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Abstract: In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the
site of injury to remyelinate damaged axons; however, in patients this process is often ineffective
due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages
of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it
has to be downregulated to allow terminal maturation. Since, in several animal models of disease
GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients.
We developed immunohistochemistry and immunofluorescence procedures for the detection of
GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary
progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by
immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active,
chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in
these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of
control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial
cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we
identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by
either ramified or rounded morphology, that differently populate the WM of healthy controls and
MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and
inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination
through advanced pharmacological approaches.

Keywords: multiple sclerosis; demyelination; oligodendrocytes; neuropathology

1. Introduction

Oligodendrocyte precursor cells (OPCs) participate to remyelination under both phys-
iological and pathological conditions by differentiating to mature, myelin producing cells.
In multiple sclerosis (MS), this process is often impaired, resulting in blockade of oligo-
dendroglial differentiation and inadequate myelin repair, with consequent alterations of
impulse transmission, axonal damage, and neurodegeneration [1]. The reasons at the
basis of impaired remyelination in MS are still largely unknown. Despite a recent study
indicated that the oligodendroglial differentiation block is not due to intrinsic oligoden-
droglial factors, but rather caused by the inflammatory environment inside the lesions [2],
anti-inflammatory drugs alone are not sufficient to bypass this block, suggesting that their
combination with pro-remyelinating agents may represent the road to the therapeutic
success. To address this issue, various molecular pathways regulating OPC maturation
are under investigation, especially for the progressive forms [3]. In the last 10 years, the
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oligodendroglial G protein-coupled receptor GPR17 has been progressively demonstrated
to play a key role in oligodendrocyte maturation and to ‘label’ a subset of OPCs specifically
involved in reaction to injury [4,5]. GPR17 is needed for the first phases of OPC differ-
entiation but has to be downregulated in immature OPCs immediately before terminal
maturation [6,7]. Any alteration in this peculiar expression pattern results in myelination
defects [8–10].

In vitro, persistent GPR17 overexpression in OPCs indeed leads to blockade of cells at
immature stages [10]. Interestingly, pathologically increased levels of GPR17 have been
found in several animal models of disease, including focal demyelination [11], brain is-
chemia [6,12], amyotrophic lateral sclerosis [13], and traumatic brain injury [11], suggesting
that aberrant GPR17 upregulation may contribute to remyelination failure. In particular,
the subset of GPR17-expressing OPCs has been specifically associated to rapid responses
to myelin injury, regardless the type of insult (i.e., after ischemic, traumatic, or toxic in-
juries [4,10,14,15]). These data suggest that receptor expression confers the ability to this
cell subset to immediately react and undergo differentiation, to generate fully mature,
myelin producing oligodendrocytes repairing the lesion. Regarding the factors leading to
GPR17 dysregulation in neurological disorders, increasing evidence in different models
of demyelination suggests that GPR17 overexpression is sustained by pro-inflammatory
cytokines accumulating close to inflamed lesions [14]. Among these, the stromal derived
factor 1 (SDF1) can specifically activate GPR17 [16], leading to an aberrant potentiation of
its signaling.

Due to the localization of GPR17 on the membrane of highly responsive precursor cells
at the lesion sites, GPR17 could represent a suitable target for pharmacological interventions
aiming at removing this blockade and restore myelin repair [4,6,11].

To date, only few independent studies have investigated the expression of GPR17 in
human specimens. The most relevant data showed that, after traumatic brain injury, GPR17
is expressed by OPCs with a decreasing gradient starting from the center of lesion [17],
whereas in MS an increased level of GPR17 transcript has been detected in active lesions
compared to normal appearing white matter (NAWM) [8]. Interestingly, recent data coming
from single-nucleus RNA sequencing of post-mortem white matter samples from human
brain of MS patients and unaffected controls indicated that GPR17 expression is restricted
to specific oligodendroglial subclusters, namely OPCs and committed oligodendrocyte
precursors, although these results are not sufficient to compare the receptor levels in MS
lesions and in the NAWM with healthy tissues [18].

