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Abstract: The development of multifunctional nanoscale systems that can mediate efficient tumor
targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The
combination of imaging agents into one platform provides dual imaging and allows further surface
modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated
niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were
formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic
and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation
of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular
uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEG-
NIO/QDs/MIONSs/Tf produces an obvious negative-contrast enhancement effect on glioma cells
by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence
microscopy. This novel platform represents the first niosome-based system which combines magnetic
nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.

Keywords: multifunctional niosomes; quantum dots; iron oxide nanoparticles; glioma imaging

1. Introduction

Glioma are one of medicine’s most challenging problems and lead to a poor prognosis
for the patient with a mean survival time of less than 18 months [1]. Only 3-10% of
the patients survive for more than 5 years following diagnosis [2]. Surgical resection,
chemotherapy, radiotherapy and novel therapeutic modalities such as immunotherapy,
gene therapy, and photodynamic therapy are current treatments for glioma [3]. Surgery
is the most effective treatment to increase the survival time of glioma patients. However,
the operation bears high risk due to the localization of tumor tissue in the brain, and
ineffective resection leads to remaining glioma cells that can proliferate and migrate quickly.
An effective tumor resection needs novel imaging techniques for the detection of tumor
localization and surgical phases. The commonly used imaging techniques are magnetic
resonance imaging (MRI) and computed tomography (CT) [4,5]. Although images from CT
and MRI can reveal the location of the tumor, it remains difficult to differentiate neoplastic
and normal brain tissue because of the poor visual contrast.
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Advances in nanotechnology have triggered a growing interest for the use of nano-
materials in medicine to solve a number of issues associated with therapy and diagnosis.
Therapeutic agents have been combined with nanoparticles to minimize toxicity, increase
their solubility, prolong the circulation half-life, reduce their immunogenicity, and improve
their distribution [6-8]. Multifunctional nanomaterials such as quantum dots (QDs) and
polymers have been investigated and have shown great promise in targeted imaging of
cancer cells [9-11].

Magnetic iron oxide nanoparticles (MIONSs) are extensively used as MRI contrast
agents. Dependent on the specific relaxation process, the resulting magnetic resonance
(MR) images are classified into longitudinal relaxation time weighted images (T1 contrast)
and transverse relaxation time weighted images (T2 contrast). MIONs with a diameter
below 4 nm are preferred as T1 (positive) contrast agents, while nanoparticles with a
diameter greater than 4 nm are used as T2 (negative) contrast agents [12]. MRI-optical dual
imaging is a promising approach that can provide more accurate diagnosis than any single
imaging modality. In this approach, MRI provides noninvasive in vivo high-resolution
anatomical images, while fluorescence imaging can deliver microscopic information in
postmortem pathological tissues [13]. Fluorescent dyes such as rhodamine, fluorescein,
and conjugated polymers have been used to design a dual-mode probe for biomedical
applications [14-16]. Jang et al. presented the synthesis and the use of monodisperse
iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and
magnetic resonance dual imaging of tumors. The in vitro and in vivo data presented
in that study demonstrate the high potential of the designed core-shell nanoparticles
as biocompatible dual contrast agents for in vivo biomedical imaging [17]. Although
successful cell labeling has been achieved with organic dyes, they are plagued by low
quantum yields and photobleaching. Functionalized fluorescent nanoparticles, such as QDs,
are promising alternatives for bioimaging [18], showing excellent physical and fluorescent
properties, such as size-dependent broad absorption spectra and narrow emission spectra,
high quantum yields, resistance to photobleaching, and high photochemical stability [19,20].
However, there is strong concern about the cytotoxicity of QDs, especially for the commonly
used cadmium-based materials (in particular, CdSe, and CdS). Numerous studies have
demonstrated that these cadmium-based QDs can cause significant DNA damage due
to acute toxic effects [21]. Although the cytotoxic effects of cadmium-based QDs can
be reduced by controlling the size and the surface ligand chemistry of the particles [22],
the use of alternative QDs is preferred for biomedical applications. Indium phosphide
(InP) QDs show similar size-dependent optical properties, resistance to photobleaching,
and tunable fluorescence to their Cd-based counterparts, but they are less toxic [23]. The
degree of toxicity of QDs also depends on their colloidal stability; therefore, the deposition
of a ZnS shell was postulated to provide advantages to avoid, or at least slow down,
the decomposition of QDs in intracellular environments [24]. Lin et al. have studied
the in vivo long-term toxicity of InP/ZnS QDs in BALB/c mice, and observed no acute
toxic effects according to hematology, blood biochemistry, and histological analysis [25].
Hence, core/shell-structured InP/ZnS QDs have become popular alternatives to cadmium-
containing nanomaterials for biomedical applications. However, QDs are mostly produced
in organic solvents, making them unsuitable for direct use in biomedical and clinical
applications. To overcome this limitation, such QDs can be inserted into lipid bilayers to
enhance their hydrophilicity, stability, and biocompatibility [26-28].

