urology. Figure 1
shows the relationship between artificial intelligence (AI), machine learning (ML), and
deep learning (DL).

Figure 1. The relationship between artificial intelligence (AI), machine learning (ML), and deep learning (DL).

Machine learning is the process of teaching a computer to make accurate predictions
with the help of algorithms that are trained and made to learn from past experiences in
a model that maps features to the corresponding outcome variables. The primary aim
of ML is to allow the computer to automatically learn when data are fed. An artificial
neural network is the basis of deep learning and a subfield of machine learning. ANNs are
defined as highly structured information processing units that, along with their synaptic
strengths, called weights, mimic the computational abilities of the human brain and nervous
system. The neurons are arranged in a series of layers where the weights are modified
gradually during the learning process to yield minimum to no error in the input–output
mapping. A neural network that has a significant number of layers is called a deep learning
network. Being a subfield that holds paramount importance in AI, neural networks have
naturally found promising applications in medicine and healthcare, including cardiology,
electromyography, electroencephalography, therapeutic drug monitoring for patient care,
and sleep apnea.

Decision trees are one of the predictive modeling approaches used in ML, constructed
in an algorithmic approach to identifying ways of splitting the dataset based on different
conditions. A simple way to describe a decision tree’s working would be to assume a
decision node with two or more possible choices. A random forest is an algorithm built
with a large number of decision trees that operate as an ensemble. These algorithms are
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widely adopted in the healthcare industry to determine the patient’s most favorable choice,
such as telehealth services.

Another AI subfield that plays a critical role in healthcare is natural language process-
ing, which is concerned with the interaction between the computer and human languages.
The biggest challenge in clinical research is to deal with data that are lacking in volume or
detail, which is a result of data previously being recorded in narrative clinical documenta-
tion. Some of AI’s most promising uses in healthcare include predictive analytics, precision
medicine, diagnostic imaging of diseases, and clinical decision support.

2.3. Applications of AI in Urology

Urology is a field that rapidly expanded through the history of medicine and is
continually growing by adopting newer technology to achieve better patient outcomes [4].
Urology being a healthcare segment that deals mainly with male and female urinary tracts
and male reproductive organs, the underlying diseases and conditions in these specific
areas could become severe if not addressed earlier. Figure 2 shows the role of artificial
intelligence in urology.

Figure 2. Role of artificial intelligence in urology.

AI has been widely adopted in the field for early diagnosis, for providing an effective
treatment plan, and in surgical specialties. AI is playing an important role and helping
physicians in decision making for patients with urological disorders (Figure 3). In the
past 5 years, there has been an emergence of studies affirming the safe and effective
augmented-reality (AR) experiences in urology. Modern urologists are using a robotic
arm with seven degrees of freedom to remove the kidney remotely, using augmented
reality with image overlay [5]. AR is significantly improving the integration of information
into the surgical workflow, making minimally invasive procedures less complicated for
surgeons. It is bringing innovative approaches in medical education as well as surgical
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interventions, aiding richer and more interactive experiences. Similarly, there are other
technologies combined with AI that impact the field to a great extent. Within urology, there
are several sub-specialties, among which urologic oncology, reproductive urology, renal
transplant, and pediatric urology are some specialties that have leveraged AI to provide
better patient care through developments in diagnostics, treatment planning, and surgical
skill assessment [5]. The application of AI in these subfields is discussed below.

Figure 3. Artificial intelligence in decision making in patients with urological disorders.

3. Diagnosis
3.1. Urologic Oncology

It is a sub-specialty of urology that is associated with the diagnosis and treatment of
cancers in the urinary tract of the human body and male reproductive organs. Urological
cancers are relatively common, with prostate, bladder, and kidney cancers among the 10
most prevalent cancers diagnosed in the United States.

3.2. Prostate Cancer

The data that are widely used for developing AI algorithms are clinicopathological
data of patients abstracted from their electronic medical records (EMRs) because of their
high evaluability. With clinical data from 944 Korean patients for predicting organ-confined
prostate cancer and non-organ-confined disease, Kim et al. [6] developed a set of ML
applications (Table 1). In comparison, Partin tables achieved an accuracy of 66% when
using the same dataset. This study highlighted that one can achieve better forecasting
results using ML algorithms than using standard statistical models.

Researchers have suggested methods of using AI to simplify the diagnosis and clas-
sification of prostate cancer, which has become possible due to the advances in medical
imaging and the evidence surrounding it. Using various radiomic features from multi-
parametric MRI (Magnetic resonance imaging), AI applications have been equipped for
detecting prostate cancer [7,8] or for estimating multiparametric MRI Gleason scores [9,10]
(Table 1). What also makes AI better than traditional diagnostic standards is its ability to get
trained by and learn from complex, multi-variable, big data, thereby improving over time.
The ML models displayed an average performance increase of 33–80% for MRI-negative
biopsy-positive and 30–60% for MRI-positive biopsy-negative patients when developed
using Prostate Imaging Reporting and Data Systems. Fehr et al. [10] observed that ML
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algorithms had an advantage over unimodal classifiers as they performed more effectively
in both identifying the disease and forecasting the correct Gleason score.

Table 1. Studies using AI to diagnose prostate cancer.