Here, for the first time, we focused on human brain tissues of MS subjects, in order to
explore possible links between GPR17 protein expression and specific histopathological
conditions (active, chronic active and chronic inactive lesions, NAWM of MS patients and
normal white matter (NWM) of healthy controls), with the ultimate goal to propose GPR17
as a new exploitable target to foster endogenous remyelination.

2. Results
2.1. All the Histopathological Conditions of Human Brain MS Lesions Can Coexist and They Can
Be Disseminated both in Grey and White Matter

In samples deriving from patients with MS, we identified a total of 69 demyelinating
lesions: 26 in white matter (WM) and 43 in grey matter. In the present study, we analyzed
only WM lesions, namely 16 Active Lesions (ALs), 3 Chronic Active Lesions (CALs), and
7 Chronic Inactive Lesions (CILs). In all samples deriving from patients with diagnosis of
MS, we also analyzed the areas of normal appearing WM with no demyelination (NAWMs)
and compared them with the normal WM of control subjects (NWMs). Consistently, no
demyelinating lesions were found in controls. Representative images of these different
histopathological conditions are shown in Figure S1.
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2.2. GPR17+ Cells Are More Represented in Inflamed White Matter of MS Patients and They
Belong to Early Oligodendroglial Lineage

To characterize the expression of GPR17 in human lesions and to evaluate a possible
correlation among groups, we performed immunohistochemistry analyses on all samples
from patients and controls. All the conditions (AL/CAL/CIL/NAWM/NWM) from cases
and controls were scored according to a qualitative evaluation of the amount of GPR17+

cells (Figure 1). As shown in Table 1, we found that GPR17+ cells were widespread in all
the analyzed tissues and that NAWM regions of MS subjects were particularly enriched in
GPR17+ cells compared to the lesion areas and NWM in control subjects.

To univocally identify the phenotype of GPR17+ cells, we performed double im-
munofluorescence staining for specific lineage markers, namely Olig2 for oligodendroglial
cells, NeuN for neurons, HLA for inflammatory immune cells, and GFAP for astrocytes.
As shown in Figure 2, all the GPR17-expressing cells colocalized with Olig2, regardless of
their morphology, whereas no colocalization was found with NeuN, HLA, and GFAP, thus
confirming the exclusive oligodendroglial nature of stained cells.

Finally, we performed a quantitative analysis of GPR17+ cell density in four random
samples per each condition. According to the descriptive analysis, the density of GPR17+

cells was significantly increased in NAWMs of MS patients compared to all other conditions
(Figure 3), suggesting that this OPC population reacted to the nearby damage starting
to differentiate, but then failed to reach the lesion sites and participate to remyelination.
We did not observe significant differences in the density of GPR17+ cells comparing ALs,
CALs, and NWMs to each other. Instead, we found a significant reduction of GPR17+ cells
in CILs compared to NWMs (mean ± SD, NWMs = 39.55 ± 3.43 vs. CILs = 20.2 ± 7.66
cells/mm2) (Figure 3).

Figure 1. Evaluation of the abundance of GPR17+ cells. The representative micrographs show tissues with different
abundance of the receptor: panel (A) (sample C 036-A1B2): absence (−); panel (B) (MS 286-P2A3): low abundance (+); panel
(C) (MS 234-A2D4): high abundance (++). This scoring system has been used for the qualitative classification reported
below. Scale bar 500 µm.
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Table 1. Classification of the human specimens based on the abundance of GPR17+ cells. The table shows all the CASES (A)
and the CONTROLS (B). In the ‘# Subjects’, all MS Tissue Bank donors are listed with their ID code. In the ‘Sample’ column,
the coordinates of every autoptic brain samples which were analysed, grouped per each case or control, are indicated. In the
‘Identified conditions in WM’ the AL/CAL/CIL/NAWM/NWM which were detected in the white matter of each sample
of the studied case/control are shown. The ‘GPR17 abundance’ estimated the amount of GPR17+ cells in the analysed
condition: ‘−’ in case of absence or scarce abundance, ‘+’ for a moderate abundance and ‘++’ for a very high abundance of
GPR17+ cells. AL: Active Lesion; CAL: Chronic Active Lesion; CIL: Chronic Inactive Lesion; NAWM: Normal Appearing
White Matter in patients with Multiple Sclerosis; NWM: Normal White Matter in healthy controls.