Integration of different diagnostic agents into one platform, the so-called “all-in-one”
approach, has been postulated as a diagnostic tool for glioma with high potential [29].
Thereby, multifunctional probes can be created by combining MRI agents, fluorescence
imaging agents, and photoacoustic imaging agents by using a suitable carrier system [30].
Niosomes are vesicular carriers which provide a bilayer structure that is promising for
the design of all-in-one diagnostic systems. Various agents with a wide range of solu-
bilities could be entrapped in the aqueous core or between the membrane bilayers of
these structures [8,31]. Furthermore, this approach allows us to combine crucial properties
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into one system, such as tumor active targeting, imaging, and specific therapy, which
more effectively supplies multimodal methods to combat glioma [32]. Active targeting is
promising and can be achieved with the specific binding of targeting ligands conjugated
on nanoparticles to receptors overexpressed on the cancer cells [33].

Among others, the transferrin (Tf) receptor is one of the most effective and most
commonly used target receptors on cellular surfaces [34]. Tf is an iron-binding blood
plasma glycoprotein that controls the level of free iron in biological fluids, while also
facilitating the transport of iron to proliferating cells. Tf is internalized into the cells via Tf-
receptor-mediated endocytosis. The Tf-receptor is highly expressed in glioma cells because
of their rapid proliferation rate as well as large iron demand, whereby tumor xenografts
which were generated from cancer cell lines retain the Tf-receptor expression in vivo [35,36].
Therefore, the ability of Tf to internalize via the Tf-receptor, as well as the high level of
expression on cancer cells, make it an attractive target for selective delivery of diagnostic
and therapeutic agents, especially to brain tumors. Several types of nanoparticles were
functionalized with Tf-receptor-binding ligands such as peptides, antibodies, or Tf itself, to
deliver therapeutics to the brain [37,38]. Furthermore, active targeting can be combined
with physical targeting, such as the application of a magnetic field, light, or ultrasound, for
efficient glioma targeting via the use of suitable functional nanoparticles.

Here, magnetic iron oxide nanoparticles (MIONs) and InP/ZnS QDs were synthesized
and integrated into niosomes. Subsequently, Tf was conjugated to the surface of the nio-
somes for dual targeting and imaging of glioma. The designed PEGNIO/QDs/MIONs/Tf
represents the first niosome-based system combining magnetic nanoparticles and QDs.
The physicochemical parameters of the individual components as well as the assembled
niosomes, in particular their size, surface charge, and morphology, were investigated in
detail. Bioinvestigations, such as cytotoxicity and cellular uptake of the dual imaging
systems, were examined with the U87 glioblastoma cell line. The glioma-targeted imaging
capability of the nanoparticle-encapsulated niosomes was carefully evaluated under an ex-
ternal magnetic field. The dual imaging of glioma, including MR imaging and fluorescence
imaging, was also confirmed in vitro.