Study Application of
the Study Type of Study Size of the

Sample Used
Features Used
for Training Algorithms Used Accuracy, % Sensitivity, % Specificity, % AUC

Kim et al., 2017 [6]
Forecast of

extracapsular
expansion

Retrospective

944 patients
(621 and 323

organ-confined
disease and non-
organ-confined

disease,
respectively)

PSA, Gleason score,
clinical T stage, and

positive prostate
biopsy core count

NN 73.4 - - -

SVM 75.0 - - -

NB 74.8 - - -

BNs 74.4 - - -

CART 70.7 - - -

RF 68.8 - - -

Algohary et al.,
2018 [7]

Diagnosis based
on MRI Retrospective 56 patients

Radiomic MRI
features chosen by

unsupervised
hierarchical clustering

QDA 72.0 75.0 60.0 -

RF 32.0 42.0 30.0 -

SVM 52.0 60.0 40.0 -

Ginsburg et al.,
2017 [8]

Diagnosis based on
MRI Retrospective 80 patients Radiomic MRI

characteristics LR - - - 0.61–0.71

Fehr et al.,
2015 [10]

Forecast of Gleason
score using MRI Retrospective

356 regions of
interest from
147 patients

Radiomic MRI
characteristics

t-Test SVM
(Gleason 6 vs. ≥7) 73–83 - - 0.83–0.90

AdaBoost
(Gleason 6 vs. ≥7) 64–73 - - 0.60–0.74

RFE-SVM
(Gleason 6 vs. ≥7) 83–93 - - 0.91–0.99

t-Test SVM
(Gleason 3 + 4

vs. 4 + 3)
66–81 - - 0.94–0.99

AdaBoost
(Gleason 3 + 4

vs. 4 + 3)
73–79 - - 0.75–0.80

RFE–SVM
(Gleason 3 + 4

vs. 4 + 3)
83–92 0.77–0.81

Kwak et al.,
2017 [11]

Diagnosis based on
images of

tissue samples
Retrospective 653 tissue

samples

HE-stained digitized
images of the

prostate specimen

Multiview
boosting classifier

(differentiate
benign and

malignant tissue)

- - - 0.98

Multiview
boosting classifier

(differentiate
epithelium

and stroma)

- - - 0.97–0.99

Kwak et al.,
2017 [12]

Diagnosis based on
images of tissue

samples
Retrospective 827 tissue

samples

HE-stained digitized
images of the prostate

specimen
CNN - - - 0.97

Nguyen et al.,
2017 [13]

Estimation of Gleason
score based on tissue

samples from the
prostate

Retrospective
368 prostate

tissue samples
(1 per patient)

HE-stained digitized
images of the prostate

specimen

RF (benign vs.
malignant) - - - 0.97

0.82

LR (Gleason
scoring 3 vs. 4) - - - 0.82

Area Under the ROC Curve (AUC); Neural Network (NN); Support Vector Machine (SVM); Prostate Specific Antigen (PSA); Naive Bayes
(NB); Bayesian Networks (BNs); Classification and Regression Tree (CART); Random Forest (RF); Quadratic Discriminant Analysis (QDA);
Magnetic resonance imaging (MRI); Logistic Regression (LR); Recursive Feature Elimination (RFE); Hematoxylin and Eosin (HE).

Prostate cancer diagnosis depends on the pathologists reviewing specimen slides
as well as assessing the same using Gleason scoring, and while the entire procedure
takes a lot of time, it can cause intra-observer bias, depending on the experience of the
pathologists. AI-assisted image analysis in clinical pathology combines automated image
recognition, examination, as well as evaluation of digitalized tissue specimen images,
allowing automatic and standardized pathology diagnosis (Table 1). Kwak et al. [11]
developed an AI application for detecting the disease in optical pathology images of varying
resolutions. The algorithm was able to achieve an accuracy of >97% on the same using
segmented prostate specimen images. The aforementioned group also developed ANNs
with the nuclear morphology of prostatic epithelial cells for the detection of cancer [12].
They were able to achieve an AUC (Area under the ROC Curve) score of 0.97 for the
diagnosis of prostate cancer, surpassing diagnostic methods using handcrafted nuclear
engineering technologies. Nguyen et al. [13] developed an ML algorithm to classify the
Gleason score of prostate cancer. The classifier has different AUC scores when considering
cancer and non-cancer specimens in distinguishing between epithelial tissue and stromal
tissue, specifically 0.97 for the former and 0.87 for the latter. In addition, when provided
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five characteristics of histology, the algorithm achieved an AUC of 0.82 in distinguishing
Gleason 3 vs. 4 cancer [13].