(A) # Subjects Sample Identified Condition in WM GPR17 Abundance Score

CASES

MS 179
P4A1

AL +
NAWM ++

A3A2
AL +

NAWM ++

MS 230

P5C2
AL ++

NAWM ++

P2D2

AL ++
CIL ++
AL ++

NAWM ++

P2E1
CAL ++
AL ++

NAWM ++

MS 234 A2D4

CIL +
CIL +
AL −
CIL +

NAWM ++

MS 242

P3B3
AL ++

NAWM ++

P4C3 NAWM +

A2B2
AL ++
CIL −

NAWM ++

P5A2

CIL −
AL +

NAWM ++
NAWM ++

P1A2
CAL −
AL −

NAWM +

P3A3 NAWM ++

MS 297
A4B3

AL +
NAWM ++

P1C2 NAWM ++

MS 298

A2B4
AL +

NAWM ++

P1B5
AL +

NAWM ++

A4C3
CAL ++

NAWM ++



Int. J. Mol. Sci. 2021, 22, 4574 5 of 15

Table 1. Cont.

(A) # Subjects Sample Identified Condition in WM GPR17 Abundance Score

MS 300

A1A3
AL ++

NAWM ++

P1A2
CAL −
AL −

NAWM +

P3A3 NAWM ++

(B) # Subject Sample Identified
Condition in WM

GPR17
Abundance Score

CONTROLS

C 014 A1D7 NWM +
C 036 A1B2 NWM +
C 048 P2F6 NWM ++
C 039 A2B6 NWM +
C 043 P4D6 NWM +

Figure 2. Identification of GPR17+ cells in human brain white matter. The confocal micrographs
show the co-localization of GPR17 (in red) with the specific lineage markers for (A) oligodendrocytes
(Olig2), (B) neurons (NeuN), (C) inflammatory cells (HLA), and (D) astrocytes (GFAP), in green. Cell
nuclei were labelled with Hoechst 33258 (Hoe), in blue. Scale bar 50 µm.
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Figure 3. Quantification of GPR17+ cells density in white matters of brain tissues in MS pa-
tients and healthy controls. The density of GPR17+ cells was calculated as number of marked
cells per mm2 of analyzed area. The GPR17+ cells populate all the conditions, as the follows
(mean ± SD). ALs = 34.99 ± 3.98; CALs = 26.51 ± 13.2; CILs = 20.2 ± 7.66; NAWMs = 82.67 ± 6.73;
NWMs = 39.55 ± 3.43. According to a comparative analysis, a higher prevalence of GPR17+ cells
was demonstrated in NAWMs than in all the other conditions, (**** p-value ≤ 0.0001). Furthermore,
GPR17 was more represented in NWMs than CILs (§ p-value= 0.02). ANOVA one-way test. ALs: ac-
tive lesions; CALs: chronic active lesions; CILs: chronic inactive lesions; NAWMs: normal appearing
white matter in patients with multiple sclerosis; NWMs: normal white matter in healthy controls.

2.3. GPR17+ Cells Show Two Different Morphologies Which Are Associeted with Specific
Histological Conditions

We observed that our GPR17 antibody decorates two distinct populations of positive
cells, with a clearly distinguishable morphology: in the former, only cell bodies were
stained (rounded morphology), whereas in the latter both cell bodies and fine ramifications
were labeled (ramified morphology) (Figure 4).

Figure 4. Representative pictures of GPR17+ cells (brown staining) with rounded (A) and ramified
morphology (B). Nuclei were counterstained with hematoxylin (in purple). Scale bar 50 µm.

To evaluate whether the two types of GPR17-expressing subpopulations were prefer-
entially associated to a specific condition, we separately analyzed ramified and rounded
GPR17+ cells in all the samples analyzed.
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First, we assessed the prevalence of a specific population in ALs, CALs, CILs, NAWMs,
and NWMs, separately. A higher prevalence of rounded GPR17+ cells was found in ALs,
whereas, in NWMs the ramified morphology was the most represented (Figure 5A,E). No
remarkable differences between the two subpopulations of GPR17+ cells were found in
CALs, CILs, and NAWMs (Figure 5B–D).