2. Results and Discussion
2.1. Characterization of CA-MIONSs and InP/ZnS QDs

The synthesis of MIONs was performed by co-precipitation of Fe?* and Fe3* in al-
kaline conditions. TGA was performed on dried samples before and after citrate coating
(Figure 1A). While the net weight loss for the neat MIONS is about 7.0%, the weight loss
for CA-MIONs amounts to 11.7%, which proves the presence of CA on the MIONs and
thus successful modification [39]. Moreover, a TEM image of CA-MIONSs is shown in
Figure 1B, revealing a spherical morphology and relatively uniform size of the obtained
particles. XRD was carried out to determine the phase content and crystallinity of the
obtained products (Figure S1). The sample presents distinct Bragg reflexes that can be
correlated with the reference patterns of magnetite (ICSD: 98-015-8714) and maghemite
(ICSD: 98-007-9196). However, it is not possible to distinguish between maghemite and
magnetite, as both materials have the same spinel inverse crystal structure; hence, determi-
nation of the composition is not possible by XRD analysis [40]. Using the Debye-Scherrer
formula, a crystallite size of about 10 nm was calculated for CA-MIONs which is consistent
with the particle size obtained by TEM. Figure S2 shows the FTIR spectra of CA, MIONs
and CA-MIONs. The peak at 1710 cm ™! is attributed to the C=O vibration in CA. This
band shifts to 1600 cm~! in CA-MIONSs due to the binding of CA to the magnetite surface.
Carboxylate groups of CA should complex with the Fe atoms on the magnetite surface and
render a partial single bond character to the C=O bond, thus weakening it and shifting the
stretching vibration frequency to a lower value [41]. The superparamagnetic character of
the CA-MIONSs is demonstrated by the magnetization curve (Figure S3), revealing a satura-
tion magnetization of 37.1 Am? /kg. In a recent study, we showed that the encapsulation of
MION:Ss into the niosomal structure was achieved with an entrapment efficiency of approx.
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30%, which results in the formation of superparamagnetic niosomes with reduced satura-
tion magnetization, but also an efficient magnetic targeting capability [42]. Furthermore,
the zeta potential and hydrodynamic size of CA-MIONs were measured as —20.3 mV and
18.7 nm (Figure S4), respectively.
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Figure 1. TGA curves of MIONs and CA-MIONSs (A), TEM images of CA-MIONs and InP/ZnS QDs
(B,D), and the fluorescence and absorption spectra of InP/ZnS QDs (C).

The optical properties of the obtained InP/ZnS QDs were characterized by UV /Vis
and fluorescence spectrophotometry. The fluorescence and extinction spectra of the QDs
are shown in Figure 1C. The QDs show orange emission (Aem = 600 nm) with an excitation
wavelength of 488 nm. The TEM image of InP/ZnS QDs (Figure 1D) demonstrates a
relatively monodisperse size distribution with an average size of ~2.5 nm and mostly
trigonal shape.

2.2. Characterization of Niosomes with Integrated InP/ZnS QDs and CA-MIONs

The physicochemical properties of vesicular carrier systems, in particular their size,
shape, and surface chemistry, play a critical role in determining tissue penetration and cel-
lular delivery [9]. The particle size, electrical potential at the shear plane, and morphology
of the prepared samples were characterized by DLS, zeta potential measurements, and
TEM images. PEGNIO/QDs/MIONs have a negative zeta potential of —29.3 mV. Coupling
of the positively charged Tf protein increased the surface potential of the niosomes, leading
to a zeta potential of —19.8 mV [37]. The average particle size of PEGNIO/QDs/MIONs/Tf
was detected to be 178.5 nm by DLS, which furthermore revealed a monomodal particle
size distribution with a PDI of 0.192, demonstrating that the vesicle population is rela-
tively homogeneous in size (Figure S4). Table 1 shows an overview for the hydrodynamic
size, PDI and zeta potential of CA-MIONSs and the different PEGNIO formulations [6,7].
The morphology of PEGNIO/QDs/MIONSs was observed via TEM images at 120 keV as
spherical (Figure 2A). To detect the encapsulated QDs and MIONSs, the measuring voltage
was increased to 200 keV, which destroyed the vesicle membrane. The particles inside the
vesicles show identical morphology (Figure 2B) to that observed by TEM images of free
QDs or free MIONSs (Figure 1B,D). Additionally, to confirm the presence of both InP/ZnS
QDs and MIONSs in the niosomes, a photograph of PEGNIO/QDs/MIONs was taken under
illumination by UV light and the migration of PEGNIO/QDs/MIONSs, when applying a
permanent magnet with a magnetic field of 1.3 T, was investigated (Figure S5). Therefore,
it is clear that the PEGNIO/QDs/MIONSs exhibit fluorescence signals and migrate in the
direction of the magnetic field. These results prove that QDs and MIONs were encapsulated
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into the PEGNIO. The stability of PEGNIO/QDs/MIONs/Tf was tested via DLS analysis
and no changes were observed in the size and PDI values after one month of storage at
4 °C in the dark (data not shown).

Table 1. Characteristic properties of CA-MIONSs and the different PEGNIO formulations.