3.3. Urothelial Cancer

Bladder cancers, also known as urothelial carcinomas, begin in the cell lining of the
bladder (i.e., non-muscle-invasive bladder cancer) and can spread to the muscle wall
and beyond, to other tissues (i.e., muscle invasive or metastatic bladder cancer). They
are highly curable when detected and treated early. Similar to prostate cancer, radiomic
imaging and urinary metabolite markers have been used to diagnose urothelial cancer
using AI techniques (Table 2). Xu et al. [14] developed ML algorithms with radiomic
mpMRI characteristics for distinguishing between bladder tumor and normal bladder
wall. Garapati et al. [15] used morphological and textural features of CT (Computed
Tomography) urography for determining the stage of bladder cancer. The algorithm
was successful in achieving an AUC of 0.7–0.9 in predicting the stage of cancer when
using these radiomic attributes. Shao et al. [16] trained decision trees based on urinary
metabolic markers to diagnose bladder cancer. They were able to achieve an accuracy of
76.6%, a sensitivity of 71.8%, and a precision of 86.6%. Ikeda et al. [17] used the technique
of transfer learning, which enables anomaly detection by using gastroscopic images, to
extract important features that apply to cystoscopic images. The dataset used contained
22 cystoscopic images, and the model was compared to results from actual urologists
and medical students, who were divided into groups based on their expertise levels. The
median time taken by the AI was 5 s as compared to 634 s by the group of observers and
achieved 0.930 as the maximum score for Youden’s index.

Table 2. Studies using AI to diagnose urothelial cancer.

Study Application of
the Study Type of Study Size of the

Sample Used
Features Used for

Training Algorithms Used Accuracy, % Sensitivity, % Specificity, % AUC

Xu et al., 2017 [14]
Differentiate

bladder tumor
and bladder wall

tissue by MRI

Retrospective

62 patients
(62 cancerous
regions and 62
bladder wall

regions)

Radiomic MRI
characteristics:

2D texture
characteristics
and 3D texture
characteristics

SVM (2D) 70.16–78.23 - - 0.72–0.83

SVM (3D) 71.77–85.48 - - 0.77–0.89

RF (2D) 70.16–79.84 - - 0.72–0.82

RF (3D) 68.56–85.48 - - 0.73–0.87

SVM
(RFE-selected

optimal features)
87.9 90.3 85.5 0.90

Garapati et al.,
2017 [15]

Forecast the stage
of the disease
based on CT
urography

Retrospective

76 CT urography
cases (84 bladder

cancer lesions:
43 < T2; 41 ≥ T2)

Pathological
stage, CT

urography
morphological
features, and

textural features

LDA (training set)

- - -

0.91

LDA (testing set) 0.88

SVM (training set) 0.91

SVM (testing set) 0.89

RF (training set) 0.89

RF (testing set) 0.97

NN (training set 0.89

NN (testing set) 0.92

Shao et al.,
2017 [16]

Forecast whether
the disease is
present or not

Prospective
87 bladder cancer

patients and 65
patients without
bladder cancer

6 urine metabolite
markers

(spectral ions)

DT: testing 76.6 71.9 86.7 -

DT: training
(5-fold cross
validation)

84.8 81.8 88.0 -

Ikeda et al.,
2019 [17] Detect tumors Retrospective 422 cystoscopic

images

Transfer learning
using features
extracted from
gastroscopic

images

CNN - 96.5 96.5 -

Computed Tomography (CT); convolutional neural network (CNN).

3.4. Renal Cancer

Detection of renal cell cancer (RCC) in its early stages is crucial for its effective
treatment, which can be clinically difficult once it spreads. Clinicians can use metabolomics
data along with Raman spectra for building AI models, which are effective in the diagnosis
of RCC during or before surgery (Table 3). Zheng et al. [18] attempted to identify RCC
using a cluster of nuclear-magnetic-resonance-based serum metabolite biomarkers. The
authors started with using ANNs to a group and categorized serum metabolites as healthy
or RCC and then estimated the detection of RCC in patients individually. Furthermore,
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ANNs were used for testing patients with RCC who had undergone nephrectomy. The
expectation was that an individual patient who was previously classified as RCC would
now be healthy after going through a nephrectomy. Haifler et al. [19] used shortwave
Raman spectroscopy for distinguishing intra-operatively between healthy and malignant
renal tissue. Training an AI model using Raman spectra from RCC and standard tissue
samples could improve the identification of benign versus malignant tissue during surgery;
the identification currently relies on a frozen section of the pathological specimen [19].

Table 3. Studies using AI to diagnose renal cancer.

Study Application of
the Study Type of Study Size of the Sample Used Features Used for

Training Algorithms Used Accuracy,
%

Sensitivity,
% Specificity, % AUC

Zheng et al.,
2016 [18]

Forecast the presence of
the disease in the

earlier stages

Retrospective
126 patients (68 healthy

participants and 48 renal cell
cancer (RCC) patients)

Serum
metabolome

biomarker cluster

ANN: healthy
participants 91.3 - - -

ANN: RCC 94.7 - - -

Haifler et al.,
2018 [19]

Discriminate between
normal and malignant

renal tissue
Prospective

6 clear-cell RCC specimens;
6 normal kidney
tissue specimens

Short-wave
infrared Raman

spectroscopy
SMLR 92.5 95.8 88.8 0.94

Sparse Multinomial Logistic Regression (SMLR).