Figure 5. Density and morphology of GPR17+ cells in human white matter. The histograms (A–E)
highlight the number of GPR17+ cells per area in each condition (ALs, CALs, CILs, NAWMs, and
NWMs) based on morphology (ramified or rounded). Data are the mean ± SEM. Unpaired Student’s
t-test. * p-value < 0.05; **** p-value < 0.0001. (F) The prevalence of ramified vs. total of GPR17+ cells
in active (ALs + CALs), inactive (CILs) lesion, NAWMs and NWMs is shown. In the Y axis the ratio
between ramified GPR17+ cells and the sum of ramified and rounded GPR17+ cells of each condition.
Comparative analysis demonstrates that the ramified GPR17+ cells are more represented in NWMs
than in active lesions (ALs + CALs vs. NWMs; *** p-value = 0.0007), and CILs (CILs vs. NWMs; ** p-
value < 0.005), and are more represented in NAWM than in active lesions (ALs + CALs vs. NAWMs;
§ p-value < 0.05). Data are presented as the mean ± SEM. ANOVA one-way test. ALs: active lesions;
CALs: chronic active lesions; CILs: chronic inactive lesions; NAWMs: normal appearing white matter
in patients with multiple sclerosis; NWMs: normal white matter in healthy controls.

Then, we performed a comparative analysis among active lesions (ALs and CALs),
CILs, NAWMs, and NWMs, in order to evaluate the correlation between a specific condition
and the prevalence of ramified or rounded GPR17+ cells. For this reason, we calculated
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the ratio between ramified GPR17+ cells and the total GPR17+ cells in each condition and
found that the ramified GPR17+ cells are more represented in NWMs than in active lesions
or CILs and are more represented in NAWMs than in active lesions, whereas in all the
other conditions no remarkable differences were found (Figure 5F).

2.4. Rounded GPR17+ Cells Specifically Populate the Core of Acute Lesions

To investigate whether a spatial gradient of GPR17+ cells was present in the lesions, we
separately analyzed the lesion cores and their delimiting borders, considering as ‘border area’
the WM located within 200 µm from the perimeter of the demyelinated lesion (Figure S2).

First, we compared the density of GPR17+ cells into the core of the lesion with those
gathered at the border in each condition. We observed that, in ALs, GPR17+ cells were
more abundant inside the lesion, whereas in CALs and CILs no differences were found
(Figure 6A–C).

Figure 6. Analysis of GPR17+ cells distribution and morphology in MS lesions. In ALs (A) the overall
GPR17+ cells are more localized inside the lesion (* p-value < 0.05), whereas no difference in terms of
distribution inside/outside was found for the other lesions (B,C). In (D–I), the histograms show the
distribution of ramified and rounded GPR17+ cells according to their localization, inside (D–F) and at
the borders (G–I), in each kind of lesion. The rounded morphology was significantly overrepresented
into the AL core compared to the ramified one (** p-value < 0.005). Unpaired Student’s t-test. ALs:
active lesions; CALs: chronic active lesions; CILs: chronic inactive lesions; IN: inside the lesion; OUT:
at the border of the lesion.
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Then, we looked for the most represented morphology of GPR17+ cells at the border
and in the core of ALs, CALs, and CILs. No prevalence of a particular morphology of
GPR17+ cells were detected inside/outside the different lesions, except for ALs, where
rounded GPR17+ cells outnumbered ramified ones inside the lesion. No differences were
detected outside (Figure 6D–I).

3. Discussion

In the last 10 years, GPR17 has progressively emerged as a key player in the physio-
logical differentiation of adult OPCs [4,5] and several pre-clinical studies have specifically
associated its expression to rapid responses to myelin injury, independently of the type
of insult (i.e., after either ischemic, traumatic, or toxic injuries [4,10,14]. Despite these
results suggesting GPR17 as a new potential target for remyelination therapies in MS, to
date, expression and spatial distribution of the GPR17 receptor in MS tissues has not been
fully investigated.