Sample Size (nm) PDI Zeta Potential (mV)
CA-MIONs 18.7 0.221 -20.3
PEGNIO [6,7] 150.3 0.175 —33.5
PEGNIO/QDs/MIONs 156.1 0.158 —29.3
PEGNIO/QDs/MIONSs/Tf 178.5 0.192 —19.8

Figure 2. TEM images of PEGNIO/QDs/MIONSs obtained at 120 keV (A) and at 200 keV (B).

Additionally, the sample was diluted in cell culture media and was incubated at 37 °C
for 24 h. The size of the sample was measured before and after incubation, and no changes
were observed. The photometric characteristics of InP/ZnS QD after encapsulation were
examined by fluorescence spectrophotometry. As shown in Figure S6, the fluorescence
emission spectrum of PEGNIO/QDs/MIONs was similar to that of InP/ZnS QDs. En-
capsulation into niosomes reduced the fluorescence intensity of the QDs to some extent,
possibly due minor absorption effects of the niosome shell or the MIONSs, but it did not
result in a shift of the emission wavelength.

2.3. Cytotoxicity

A CTB assay was used to determine the cytotoxicity of PEGNIO/QDs/MIONs and
PEGNIO/QDs/MIONs/Tf on U87 cells in the presence or absence of an external magnetic
field. The cells were incubated with different concentrations of PEGNIO/QDs/MIONs
and PEGNIO/QDs/MIONSs/Tf for 24 h. The ratio of all niosome components was fixed,
the given Fe concentration is a measure for the overall concentration of the niosome sys-
tem. The obtained values of cell viability are presented in Figure 3. The cytotoxicity of
PEGNIO/QDs/MIONs and PEGNIO/QDs/MIONs/Tf with magnet treatment (MT) was
stronger than without MT. The calculated half inhibition concentration (ICsp) of PEG-
NIO/QDs/MIONs was 0.50 mM and 0.31 mM (p < 0.05) for the systems without MT and
with MT, respectively. The conjugation of the targeting ligand to the PEGNIO/QDs/MIONs
increased their toxicity to U87 cells. ICs5q values were calculated to be 0.39 mM (without
MT) and 0.23 mM (with MT) for PEGNIO/QDs/MIONs/Tf (p < 0.05). This may be due to
the dual targeting effect of PEGNIO/QDs/MIONs/Tf, which were mainly internalized
by receptor-mediated endocytosis. The presence of external magnetic fields supports the
attachment of niosomes alongside the cell layer, providing a higher availability of the
nanoparticles at the target sites.
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Figure 3. U87 cell viability of PEGNIO/QDs/MIONs (A) and PEGNIO/QDs/MIONs/Tf (B) at different concentrations
with (with MT) or without (without MT) a preceding magnetic treatment. For the calculated half inhibition concentrations
(ICsp), we evaluated p < 0.05 by using the Student’s t-test, which is thus considered as significant.

2.4. Cellular Internalization and Uptake

Tf has previously been shown to be a promising targeting ligand with high specificity
and affinity for glioma [37,43-46]. The cellular internalization of PEGNIO/QDs/MIONs
and PEGNIO/QDs/MIONs/Tf was determined via fluorescence microscopy studies. The
niosome dispersions were diluted with medium and then added to the cells. To evaluate
the effect of an external magnetic field on cellular uptake, a 1.3 T permanent magnet was
placed under the cell-growth plate for 15 min. Afterward, the cells were incubated for
4 h at 37 °C without an external magnetic field and washed once in PBS. Fluorescence
microscopy revealed that QDs were localized in both the cytosol and nuclear envelope of
glioma cells (Figure 4), evidencing the successful delivery of QDs via the niosomal system.
In a similar vein to our results, biocompatible cationic InP/ZnS QDs were applied to breast
cells in an earlier study by Devatha et al. and confocal microscopy images showed the
fluorescence of InP/ZnS QDs inside the cytosol of breast cancer cells [47].

Non-specific cellular internalization of PEGNIO/QDs/MIONs was observed in glioma
cells (Figure 4A), however, cellular internalization showed a 2.4-fold enhancement in
relative fluorescent units (RFU) due to the magnetic treatment (Figure 4B). Modifying
the niosome surface with Tf allows for a 2.7-fold higher cellular uptake through Tf-
receptor-mediated endocytosis (Figure 4C) compared to plain cellular internalization
of PEGNIO/QDs/MIONSs. In particular, the application of PEGNIO/QDs/MIONs/Tf
together with an external magnetic field resulted in a 3.1-fold enhancement in RFU due to
the cumulative effect of magnetic guidance and the enhanced Tf-receptor-based attachment
on the cell surface (Figure 4D). These results clearly demonstrate the efficient dual targeting
modality of the niosomal system.