3.5. Hydronephrosis/Urinary Reflux

Radiomic imaging technologies are used along with AI to diagnose clinically relevant
hydronephrosis and/or urinary reflex. Blum et al. [20] used ML techniques to create a
model that is capable of detecting hydronephrosis based on renogram features. The analysis
successfully displayed a higher precision in detecting hydronephrosis when compared with
just half-time and 30 min clearance. Cerrolaza et al. [21] used ultrasound features to develop
ML methods that help in predicting renal obstruction (halftime > 30 min). Logvinenko et al. [22]
used ultrasonography results to estimate vesicoureteric reflux (VUR) on the emptying after
the cystourethrogram. They found that the AI model worked marginally better than the
multivariate logistic regression.

3.6. Reproductive Urology

Statistics reveal that around 70 million couples globally are failing to conceive, and
male infertility is held responsible for 50% of these cases. Various factors contribute to
reproductive problems in men, such as genetic mutations, lifestyle choices, and medical
illnesses. Considering such factors, many investigators have paired predictive analytics
with AI techniques in their studies to demonstrate how AI could be of assistance in repro-
ductive urology. In the studies by Gil et al. [23] and Candemir et al. [24], AI networks and
algorithmic models were used to predict semen quality by considering variables such as
lifestyle and environmental factors. Both studies displayed high accuracies, the first study
showing an accuracy of ~86% for sperm concentration and 73–76% for motility and the
second showing an accuracy of ~90%. These predictive models for semen quality could
certainly be used as a tool for screening men with fertility issues to effectively expose any
underlying seminal disorders. Among the men, 10–20% undergoing infertility evalua-
tion are found to be suffering from azoospermia, a medical condition in men that causes
impotency due to inadequate or no sperm production [25]. Akinsal et al. performed a
retrospective study to predict the subset of azoospermic patients that should undergo
additional genetic evaluation by applying logistic regression analyses and ANNs [26]. The
model identified azoospermic patients with chromosomal abnormalities and those without
chromosomal abnormalities with an accuracy of 95%. Exploiting AI to identify individuals
with potential genetic abnormalities may mitigate the expense and time lag of formal
genetic testing. Apart from predicting semen quality, AI has also been applied in various in-
vestigations to determine potential biomarkers for infecundity. In a study by Vickram et al.,
three different models of ANNs were employed to predict the biochemical parameters for
male infertility, of which the backpropagation neural network (BNN) showed minimum
error [27]. Men with infertility issues are asked to undergo semen analysis in which most
of the parameters, such as sperm motility and concentration, are measured manually. To
avoid these time-consuming procedures and the available expensive alternate procedures,
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Thirumalarjaju et al. introduced an AI-based approach using ANNs that was successful
in producing the desired results in analyzing sperm morphology. The network identified
abnormal semen samples with a staggering accuracy of 100% [28].

3.7. Urolithiasis

There has been a drastic alteration in the way urolithiasis cases are handled now
compared with how they were handled in the past, and this approach will be highly
influenced by AI techniques [29]. The future of AI in this field could provide complete
management for urolithiasis: prevention, diagnosis, and treatment. Kazemi et al. [30]
introduced a novel decision support system based on ensemble learning for the early
detection (prevention) of kidney stones and explained the underlying mechanisms to
determine the type of kidney stones. Various AI algorithms such as the Bayesian model,
decision trees, ANNs, and rule-based classifiers were used in this system to understand the
complex biological features involved in predicting kidney stones, with the system yielding
an accuracy of 97.1%. Längkvist et al. [31] built a CNN (convolutional neural network)
model for the detection of ureteral stones in high-resolution CT scans. This model was able
to classify stones with a specificity of 100%, where the false positive was found to be 2.68
per scan and the AUC–ROC (receiver operating characteristic curve) was 0.9971.

3.8. Pediatric Urology

Pediatric urology handles congenital birth disabilities and disorders in newborn and
young children. Though AI is yet to be wholly accepted and explored in this field, it
certainly has brought new possibilities to light. About 1–3% of infants suffer from VUR,
a condition that could potentially affect the bladder and kidneys if not diagnosed and
treated earlier. One of the initial applications of AI in pediatric urology was the use
of ANN architectures for the prognosis of VUR. To avoid a painful procedure for VUR
detection, such as voiding cystourethrogram (VCUG), that exposes children to radiation,
Papadopoulos et al. proposed an ML framework called Venn prediction for detecting
VUR [32]. The model exhibited better sensitivity compared with other techniques. Likewise,
another novel ML model was suggested to predict the future risk of febrile urinary tract
infections (UTIs) related to VUR [33]. The predictive model performed with a reasonable
degree of certainty in recognizing children most likely to benefit from VCUG, thus enabling
personalized treatment.

3.9. Endourological Procedures

Endourology is another area in urology where AI is used to reach novel directions in
planning and surgical interventions. Some of the previously mentioned minimally invasive
procedures also come under this subfield. Images captured during cystoscopy play a
pivotal role in the identification of bladder diseases. Ikeda et al. [17] introduced a support
system based on CNNs for the proper diagnosis of bladder cancer using 2102 cystoscopic
images. The built model separated the images of normal tissue from those of tumor lesions
with high accuracy (area under ROC: 0.98; maximum Youden index (YI): 0.837; sensitivity:
89.7%; and specificity: 94%).