Our data show that in both control subjects and patients, the receptor is expressed
exclusively by oligodendroglial cells, supporting the involvement of GPR17 not only in
diseases but also in the physiological maturation of human oligodendrocytes [9]. Both
qualitative and quantitative analyses consistently show that GPR17+ cells are widespread
in all samples; however, notably, the NAWM clearly presents the highest amount of GPR17
expressing cells. Apparently in contrast with this finding, Chen et al. previously suggested
an increase of GPR17 expression in MS plaques compared to NAWM [8]. However, the
two studies are not directly comparable: (a) in Chen et al., GPR17 expression was only
evaluated at transcriptional level and in the whole tissue, without considering the effects
of post-transcriptional mechanisms (e.g., miRNAs, RNA binding protein, RNA editing)
and the number of the expressing cells. Instead, our analysis refers to GPR17 protein and
GPR17-expressing cells in specific areas; (b) it was a bulk analysis in which MS plaques
were not characterized according to the histological classification [19], while the present
data show that pre-active, active, inactive, chronic and acute lesions are characterized by
highly different expression levels of GPR17; (c) the Chen et al. analysis did not consider
the anatomy of the lesions, whereas in the present study we have excluded the peri-
plaque areas of NAWM, which we observed to be characterized by highly remarkable
GPR17 positivity.

In line with our observations, data from literature have shown that NAWM is character-
ized by relevant and diffuse ongoing inflammation, in the absence of demyelination [20–24].
The abundance of GPR17+ cells in this area suggests that GPR17 expression is not related to
a specific kind of demyelinating lesion, but rather to tissue responsivity and inflammatory
status. We cannot exclude that the abundance of GPR17+ cells may be the consequence of
an increased OPC proliferation and subsequent differentiation attempt. Previous findings
have shown that the receptor is activated by different inflammatory mediators [6,16,25,26]
and that there is a positive correlation between the density of OPCs and macrophages in MS
patients [27]. Thus, the analysis of NAWM may be particularly relevant to understand how
lesions originate and eventually to investigate new mechanisms to prevent demyelination
in the very early phases of the disease.

On top of this, our immunohistochemistry and immunofluorescence analysis con-
firmed the coexistence of two morphologically distinguishable types of oligodendroglial
GPR17-expressing cells—i.e., ramified and rounded cells—which could represent different
OPC maturation stages. In this respect, it is known that, in rodent species, GPR17 starts
to be expressed in the soma of early quiescent OPCs characterized by a simple rounded
morphology typical of undifferentiated cells. OPCs can also show a rounded morphology
when, upon activation, they migrate in response to lesion context [28–30], or are exposed to
prolonged metabolic stress induced by inflammation, which is characterized by a decrease
of processes ramifications [31]. During maturation, OPCs start extending cellular processes
and, at the same time, the expression of GPR17 progressively increases, thus also in hu-
mans, ramified GPR17+ cells may represent resident pre-oligodendrocytes undergoing
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maturation. However, double immunofluorescence staining with specific markers of OPC
differentiation stages will be necessary to confirm this hypothesis. In the NAWMs of our
samples, ramified and rounded morphologies were equally represented. The coexistence
of both GPR17+ cells morphologies could reflect different coexisting physio-pathological
states in NAWM [32], which is a dynamic and reactive tissue where unknown conditions
can eventually trigger an AL. The persistent pro-inflammatory milieu in NAWM could
block oligodendrocytes in an immature stage and force a prolonged and untimely expres-
sion of GPR17. We postulate that this overexpression is partly responsible of remyelination
impairment, which may have relevant implications for the treatment of MS.