Furthermore, flow cytometry was used to additionally evaluate the receptor-mediated
cell targeting efficacy of niosomes on U87 cells. The cells were treated with PEGNIO/QDs/
MIONs and PEGNIO/QDs/MIONs/Tf for 2 h. Untreated control cells and treated
cells were analyzed using a BD Accuri C6 flow cytometer. Figure 5 indicates that PEG-
NIO/QDs/MIONs/Tf was taken up by U87 cells specifically. Tf is able to selectively bind
to tumor cells via the Tf receptor, which is overexpressed in glioma cells [48]. The higher
expression of Tf receptors on U87 cells enables a much greater proportion of targeted nio-
somes to enter the cells via receptor-mediated endocytosis, in comparison to non-targeted
niosomes. We verified this Tf-receptor-mediated endocytosis of Tf-functionalized PEGNIO
formulations by Tf-receptor-expressing U87 glioma cells via performing flow-cytometric
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cellular uptake measurements of fluorescence-labeled PEGNIO/Tf in Tf-receptor negative
cells (A549, which expresses hardly any Tf-receptors [49]) (Figure S7). Because, in this
case, the internalization of PEGNIO and PEGNIO/Tf was shown to be almost uniform and
therefore independent of Tf-functionalization, the presented enhanced internalization of
Tf-labeled PEGNIO/QDs/MIONs by U87 cells can be attributed to a Tf-based endocytosis.

Figure 4. Fluorescence microscopy images of U87 cells after incubating with PEGNIO/QDs/MIONs
((A): without MT; (B): with MT) and PEGNIO/QDs/MIONs/Tf ((C): without MT; (D): with MT).
The quantification procedure was evaluated with p < 0.05, and is therefore significant.

1600
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Figure 5. Flow cytometric measurement of the uptake of PEGNIO/QDs/MIONs and PEG-
NIO/QDs/MIONs/Tf by U87 cells.
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2.5. MR Imaging

MIONSs are among the most used diagnostic tools in cancer, with T2-weighted MRI as
a common application [50,51]. In addition to the fluorescence imaging technique, MRI was
applied to the U87 cells after administration of the newly developed diagnostic nanoparticle
system. To compare the effectiveness of PEGNIO/QDs/MIONs/Tf, the control group (cells
without treatment) was also investigated via MRI (Figure 6A). Figure 6B presents an MR
image after the incorporation of PEGNIO/QDs/MIONs/Tf into the glioma cells with an
obvious negative-contrast enhancement. The contrast density difference between control
and sample is shown in Figure 6C. These results prove that PEGNIO/QDs/MIONs/Tf has
great potential to be a contrast and fluorescent dual imaging agent for glioma diagnosis.

C) 180

3
2 120
z
“
s
o
o
=
g8
€ 60
o
o

Figure 6. MRI of U87 cells after 2h incubation with control DMEM (A) and PEGNIO/QDs/MIONs/Tf
(B). The histograms show the density of the MR images (C). Error bar means + S.D. (n = 4) with
p < 0.05.

3. Materials and Methods
3.1. Materials
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)-
2000] (DSPE-PEG(2000) maleimide) was provided by Avanti (Alabaster, AL, USA). Sorbitan
monostearate (Span60), cholesterol, iron(Il) chloride tetrahydrate (FeCl,-4H,0), iron(III)
chloride hexahydrate (FeClz-6H,0), citric acid (CA), indium(III) chloride (InCl3), zinc(II)
chloride ZnCl,, tris(dimethylamino)phosphine (TDMAP), dodecanethiol (DDT), 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), ethylenediaminetetraacetic acid
(EDTA), zinc stearate, oleylamine (OLA), Dulbecco’s Modified Eagle Medium (DMEM),
transferrin (Tf), and 2-iminothiolane hydrochloride (Traut’s reagent) were purchased from
Sigma-Aldrich (Munich, Germany).