4. Outcomes Prediction

Patient outcome predictive analysis requires developing statistical methods that can
interpret data to forecast outcomes for a particular patient. We can use either statistical
modeling techniques or new methods emerging in the field of AI. These methods have
the potential to handle the lack of accuracy and complexity that is typical in clinical and
biological data. Additionally, AI techniques can handle the analysis of big data that are too
big or too complex for standard statistical models more efficiently [34].
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4.1. Prostate Cancer

Clinicopathological characteristics of individual patients are used to develop AI
algorithms to forecast the outcome. Wong et al. [35] used clinicopathological characteristics
of each patient to develop ML algorithms that can estimate the biochemical recurrence
following prostatectomy (Table 4). They developed three different ML algorithms that
were trained on a dataset of 338 patients to achieve an accuracy between 95% and 98%
and an AUC between 0.9 and 0.94. In comparison to the conventional Cox regression
analysis, these methods had better predictive efficiency. Tissue morphometric data [36],
imaging radiomic features [37,38], and tissue genomic profiling [39,40] are also among the
methods that are used for outcome forecasting of a patient. These studies have successfully
demonstrated that AI has a higher accuracy when it comes to outcome prediction than
other already existing methods.

Apart from the medical causes, surgical performance can also affect patient outcomes.
Hung et al. [41,42] created and tested AI algorithms to find out the duration that a patient
will have to stay in the hospital and the recovery of urinary control following robotic
radical prostatectomy (Table 4). The algorithms were able to achieve an accuracy of 87.2%
in the estimation of hospital stay and a C-index of 0.6 for estimating urinary control.

Table 4. Studies using AI to predict outcomes of prostate cancer.

Study Application of the
Study Type of Study Size of the

Sample Used
Features Used for

Training
Algorithms

Used Accuracy, % Sensitivity, % Specificity, % C-index AUC

Lam et al.,
2014 [43]

Forecast mortality for
a period of 5 years

after radical
cystectomy

Retrospective

117 patients (83
training, 17

validation, and
117 testing)

Age, tumor stage,
albumin level,

surgical approach
ANN 77.8 - - - 0.829

Wang et al.,
2015 [44]

Forecast mortality for
a period of 5 years

after radical
cystectomy

Retrospective 117 patients

Gender, age, age
range, albumin,

surgical approach 1/2,
preoperative albumin,

tumor stage,
follow-up period, type

of diversion

NN 72.2 77.6 68.1 - -

ELM 76.7 73.5 81.5 - -

RELM 80.0 85.6 72.4 - -

RBF 76.7 79.0 75.3 - -

SVM 75.6 75.4 77.0 - -

NB 73.3 73.8 73.4 - -

k-NN 72.2 75.1 70.1 - -

Sapre et al.,
2016 [45]

Predict urothelial
carcinoma recurrence

Prospective

Training set 81
patients

(21 benign
controls, 30 no
recurrence, and
30 active cancer

recurrence);
testing set
50 patients

Urinary miRNAs
(miR205, miR34a,
miR21, miR221,

miR16, miR200c)

SVM
(recurrence) - 88.0 48.0 - -

SVM (tumor
presence):
training

- - - - 0.85

SVM (tumor
presence):

testing
- - - - 0.74

SVM (T1) - - - - 0.92

SVM (Ta) - - - - 0.72

SVM (T2,3,4) - - - - 0.73

SVM (high
volume) - - - - 0.81

SVM (low
volume) - - - - 0.69

SVM (low
grade) - - - - 0.76

SVM (high
grade) - - - - 0.75

SVM (initial
tumor) - - - - 0.76

Bartsch et al.,
2016 [46]

Estimate the risk of
recurrence in 5 years

for non-muscle-
invasive urothelial

carcinoma after
transurethral resection

of the bladder

Retrospective

112 frozen
non-muscle-

invasive
urothelial
carcinoma
specimens

Genes in DNA
sampling

GP (3-gene
rule): training - 80.4 90.0 - -

GP (3-gene
rule): testing - 70.6 66.7 - -

GP (5-gene
combined

rule): training
- 77.1 84.6 - -

GP (5-gene
combined

rule): testing
- 68.6 61.5 - -

Regularized Extreme Learning Machine (RELM); MicroRNA (miRNA); Glycoprotein (GP).
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4.2. Urothelial Cancer

Urothelial cancers have a high chance of recurrence. AI systems for forecasting cancer
recurrence and patient survival have been engineered [43–46] (Table 5). Lam et al. [43] and
Wang et al. [44] used clinicopathological evidence to create and test a significant number of
AI algorithms to estimate the 5-year survival after radical cystectomy. Their work results
obtained are equivalent to those obtained by other statistical methods. Sapre et al. [45]
proposed using an ML classifier with urinary microRNA to diagnose bladder cancer
in patients. The classification results by this research achieved an AUC between 0.8
and 0.9 in observing a clinically relevant disease, while also reducing the requirement
for cystoscopy by 30%. Bartsch et al. [46] used gene expression profiling to develop
AI strategies to forecast the recurrence of non-muscle-invasive bladder cancer. Such
experiments have demonstrated the possibility of the potential uses of AI for the treatment
of urothelial carcinoma.

Table 5. Studies using AI to predict outcomes of urothelial cancer.