When inflammation remarkably increases in NAWM, infiltrating T-lymphocytes, ac-
tivated microglia and autoantibodies against myelin induce demyelination and further
infiltration in the core of the rising active lesion with widespread cytotoxic effects against
resident cells. For this reason, ALs are hypocellular, with a low number of spread OPCs
expressing GPR17, in contrast to NAWM, where the tissue is still intact and a relevant
amount of GPR17+ cells is found, reflecting their significant response in order to remyeli-
nate. However, this recruitment is not sufficient in ALs, likely due to limited migration
capabilities of OPCs surviving the inflammatory milieu of NAWM [33–35]. When inflam-
mation goes down, the lesion appears demyelinated and even more hypocellular, with very
low presence of inflammatory cells and oligodendrocytes due to advanced cell loss (CILs).
Consistently, our data show a low amount of GPR17+ cells in CILs, due to overall loss of
the original anatomical architecture and the less responsive milieu of inactive lesions than
the WM in physiological condition [32].

In the present study, the difference of age between control cases and patient groups
(73.8 vs. 53.8 years old, respectively) may have a potential impact on our results. Indeed, it
was known that aged brain tissues are physio-pathologically characterized by increased
inflammation compared to younger ones, even in the absence of disease [36,37]. However,
since all data suggest a positive correlation between GPR17 expression and inflammation, it
is likely that the analysis of age-matched groups may extend the significant difference that
we have already observed between the NAWM of patients and the NWM of controls. The
control group also showed a gender unbalance (1 female vs. 4 males), but the numerosity
is too low to make any statements about the impact on the analyzed outcomes.

Considering GPR17 distribution in MS brain tissues, its strong correlation with in-
flammation levels in WM and the direct involvement in myelin genesis and repair, we
confirm this receptor as a promising target for pro-remyelinating therapies, which today
still represent an unmet medical need in MS treatment. As a membrane G protein-coupled
receptor, GPR17 is easily druggable. Moreover, its expression in highly reactive cells close
to the lesion sites, next to the blood–brain barrier, which is more permeable in MS patients,
could facilitate the interaction of the putative pro-remyelinating compound and GPR17.
On this basis, we propose that innovative and selective ligands for GPR17, in combination
with other agents acting on inflammation and/or myelination inhibitors (e.g., LINGO-1,
CSPGs, BMPs), could restore the adequate physiological maturation of oligodendrocytes
and their myelinating properties.

From the pharmacodynamic point of view, both the agonist galinex [38] and antagonist—as
cangrelor, montelukast, or pranlukast—showed promising results in preliminary in vivo
studies [6,12,26,38–42]. Nevertheless, antagonist ligands could potentially cause a total
arrest of the GPR17 physiological signaling in healthy tissue and lead to safety issues in
case of the long-term treatments. In this respect, we hypothesize that the best option may
be the use of a partial agonist, which should both preserve the physiological function of
GPR17 where needed and prevent its pathological overexpression in injured areas.
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4. Materials and Methods
4.1. Sample Acquisition

All the analyses described were performed on brain autoptic samples and pertinent
donors’ clinical records provided by the UK Multiple Sclerosis Tissue Bank of the Imperial
College of London. All patients and the next of kin had given written consent for autopsy
and for use of their brain tissue for scientific research, with full ethical approval by UK
Ethics Committee (ref. no. 08/MRE09/31).

Cerebral tissues from nine patients with diagnosis of MS (three men and six women)
have been compared with other ones deriving from five patients without diagnosis of
central nervous system demyelinating diseases (four men and one woman). Clinical and
demographic characteristics are shown in Table 2.

Table 2. Clinical and demographic data of progressive multiple sclerosis (MS) patients and healthy controls donors.
SD = Standard Deviation.

Characteristics Primary Progressive MS Secondary Progressive MS Total Secondary MS Controls

Subjects, N 1 8 9 5
Age, years, mean (SD) 39 (0) 55.6 (±11.3) 53.8 (±11.9) 73.8 (±10)
Gender, women/men 1/0 5/3 6/3 1/4

Age at onset, years,
mean (SD) 24 (0) 31.1 (±9) 31.2 (±8.9) /

Time to wheelchair,
median (SD) 8 (0) 7.9 (±4.4) 7.9 (±4.8) /

Disease duration, years,
mean (SD) 15 (0) 23.5 (±10.2) 22.5 (±10) /

Globally, 29 brain samples were analyzed: 24 from MS patients and 5 from control subjects. The mean ± SD of per person analyzed sample
was 2.7 ± 1 for patients with MS and 1 ± 0 for controls. Patient-level details are reported in Supplementary Table S1.