3.2. Synthesis and Characterization of CA-MIONs

Citrate-coated magnetic iron oxide nanoparticles (CA-MIONs) were synthesized via
a co-precipitation method [41,52]. 0.75 g of FeCl;-6H,0O and 0.375 g of FeCl,-4H,O were
dissolved in 50 mL of distilled water and mixed at 80 °C under nitrogen atmosphere in a
100 mL three-neck flask equipped with a reflux condenser. After 10 min, 10 mL of NH4,OH
(28-32% aq.) was added dropwise to the reaction mixture. 1 h after the beginning of the
reaction, a previously prepared CA solution (1.0 g in 2 mL of distilled water) was injected
into the reaction mixture. The reaction temperature was increased to 95 °C and the system
stirred for one further hour. Subsequently, the resulting nanoparticle dispersion was left to
cool to room temperature and washed twice with deionized water via decantation under
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magnetic fixation of the nanoparticles. Additionally, the dispersion was purified for 24 h
using a 12-14 kDa dialysis bag to remove excess unbound CA.

3.3. Synthesis and Characterization of InP/ZnS QDs

The synthesis of stabilized zinc sulfide-coated indium phosphide (InP/ZnS) core-shell
quantum dots was adapted from Ellis et al. with minor adjustments (see SI Section for
details) [53].

3.4. Preparation of Niosomes Loaded with InP/ZnS QDs and CA-MIONs

The niosomal nanoparticles (PEGNIO/QDs/MIONs) were prepared by the thin-
film hydration method [54]. Span 60, cholesterol, and DSPE-PEG(2000) maleimide were
dissolved in chloroform with the molar ratio of 4.95:4.95:0.1. Then, 100 uL of the InP/ZnS
quantum dots dispersed in chloroform were added to the niosomal precursor solution in
a round-bottom flask. The solvent was evaporated with constant rotation under reduced
pressure to form a thin lipid film. Afterwards, the thin film was hydrated with 1.0 mL
of CA-MIONs aqueous solution at 60 °C for 60 min. A schematic representation of the
niosome synthesis and nanoparticle encapsulation processes is shown in Scheme 1. The
prepared multilamellar vesicles were processed to form small unilamellar vesicles by
extrusion (extruder provided by Avanti Polar Lipids, USA) through 0.4 um and 0.1 pm
pore size polycarbonate filters (Cytiva Life Sciences, Dassel, Germany). Subsequently, the
niosome dispersion was centrifuged at 11,000 rpm for 15 min and the sediment redispersed
in water to remove the excess non-incorporated quantum dots and CA-MION:Ss.

Co- $ 9 s
Precipitation sl
recip s s
Iron-oxide Iron oxide

precursors in water nanoparticles

# E——
Dispersing s Evaporation Hydration & @ &
(Chloroform) sonication @

QD residue

QD + lipids in
Chloroform

Iron-oxide- and QD-
labelled niosomes

QD-labelledlipid film

Tf-coupling

In-vitro @

administration

N

+ Tf-functionalization

Scheme 1. Schematic representation of the PEGNIO/QDs/MIONs/Tf formation and application.
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3.5. Preparation of Transferrin-Conjugated Niosomes

Tf-targeted niosomal nanoparticles (PEGNIO/QDs/MIONs/Tf) were prepared via
the attachment of Tf to the niosome surface. This was achieved using 5 nmol Tf and 25 nmol
2-iminothiolane (Traut’s reagent) in 500 uL. HEPES EDTA bulffer, at pH 8.5 (30 mM HEPES
and 0.1 mM EDTA). The mixture was incubated for 2 h at room temperature while shaking
to complete the thiolation of Tf. Thiolated Tf was then washed with HEPES pH 6.5 in a
concentration column (30 kDa, Amicon® by Millipore) and concentrated to a final volume
of 200 pL. The loaded Tf was immediately added to the niosomes and incubated for 24 h
at 4 °C resulting in the formation of a thioether linkage [55]. The thiol group of Tf was
coupled with the maleimide group of the PEG chains on the niosomes.

3.6. Characterization of Niosomes

The size and zeta potential of the prepared nanoparticles were measured by DLS
analysis using the Zetasizer Nano ZS and the Zetasizer Nano software (v7.12) from Malvern
Panalytical (Kassel, Germany). The polydispersity index (PDI) was used as a measure
of the width of the size distribution. The measurements were performed at 23 °C with
a 173° backscattering setup. A previous dilution of the samples by a factor of 10*~10°
minimized occurring fluorescence. To obtain the hydrodynamic diameter, the modal value
of the respective intensity distribution was taken. The zeta potentials were attained using a
capillary zeta cuvette (DTS1070C, Malvern Panalytical Ltd.).