Study Application of the Study Type of
Study

Size of the
Sample Used

Features Used for
Training Algorithms Used Accuracy,

%
Sensitivity,

%
Specificity,

% C-index AUC

Wong et al.,
2019 [35]

Estimate the recurrence of
the disease after radical

prostatectomy Prospective 338 patients
Patient

clinicopathology
information

k-NN 97.6 78.0 69.0 - 0.903

RF 95.3 76.0 64.0 - 0.924

LR 97.6 75.0 69.0 - 0.94

Harder et al.,
2018 [36]

Estimate the recurrence of
the disease after radical

prostatectomy
Retrospective

90 patients
(40 with PSA
recurrence)

Tissue phenomics of
the disease

Hierarchical clustering 86.6 82.5 90.0 - -

naive Bayes 83.3 80.0 86.0 - -

classification and
regression tree 83.3 70.0 94.0 - -

k-NN 85.5 80.0 90.0 - -

Linear predictor 87.8 94.0 80.0 - -

SVM (linear kernel) 86.7 77.5 94.0 - -

SVM (radial bias
function kernel) 82.0 75 88.0 - -

Zhang et al.,
2016 [37]

Estimate the recurrence of
the disease after radical

prostatectomy
Retrospective

205 patients
(61 with

biochemical
recurrence)

Radiomic MRI
characteristics SVM 92.2 93.3 91.7

-
-
-
-
-

0.96

Shiradker
et al., 2018

[38]

Predict the biochemical
recurrence of prostate cancer

using MRI
Retrospective

120 patients
(70 training;

50 validation)

Patient
clinicopathological
data and radiomic
MRI characteristics

LDA (radiomic
alone, training) - - - 0.54

-

SVM (radiomic
alone, training) - - - 0.84

RF (radiomic alone, training) - - - 0.52

SVM (radiomic alone testing) - - - 0.73

SVM (radiomic +
clinical training) - - - 0.91

SVM (radiomic +
clinical testing) - - - 0.74

Zhang et al.
2017 [39]

, Estimate biological
recurrence after radical

prostatectomy
Retrospective

424 patients
(58 with

recurrence)

Somatic gene
mutation profiles

SVM (genetic signature
alone) 66.2 - - - 0.7

SVM (genetic signature +
clinicopathological features) 71.3 - - - 0.75

Lalonde
et al. 2014

[40]

Predict the biochemical
recurrence after radiation or

radical prostatectomy
Retrospective

397 patients
(126 training,

154 validation,
and 117 testing)

Genes of the disease,
general genomic

instability, and tumor
microenvironment

RF (validation set 1) - - - 0.7 0.74

RF (validation set 1) - - - 0.74 0.84

RF (validation set 2) - - - 0.67 0.64

RF (validation set 2) - - - 0.73 0.75

Hung et al.
2018 [41]

Predict the length of stay
required in the hospital after

radical prostatectomy
Ambispective 78 patients 25 surgical

robotic APMs

RF 87.2 - - - -

RF (APMs and patient
demographics) 88.5 - - - -

SVM 83.3 - - - -

LR 82.1 - - - -

Hung et al.
2018 [42]

Predict urinary continence
recovery after robotic radical

prostatectomy
Ambispective 79 patients

16 clinicopathological
features and 492

robotic APMs

Random survival forests,
Deep-learning-model-based

survival analysis

- - - 0.58 -

- - - 0.6 -

Automated Performance Metrics (APM).
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4.3. Urolithiasis

Percutaneous nephrolithotomy (PCNL) and shockwave lithotripsy (SWL) are com-
monly recognized therapeutic methods for urolithiasis; however, the rates of success may
differ significantly and might include repeat procedures in case the treatment is unsuccess-
ful. Aminsharifi et al. [47] used ANNs to forecast a stone-free PCNL rate with an accuracy
of 82.8% and the need to repeat PCNL with an accuracy of 97.7%. Mannil et al. [48] focused
their study on the individual patient, using the patient’s body mass index (BMI), along
with the 3D texture and scale of the stone, also accounting for the skin-to-stone distance to
estimate the performance of SWL. The authors developed and tested five AI algorithms,
each with varying 3D textural permutations of patient characteristics, to register AUC
values between 0.79 and 0.85, which was an increment from the AUC score of 0.58 that was
achieved when using only patient characteristics. For a different report, 3D texture analysis
was used to estimate the number of shock waves needed for effective SWL [49]. Against
other statistical models, AI displays the most accurate predictions of the number of shock
waves needed (<72 or ≥72), with an AUC of 0.838 recorded. Both of Mannil et al.’s [48,49]
experiments demonstrated that using AI along with advanced textural analysis methods is
practical, reproducible, and predictive of SWL performance.

4.4. Renal Transplant

With renal transplantation (RT) being the best available therapy for end-stage renal
failure (ESRF), some hindrances are faced in the procedure that can be dealt with by ana-
lyzing the survival of transplant patients. The availability of medical data and improving
AI techniques have made this challenging prospect more achievable.