4.2. Immunohistochemistry on Human Tissues

Snap frozen autoptic blocks were stored at −80 ◦C. 12 µm-thick coronal sections were
cut in cryostat. Slides were removed from cryostorage (−80 ◦C) and were washed for
15 min with a phosphate buffered saline solution 1X (PBS 1X) (Lonza, Basel, Switzerland) at
room temperature. Then they were incubated in a blocking and fixing solution, containing
0.1% H2O2 in methanol (Sigma-Aldrich, Milano, Italy), for 20 min at−20 ◦C. After a second
washing in PBS 1X for 15 min at room temperature, brain tissues were incubated with
a blocking solution, containing 0.1% Triton and 10% Normal Goat Serum (NGS) (Sigma-
Aldrich, Italy) in PBS 1X, for 1 h at room temperature. Then, sections were incubated
with primary antibodies overnight at 4 ◦C in PBS 1X with 0.1% Triton and 5% NGS for all
the studied antigens, except for GPR17 which needed 10% NGS. The primary antibodies
used are the following: rabbit α-MOG (Proteintech, Manchester, UK) (1:200), mouse α-
HLA (Agilent Technologies, Milan, Italy) (1:200) and rabbit α-GPR17 (custom-made by
Primm, Naples, Italy) (1:400). After primary antibody incubation, the sections were washed
in PBS 1X for 15 min and incubated with an appropriate kit, containing biotinylated
secondary antibody (ImmPRESS HRP Reagent KIT—α-rabbit or α-mouse, depending on
the species of primary antibody; Vector Laboratories, Burlingame, CA, USA) for 1 h at
room temperature. Tissue was stained with 3,3′-diaminobenzidine (DAB, Sigma-Aldrich,
Italy) and counterstained with hematoxylin (Sigma-Aldrich, Italy). After dehydration, the
slides were mounted with DPX mounting medium (Sigma-Aldrich, Italy).

The images were acquired at the optical microscope by means of NanoZoomer S60
Digital Slide Scanner C13210-01 (Hamamatsu) at NOLIMITS, an advanced imaging facility
established by Università degli Studi di Milano, and elaborated with the NDP.view2
software (Hamamatsu Photonics, Hamamatsu, Japan).
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4.3. Immunofluorescence on Human Tissues

The slides were removed from cryostorage (−80 ◦C) and were washed for 5 min with
PBS 1X at room temperature. Then they were incubated in a blocking and fixing solution
composed of 0.1% H2O2 in methanol for 20 min at −20 ◦C. After a second washing in
PBS 1X for 15 min at room temperature, brain tissues were incubated with a blocking
solution with 10% NGS in PBS 1X for 45 min at room temperature. In case of Olig2 staining,
the blocking step was performed with 1% BSA in PBS 1X-Tween 0.05% for 1 h at room
temperature. These sections were double-labeled with rabbit α-GPR17 primary antibody
(1:300) and another of the following: mouse α-NeuN (1:100; Merck Millipore, Milano,
Italy) or mouse α-HLA (1:100; Dako, Bolzano, Italy) or goat α-Olig2 (1:200; Bio-techne,
Milan, Italy) or mouse α-GFAP (1:400; Merck Millipore, Italy). All primary antibodies
were diluted in 10% NGS in PBS 1X and incubated overnight at room temperature, except
α-Olig2 which required 1% BSA in PBS 1X-Tween 0.05%. Following primary antibody
incubation, the sections were washed and incubated with fluorescent secondary antibodies
Alexa 555 or 488 (Life Technologies, Monza, Italy), diluted in 5% NGS in PBS 1X (1:400 for
GPR17 secondary labeling, 1:100 for HLA and NeuN secondary labelling, 1:800 for GFAP
secondary labelling), for 1 h at room temperature. Only for Olig2 staining, the sections
were incubated for 2 h at room temperature with anti-goat secondary antibody (1:500)
diluted in 1% BSA in PBS 1X-Tween 0.05%. Hoechst 33258 (Sigma-Aldrich, Italy) was used
to visualize cell nuclei. After processing, sections were mounted on microscope slides
with fluorescent mounting medium (Dako, Italy). The sections were analyzed by confocal
microscope (Nikon A1, Italy).