The morphology of the niosomes after integration of the nanoparticles was monitored
via transmission electron microscopy (TEM). Briefly, one drop of the niosome dispersion
was applied onto a carbon film on a 3.05 mm woven copper net with 300 mesh (Plano
GmbH, Wetzlar, Germany). The remaining liquid was removed by blotting onto filter
paper. Then, staining with 2% aqueous phosphotungstic acid was performed without
removing the excess, but while allowing evaporation. The samples were observed using a
Tecnai G2 F20 TMP (turbo-molecular pump) from Fei (Hillsboro, OR, USA), operating at
an accelerating voltage of 120 keV and 200 keV in a bright-field image mode.

For the powder X-ray diffraction (XRD) analysis, an Empyrean series 2 from Malvern
Panalytical (Kassel, Germany) with Cu-K radiation (wavelength A of 0.154 nm) was used.
The MIONSs were dried in an oven, put onto a Si sample holder and measured in a range
of 20°-90° 26 with a step size of 0.05°. The obtained diffractogram was compared with
reference patterns from the Inorganic Crystal Structure Database (ICSD).

The surface chemistry of the MIONs was analyzed by attenuated total reflectance
Fourier-transform infrared spectroscopy (ATR-FTIR) using a Vertex 70 device from Bruker
(Billerica, MA, USA), after drying the sample in an oven overnight.

Thermogravimetric analysis (TGA) was performed using a TGA/DSC 1 STARe system
and a gas controller 4C200 STARe system from Mettler Toledo (Columbus, OH, USA). 15mg
of the dried sample was placed in a ceramic crucible and measured at a heating rate of
10 °C/min under, an oxygen atmosphere.

The magnetic behavior and saturation magnetization of MIONs was examined via a
superconducting quantum interference device (SQUID) using the MPMS-5S instrument
from Quantum Design. The samples were dried analogously to the FTIR preparation.

The optical properties of the QDs and PEGNIO/QDs/MIONs were analyzed by
UV /Vis spectrometry, measuring in a 1.0 cm quartz glass cuvette using a UV-3100PC
UV-Vis spectrophotometer from VWR (Radnor, PA, USA).

The iron concentration in the niosomal samples was determined via a spectropho-
tometric technique. Standard solutions of Fe* containing 0.1-10 mM Fe were prepared.
10 uL of samples or standards were mixed with 500 uL of hydrochloric acid and hydrogen
peroxide solution (10 mL of 6 M HCl and 10 uL of 30% H,O,). Samples were incubated with
the solution for 30 min at room temperature and the optical density of the solution was mea-
sured at 410 nm using the UV-3100PC UV-Vis spectrophotometer. The iron concentrations
of the samples were calculated from a calibration curve obtained from the standards.
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The colloidal stability of the niosomal formulations was tested via DLS analysis.
All samples were stored at 4 °C in the dark. The particle size and PDI values were
measured repeatedly over the period of one month. Moreover, the particle size of PEG-
NIO/QDs/MIONs/Tf was measured in cell culture media and PBS after incubation at
37 °Cfor 24 h.

3.7. Cellular Uptake and Internalization

U87 cell lines were provided from the German Collection of Microorganisms and
Cell Cultures (DSMZ). U87 cells were grown in DMEM containing 10% fetal calf serum
(FCS) (Biochrom GmbH, Berlin, Germany) and 1.0% penicillin/streptomycin (P/S, Sigma-
Aldrich). Cells were cultivated and incubated with samples at 37 °C in a humidified
environment with 5.0% CO,.

The uptake of the nanoparticle-loaded niosomal formulations by U87 cells was an-
alyzed by flow cytometry. The cells (5-10°) were treated with niosome samples for 2 h,
washed twice with PBS, and then analyzed in a BD Accuri C6 cytometer (BD Biosciences,
San Jose, CA, USA) using the FL-2 channel with the excitation wavelength at 488 nm. As a
control, untreated U87 cells were used. At least 20,000 gated events were observed in total,
and living cells were gated in a dot plot of forward versus side scatter signals. The dot plot
and histogram data were analyzed by Flowing Software 2.