The current trend of AI in RT revolves around ensemble learning, where multiple
models are combined to achieve better predictive performance. Ethan et al. [50] proposed
an ensemble model of ML algorithms for the effective allocation of kidneys by using 18 dif-
ferent predictive variables. The survival model exhibited a higher index of concordance
(0.724) than the other existing models (0.68) used for determining recipient priority in
the allocation system. Recently, a risk prediction score named iBox has been developed
by an international team of French researchers for forecasting the risk of allograft failure
after RT [51]. This robust system outperforms the current golden standard (estimated
glomerular filtration rate and proteinuria) to monitor kidney recipients. The forecasts of
this method, validated on more than 7500 patients, are extremely accurate in decision
making, independent of the healthcare environment, medical conditions, clinical action, or
actual patient treatment.

Though RT is a better option over dialysis, the recipient’s kidney is always at a risk of
rejection, and hence early identification of such complications is necessary. Abdeltawab
et al. [52] came up with a non-invasive method for the timely diagnosis of acute RT rejection.
The authors developed a novel deep-learning-based computer-aided diagnostic system
drawn upon both imaging and clinical biomarkers. With its sensitivity of 93.3% and 92.3%
specificity in distinguishing between non-rejected and discharged renal transplants, the
proposed method produced an accuracy of 92.9%. Using RT survivor statistics, Kyung
et al. [53] conducted a retrospective study and built a predictive model to evaluate graft
survival in RT receivers. Their survival decision tree model performed better compared to
the conventional decision tree and Cox regression models, with indexes of concordance of
0.80, 0.71, and 0.60–0.63, respectively.

5. Treatment Planning
5.1. Prostate Cancer Radiotherapy

Brachytherapy for prostate cancer involves a systematic preparation by a brachythera-
pist, a time-consuming process that can have varied results, depending on the observer [54].
There has been a high degree of research involving the use of ML algorithms to rapidly
build recovery schedules for brachytherapy [54,55]. The time required to create and test the
algorithms was found to be much shorter (0.8 vs. 17.9 min; p = 0.002), while the dosimetry
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metrics predicted were close to that of the qualified brachytherapist [55]. The accuracy
of the dosimetry may be influenced because of different geometrical complexities during
external radiotherapy. AI algorithms were developed by Guidi et al. [56] to handle such
issues related to avoiding radiation injuries. CT images are used to train the AI algorithms
in the radiotherapy planning and recovery phase of the treatment, which are used to
compare scheduled and performed radiation therapy, helping patients who thereby benefit
from receiving individualized care.

5.2. Cancer Drug Selection

AI interventions will be of assistance in the choice of adequate medications for cancer
diagnosis and treatment. Saeed et al. [57] used ML technologies to measure and assess
their activity with more than 300 forms of drugs in castration-resistant prostate cancer cells.
Navitoclax family inhibitor Bcl-2 was described as highly active in patients with prostate
cancer resistant to castration.

5.3. Surgical Skill Assessment

The evaluation of medical expertise and success is usually carried out by manual
peer examination, allowing professionals to evaluate the surgical success or to monitor
surgical performance. Such evaluations are often unreliable and increase the uncertainty
due to different definitions of success by various observers. Endoscopic instruments
offer direct visualization that is integrated with video cameras. These data, along with
other types of information, including the movement of the surgical instruments, can
also be collected. Such imagery and output data from the surgical robot can be used to
test surgical output automatically using AI techniques. Figure 4 shows the procedural
representation of a general biopsy using AI techniques. Anatomical landmark identification
is an important metric in the assessment of advanced surgical skills. Nosrati et al. [58]
and Baghdadi et al. [59] used ML algorithms to study the color and textural features from
visualization of the surgical sites’ anatomical features during partial nephrectomy and
radical prostatectomy.

Figure 4. (a) Identification/Segmentation of the region of interest. (b) Classification of histopathological images using a
deep learning technique.
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Tracking the movements and actions of the surgical instruments is also an impor-
tant metric for performance assessment. Ghani et al. [60] looked at the movements of
instruments to determine surgical skills and techniques. The authors collected data on the
movements of the instruments either manually or by using motion trackers, which were
then fed to an ML algorithm to determine the expertise level of the surgeon, achieving a
precision between 83.3% and 100% [60].

6. Robotic Surgery

Apart from assessing the surgical skill, as discussed in the previous section, AI also
plays a key role in improving new surgical techniques such as minimally invasive proce-
dures involving surgical robots. Determining the best practices by analyzing the patterns
and aiding in reducing technical errors are the primary tasks of AI in robotic surgery. Its
performance in each sub-specialty of urology is discussed below.

6.1. Urologic Oncology

Recent advances in robotic urologic surgery and minimally invasive procedures have
enabled approaches to treating prostate cancer, such as laparoscopic prostatectomy and
robotic-assisted surgery. Robotic prostate surgery is an extremely precise procedure that
provides excellent cancer control and is considered safe in experienced hands.

Radical cystectomy has been the surgical standard to treat patients suffering from
muscle-invasive bladder cancer. Though there is a significant reduction in the estimated
blood loss (EBL), the blood transfusion rate, and the length of stay in robotic-assisted radical
cystectomy (RARC) compared to those in open radical cystectomy (ORC), the complications
and the positive margin status have been found to be similar [61–68]. Although the role of
RARC is controversial, it has become an acceptable alternative to open surgery by some
guideline organizations, including the European Association of Urology [62].