4.4. Classification of Demyelinating Lesions

Immunohistochemistry analysis was used to identify all the required histopatho-
logical features for the classification of MS lesions according to previously published
method [19,43–45]. MOG and HLA immunostainings were performed on consecutive
sections for each sample in order to identify active lesions (ALs), chronic active lesions
(CALs), and chronic inactive lesions (CILs) [19]. All the MS lesions are characterized
by demyelination (absence of MOG immunostaining) and their inflammatory activity
is represented by the density of HLA+ cells: in ALs inflammatory cells are widespread
in all the lesion area, in CALs they are gathered at the lesion borders only, whereas
in CILs a very low number of HLA+ cells is detected in all the lesion area [19]. In
patients with MS diagnosis, non-demyelinated white matter areas were taken in consid-
eration and were identified as normal appearing white matter (NAWM) [19]. In controls,
white matter areas without histopathological alterations were classified as normal white
matter (NWM).

4.5. Descriptive and Quantitative Analyses

The distribution of GPR17+ cells was analyzed in each sample, overlapping the areas
of interest mentioned above, identified by MOG and HLA, with the GPR17 staining. The
abundance of GPR17+ cells in each area (ALs, CALs, CILs, and NAWMs in MS patients and
NWMs in controls) was evaluated by using the following scores: ‘−’ (absence of GPR17+

cells), ‘+’ (low abundance of GPR17+ cells) or ‘++’ (high abundance of GPR17+ cells). The
descriptive analysis included the observation of the morphology of GPR17+ cells.

For the quantitative analysis of GPR17+ cells, the areas of interest (ALs, CALs, CILs,
NAWMs, NWMs) were acquired with a NanoZoomer S60 slide scanner (Hamamatsu).
Positive cells were counted with the ImageJ software. Cellular density (number of GPR17+

cells/mm2) was calculated normalizing the number of GPR17+ cells counted in each region
with the relative area (mm2). For this analysis, we identified one AL, CAL, CIL, and NAWM
area from four different patients and one NWM area from four different healthy controls;
all subjects have been randomly selected. Thus, a total of four ALs, CILs, and NWMs areas
and five NAWMs areas have been studied in the quantitative analyses. In our samples,
only three CALs have been identified, and all of them were selected for the quantitative
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analyses; however, one CAL was excluded from the study, due to the inadequate quality
of the stained brain tissue, which prevented an accurate count of GPR17+ cells. In case of
lesion, GPR17+ cells within 200 µm far from lesion borders have been considered (Figure S2).
These extra-lesion areas alone were considered in the analysis of GPR17 expression out of
lesion core (see Figure 6).

The samples analyzed for quantification were randomly selected and all the cell-counts
were performed blinded to case identification.

4.6. Statistical Analysis

Data are presented as mean± SEM and analyzed with GraphPad Prism 8.0 (GraphPad
Software, San Diego, CA, USA). The Shapiro–Wilk normality test was used to evaluate
data distribution. For all comparisons between two groups with a normal distribution,
two-tailed unpaired Student’s t-test was performed. For multiple comparison testing,
one-way analysis of variance (ANOVA) accompanied by Tukey’s post-hoc test was used.
Differences were considered significant for p-value < 0.05. Possible outliers were verified
with the Grubb’s test.

5. Conclusions

In conclusion, we found that: (a) GPR17 receptor is widely expressed in oligoden-
droglial cells in MS subjects; (b) it mainly localizes to inflamed areas of WM; (c) in ALs,
GPR17 is predominantly expressed by oligodendroglial cells with rounded morphology
reacting against a demyelinating damage, whereas in NAWM there is a balance between
ramified and rounded morphology. In line with the previous results in animal models of
disease, we propose that GPR17 may be a promising pharmacological target also in human
MS, to support remyelination in the early phase of the disease and prevent myelin loss and
clinical impairment.
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