Cellular internalization of the samples was determined via fluorescence microscopy
using a Cytation 5 imaging reader (BioTek Instruments Inc., Winooski, VT, USA). U87
cells were cultivated for 2 days on 96 well plates in 200 pL of the medium. The samples
(PEGNIO/QDs/MIONs and PEGNIO/QDs/MIONs/Tf) were diluted with cell culture
medium and then added to the cells. To evaluate the effect of an external magnetic field
on cellular uptake, a neodymium magnet with a magnetic field of 1.3 T was placed under
the cell-growing plate for 15 min. Afterwards, the cells were incubated for 4 h at 37 °C
without an external magnetic field and washed once in PBS. The fluorescence images were
evaluated by calculating the enhancement factor using the Image] software according to
Balasubramanian et al. [56].

3.8. Cytotoxicity

The metabolic activity of viable cells, in terms of their reduction capacity of resazurin,
was measured via CTB assay (CellTiter-Blue® cell viability assay, Promega Corp., Madison,
USA). The cytotoxic effects of niosomal formulations were tested on U87 cells. Cells (8-10%)
were seeded out in 96-well tissue plates (Sarstedt, Niimbrecht, Germany) in a volume of
200 pL and cultivated for three days. After this cultivation time, the cells were washed once
with PBS, treated with PEGNIO/QDs/MIONs and were exposed to an external magnetic
field for 15 min by placing a neodymium magnet with a magnetic field of 1.3 T under
the well plate. After further incubation for 24 h, the cells were washed twice with PBS.
Then, 100 puL of CTB reagent (diluted 1: 6 with supplement-free DMEM medium) was
added to each well and incubated for 1 h (37 °C, 5% CO,). The resulting fluorescence
intensities (544Ex/590Em) were recorded with a fluorescence spectrometer (Fluoroskan
Ascent, Thermo Fischer Scientific Inc., Waltham, MA, USA). Furthermore, ICs; values (the
concentration required for 50% inhibition of cell viability) were calculated for U87 cells
using the growth sigmoidal/dose-response function of Origin software. The equivalent
concentration of Fe was used in the niosomal formulations.

3.9. MR Imaging

For MRI, 8,000 U87 cells were seeded and incubated for two days in a 6 well-plate
(Sarstedt, Niimbrecht, Germany). After that, a PEGNIO/QDs/MIONs/Tf dispersion
sample was applied to the cells for 2 h. Then, the medium was removed from the wells
and the cells were washed with PBS twice. Next, pure medium was added into the wells,
and MR imaging was carried out using the T2-weighted state of the SIGNA Explorer (1.5 T,
60 cm) by GE Healthcare (Chicago, IL, USA). Then, the amount of contrast was measured
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with the Image ] software by generating an MRI histogram. The negative control was
prepared with U87 cells using only the medium under the same conditions.

3.10. Statistical Analysis

The statistical evaluation of the results (cytotoxicity, fluorescence microscopy, and
MRI studies) was investigated by performing the Student’s t-test. The difference between
two groups was considered significant when the p-value was less than 0.05.

4. Conclusions

In the described approach, InP/ZnS quantum dots and CA-MIONs were integrated
into shell and core, respectively, of a niosomal structure. The resulting niosomes exhibited
both fluorescent and magnetic properties with low cytotoxicities. The incorporation of
CA-MION s allowed MR imaging and, simultaneously, magnetic targeting of a whole
imaging system. In a further step, Tf was covalently bound to the surface of niosomes to
target glioma cells overexpressing Tf receptors. For the evaluation of the specific bind-
ing efficiency and cellular localization, niosomal formulations were applied to glioma
cells. Our results show that PEGNIO/QDs/MIONs/Tf bind to Tf-positive glioma cells
more effectively than PEGNIO/QDs/MION:S. In vitro imaging studies revealed that PEG-
NIO/QDs/MIONs/Tf produce an obvious negative-contrast enhancement effect on glioma
cells by magnetic resonance imaging; moreover, they present improved fluorescence in-
tensity under fluorescence microscopy, especially with external magnet treatment. The
results thus indicate the high potential of multifunctional niosomes for cell-specific dual
targeting and dual imaging of glioma. To validate the in vitro results as well as investigate
potential side effects, in vivo experiments with a special focus on the safe and selective
delivery of the diagnostic nanocarriers will be necessary. In essence, the development of the
targeted niosomal formulation reported here may provide a platform for a new generation
of targeting and labeling systems.
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