6.2. Reproductive Urology

Etafy et al. [69], in a study, validated that robot-assisted microsurgical procedures are
now safe and practicable in dealing with male infertility. More than 500,000 American men
opt for vasectomy as a method of contraception annually, of which 2–6% will eventually
undergo vasectomy reversal [70]. Studies have shown that robot-assisted vasovasostomy
(RAVV) yields comparable results to that of the pure microsurgical technique [71]. Though
the former approach is not superior, it offers a few additional advantages over normal surgi-
cal procedures. These benefits include the elimination of tremors, multiview magnification,
additional instrument arms, and enhanced dexterity with articulating instrument arms.

6.3. Pediatric Urology

In pediatrics, robotic surgery remains controversial due to both cost and the lack
of published high-level evidence. Ballouhey et al. [72] discussed how size difference in
children cannot be a limiting factor for performing robotic surgery (patients with body
weight of >15 kg or <15 kg yielded similar results). Robot-assisted laparoscopic pyeloplasty
(RALP) is the standard treatment of ureteropelvic junction obstruction in older children
and has even been performed in infants and redo procedures. In a study by Avery et al. [73],
among the 60-patient cohort with a mean age of 7.3 months, 91% showed improvement
or resolution of hydronephrosis after pyeloplasty, with 11% facing post-operative compli-
cations and 2 patients requiring redo procedures. Redo robotic pyeloplasty is deemed a
safe and effective approach for recurring ureteropelvic junction obstruction, reporting up
to 100% success rates and 0% complication rates [74]. Along with RALP (Robot-assisted
laparoscopic pyeloplasty), robot assistance in nephrectomy [75], ureteroureterostomy [76],
ureteral reimplantation [77], and other procedures has yielded affirmative results and
unlocked new possibilities in the field of pediatric urology.
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6.4. Renal Transplant

Robot-assisted RT (RART) is another application of AI that is highly recommended
for obese and high-risk ESRF patients as it delivers low complication rates and excellent
graft function over conventional surgery [78]. RART is considered to be a safe, feasible,
and reproducible option when performed by surgeons with practice in both robotic and
conventional RT surgery.

7. Discussion

In this article, we explored how AI can help us in the diagnosis, outcome prediction,
and other treatment processes of urological diseases, even when provided with a heteroge-
neous and complex dataset. The growth in the granularity of data due to the huge spike
in data collection over the recent years makes interpretation and pattern identification
difficult for traditional statistical models, which are restricted by the limitation of using
fixed correlations that work on the assumption that the data will have linear relationships.
AI is much more robust and flexible when it comes to working with different data types
and dealing with noise, missing data, and infrequent visits by the patient. It can even
handle high-dimensionality data, while making minimum assumptions.

Although using AI can be tricky, the results and accuracy achieved when it is used
correctly exceed those observed with the standard statistical models. It can also help in
simplifying manually performed procedures and thus reducing the variation in outcomes
due to human ability, bias, and methodological mistakes or inefficiencies. Therefore, AI-
based models help clinicians in getting early, reliable, and personalized data that can help
in the decision making.

It is observed that AI achieves a higher accuracy for most tasks, but it cannot be used to
answer every question. Sometimes, standard statistical models can outperform AI models.
Kattan et al. [79] compared ML estimation and Cox proportional risk regression methods
based on three separate datasets of urological results. Cox regression could correspond with
or surpass the ML model predictions. Neural networks have freely used parameters for
the transformation of feature and class prediction, the neural networks being accurate and
adapted to the maximal values of these free parameters. A well-constructed conventional
model can outperform an ML model built lousily. Another issue with using ML-based
models is something called a black box. When we make a deep neural network, the model
builds non-linear, non-monotonic response functions, which despite having remarkable
accuracy might be harder to explain, which makes the performance of these networks more
empirical than theoretical.

Several clinicians and researchers have discussed the role of AI in healthcare and in
treating certain urological conditions [80,81]. The approach adopted in this review provides
a comprehensive view with an aim to address all possible aspects of AI in the field of
urology. The studies reviewed by us vary in their training features, algorithms used, and
the observed endpoints, which makes the task of quantitative analysis more difficult. In
addition, these studies lack generalizability across different datasets as we have the results
only for that particular dataset. Some of them also do not give a comparison with the
standard statistical models, which limits our ability to understand how AI techniques are
better than other models.

Real-life usage of AI technologies in the field of medicine is still a long way into the
future. They face high levels of quality control and regulatory obstacles. The US FDA
(United States Food and Drug Administration) has issued the first AI system assessment
guidelines [82], which show that adaptive architecture should provide real-life evidence
in clinical studies to assess the efficacy of AI techniques. AI models are data driven; they
learn from the data that are given to them, and therefore require continuous training to
maximize their utility and accuracy.
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8. Conclusions

AI has come a long way in making exponential progress in healthcare over the past
decade. There are still a lot of challenges and hurdles that need to be addressed before these
techniques can be completely trusted to be used in the medical field. Though the future of
AI in the field of urology is bright, considering it has already provided excellent solutions
to handle various health issues through early diagnosis and personalized treatment, there
is still a lot of room for improvement and growth when it comes to delivering solid results
to positively influence more number of lives on an individualized basis.
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